The Hopf Extension Theorem of Measure

Noboru Endou
Gifu National College of Technology
Japan

Hiroyuki Okazaki
Shinshu University
Nagano, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Summary. The authors have presented some articles about Lebesgue type integration theory. In our previous articles [12, 13, 26], we assumed that some \(\sigma\)-additive measure existed and that a function was measurable on that measure. However the existence of such a measure is not trivial. In general, because the construction of a finite additive measure is comparatively easy, to induce a \(\sigma\)-additive measure a finite additive measure is used. This is known as an E. Hopf’s expansion theorem of measure [15].

MML identifier: MEASURE8, version: 7.11.02 4.120.1050

The articles [11], [23], [1], [24], [22], [8], [25], [10], [9], [2], [20], [26], [6], [5], [7], [13], [4], [12], [3], [16], [19], [18], [27], [21], [17], and [14] provide the notation and terminology for this paper.

1. The Outer Measure Induced by the Finite Additive Measure

For simplicity, we adopt the following convention: \(X\) denotes a set, \(F\) denotes a field of subsets of \(X\), \(M\) denotes a measure on \(F\), \(A, B\) denote subsets of \(X\), \(S_1\) denotes a sequence of subsets of \(X\), \(s_1, s_2, s_3\) denote sequences of extended reals, and \(n, k\) denote natural numbers.

One can prove the following three propositions:

1. \(\text{Ser } s_1 = (\sum_{\alpha=0}^{k}(s_1)(\alpha))_{\alpha \in N}\).
2. If \(s_1\) is non-negative, then \(s_1\) is summable and \(\sum s_1 = \sum s_1\).
(3) Suppose \(s_2 \) is non-negative and \(s_3 \) is non-negative and for every natural number \(n \) holds \(s_1(n) = s_2(n) + s_3(n) \). Then \(s_1(n) \) is non-negative and \(\sum s_1 = \sum s_2 + \sum s_3 \) and \(\sum s_1 = (\sum s_2) + \sum s_3 \).

Let us consider \(X, F \). Note that there exists a function from \(\mathbb{N} \) into \(F \) which is disjoint valued.

Let us consider \(X, F \). A finite sequence of elements of \(2^X \) is said to be a finite sequence of elements of \(F \) if:

(Def. 1) For every natural number \(k \) such that \(k \in \text{dom} \) it holds \(\text{it}(k) \in F \).

Let us consider \(X, F \). Observe that there exists a finite sequence of elements of \(F \) which is disjoint valued.

Let us consider \(X, F \). A sep fin sequence of \(F \) is a disjoint valued finite sequence of elements of \(F \).

Let us consider \(X, F \). A sequence of separated subsets of \(F \) is a disjoint valued function from \(\mathbb{N} \) into \(F \).

Let us consider \(X, F \). A sequence of subsets of \(X \) is said to be a set sequence of \(F \) if:

(Def. 2) For every natural number \(n \) holds \(\text{it}(n) \) is a covering of \(S_1(n) \) in \(F \).

Let us consider \(X, A, F \). A set sequence of \(F \) is said to be a covering of \(A \) in \(F \) if:

(Def. 3) \(A \subseteq \bigcup \text{rng} \text{it} \).

In the sequel \(F_1 \) is a set sequence of \(F \) and \(C_1 \) is a covering of \(A \) in \(F \).

Let us consider \(X, F, F_1, n \). Then \(F_1(n) \) is an element of \(F \).

Let us consider \(X, F, S_1 \). A function from \(\mathbb{N} \) into \((2^X)^{\mathbb{N}} \) is said to be a covering of \(S_1 \) in \(F \) if:

(Def. 4) For every element \(n \) of \(\mathbb{N} \) holds \(\text{it}(n) \) is a covering of \(S_1(n) \) in \(F \).

In the sequel \(C_2 \) denotes a covering of \(S_1 \) in \(F \).

Let us consider \(X, F, M, F_1 \). The functor \(\text{vol}(M,F_1) \) yielding a sequence of extended reals is defined by:

(Def. 5) For every \(n \) holds \(\text{vol}(M,F_1)(n) = M(F_1(n)) \).

The following proposition is true

(4) \(\text{vol}(M,F_1) \) is non-negative.

Let us consider \(X, F, S_1, C_2 \) and let \(n \) be an element of \(\mathbb{N} \). Then \(C_2(n) \) is a covering of \(S_1(n) \) in \(F \).

Let us consider \(X, F, S_1, M, C_2 \). The functor \(\text{Volume}(M,C_2) \) yielding a sequence of extended reals is defined as follows:

(Def. 6) For every element \(n \) of \(\mathbb{N} \) holds \(\text{Volume}(M,C_2)(n) = \sum \text{vol}(M,C_2(n)) \).

We now state the proposition

(5) \(0 \leq \text{Volume}(M,C_2)(n) \).
Let us consider X, F, M, A. The functor $Svc(M, A)$ yielding a subset of \mathbb{R} is defined as follows:

(Def. 7) For every extended real number x holds $x \in Svc(M, A)$ iff there exists a covering C_1 of A in F such that $x = \sum \text{vol}(M, C_1)$.

Let us consider X, A, F, M. Note that $Svc(M, A)$ is non-empty.

Let us consider X, F, M.

The functor $Svc(M, A)$ is defined as follows:

(Def. 8) For every extended real number x holds $x \in Svc(M, A)$ iff there exists a covering C_1 of A in F such that $x = \sum \text{vol}(M, C_1)$.

Let us consider X, A, F, M. Note that $Svc(M, A)$ is non empty.

Let us consider X, A, F, M. The function InvPairFunc from \mathbb{N} into $\mathbb{N} \times \mathbb{N}$ is defined by:

(Def. 9) $\text{InvPairFunc} = \text{PairFunc}^{-1}$.

Let us consider X, S_1, C_2. The functor On_{C_2} yields a covering of $\bigcup \text{rng} S_1$ in F and is defined by:

(Def. 10) For every natural number n holds $(\text{On}_{C_2}(n)) = C_2(\text{pr1}(\text{InvPairFunc})(n))(\text{pr2}(\text{InvPairFunc})(n))$.

We now state several propositions:

(6) Let k be an element of \mathbb{N}. Then there exists a natural number m such that for every sequence S_1 of subsets of X and for every covering C_2 of S_1 in F holds $(\sum_{\alpha=0}^{\kappa} \text{vol}(M, C_2)(\alpha))_{\kappa \in \mathbb{N}}(k) \leq (\sum_{\alpha=0}^{\kappa} \text{Volume}(M, C_2)(\alpha))_{\kappa \in \mathbb{N}}(m)$.

(7) $\inf Svc(M, \bigcup \text{rng} S_1) \leq \sum \text{Volume}(M, C_2)$.

(8) If $A \in F$, then A, \emptyset_X followed by \emptyset_X is a covering of A in F.

(9) Let X be a set, F be a field of subsets of X, M be a measure on F, and A be a set. If $A \in F$, then $(\text{the c meas } M)(A) \leq M(A)$.

(10) The c meas M is non-negative.

(11) $(\text{the c meas } M)(\emptyset) = 0$.

(12) If $A \subseteq B$, then $(\text{the c meas } M)(A) \leq (\text{the c meas } M)(B)$.

(13) $(\text{the c meas } M)(\bigcup \text{rng} S_1) \leq \sum((\text{the c meas } M) \cdot S_1)$.

(14) The c meas M is a Caratheodor’s measure on X.

Let X be a set, let F be a field of subsets of X, and let M be a measure on F. Then the c meas M is a Caratheodor’s measure on X.

2. The Hopf Extension Theorem

Let X be a set, let F be a field of subsets of X, and let M be a measure on F. We say that M is completely-additive if and only if:

(Def. 11) For every sequence F_1 of separated subsets of F such that $\bigcup \text{rng} F_1 \in F$ holds $\sum (M \cdot F_1) = M(\bigcup \text{rng} F_1)$.

The following four propositions are true:

(15) The partial unions of F_1 are a set sequence of F.

(16) The partial diff-unions of F_1 are a set sequence of F.

(17) Suppose $A \in F$. Then there exists a sequence F_1 of separated subsets of F such that $A = \bigcup \text{rng } F_1$ and for every natural number n holds $F_1(n) \subseteq C_1(n)$.

(18) If M is completely-additive, then for every set A such that $A \in F$ holds $M(A) = \text{(the c meas } M)(A)$.

In the sequel C denotes a Caratheodor’s measure on X.

We now state three propositions:

(19) If for every subset B of X holds $C(B \cap A) + C(B \cap (X \setminus A)) \leq C(B)$, then $A \in \sigma$-Field(C).

(20) $F \subseteq \sigma$-Field($\text{the c meas } M$).

(21) Let X be a set, F be a field of subsets of X, F_1 be a set sequence of F, and M be a function from F into \mathbb{R}. Then $M \cdot F_1$ is a sequence of extended reals.

Let X be a set, let F be a field of subsets of X, let F_1 be a set sequence of F, and let g be a function from F into \mathbb{R}. Then $g \cdot F_1$ is a sequence of extended reals.

Next we state the proposition

(22) Let X be a set, S be a σ-field of subsets of X, S_2 be a sequence of subsets of S, and M be a function from S into \mathbb{R}. Then $M \cdot S_2$ is a sequence of extended reals.

Let X be a set, let S be a σ-field of subsets of X, let S_2 be a sequence of subsets of S, and let g be a function from S into \mathbb{R}. Then $g \cdot S_2$ is a sequence of extended reals.

The following propositions are true:

(23) Let F, G be functions from \mathbb{N} into \mathbb{R} and n be a natural number. Suppose that for every natural number m such that $m \leq n$ holds $F(m) \leq G(m)$. Then $(\text{Ser } F)(n) \leq (\text{Ser } G)(n)$.

(24) For all X, C and for every sequence s_1 of separated subsets of σ-Field(C) holds $\bigcup \text{rng } s_1 \in \sigma$-Field($C$) and $C(\bigcup \text{rng } s_1) = \sum C \cdot s_1$.

(25) For all X, C and for every sequence s_1 of subsets of σ-Field(C) holds $\bigcup s_1 \in \sigma$-Field(C).

(26) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-measure on S, and S_2 be a sequence of subsets of S. If S_2 is non-decreasing, then $\lim (M \cdot S_2) = M(\lim S_2)$.

(27) If F_1 is non-decreasing, then $M \cdot F_1$ is non-decreasing.

(28) If F_1 is descending, then $M \cdot F_1$ is non-increasing.

(29) Let X be a set, S be a σ-field of subsets of X, M be a σ-measure on S, and S_2 be a sequence of subsets of S. If S_2 is non-decreasing, then $M \cdot S_2$
is non-decreasing.

(30) Let X be a set, S be a σ-field of subsets of X, M be a σ-measure on S, and S_2 be a sequence of subsets of S. If S_2 is descending, then $M \cdot S_2$ is non-increasing.

(31) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-measure on S, and S_2 be a sequence of subsets of S. If S_2 is descending and $M(S_2(0)) < +\infty$, then $\lim(M \cdot S_2) = M(\lim S_2)$.

Let X be a set, let F be a field of subsets of X, let S be a σ-field of subsets of X, let m be a measure on F, and let M be a σ-measure on S. We say that M is extension of m if and only if:

(Def. 12) For every set A such that $A \in F$ holds $M(A) = m(A)$.

Next we state four propositions:

(32) Let X be a non empty set, F be a field of subsets of X, and m be a measure on F. If there exists a σ-measure on $\sigma(F)$ which is extension of m, then m is completely-additive.

(33) Let X be a non empty set, F be a field of subsets of X, and m be a measure on F. Suppose m is completely-additive. Then there exists a σ-measure M on $\sigma(F)$ such that M is extension of m and $M = \sigma\text{-Meas}(\text{the c meas } m)|\sigma(F)$.

(34) If for every n holds $M(F_1(n)) < +\infty$, then $M((\text{the partial unions of } F_1)(k)) < +\infty$.

(35) Let X be a non empty set, F be a field of subsets of X, and m be a measure on F. Suppose that

(i) m is completely-additive, and

(ii) there exists a set sequence A_1 of F such that for every natural number n holds $m(A_1(n)) < +\infty$ and $X = \bigcup \text{rng } A_1$.

Let M be a σ-measure on $\sigma(F)$. If M is extension of m, then $M = \sigma\text{-Meas}(\text{the c meas } m)|\sigma(F)$.

REFERENCES

Received April 7, 2009