
Yunfeng Chen and Nidal Nasser
Outline

- Introduction
- Background And Related Works
- Brief Description of SEEM
- Description of the QoS Multipath Routing Protocol
- Performance Evaluation
- Conclusion And Future Work
Introduction

- Wireless Communications
 - Sensors
 - Tiny, Low-cost, Low energy
 - Tasks
 - Military and Civilian
 - Application
 - Environment monitor, Wild animals track and Battlefield surveillance
Introduction (Cont.)

- Wireless Sensor Network limit
 - Storage space
 - Energy supply
 - Data processing
 - Communication bandwidth
Secure and Energy-Efficient Multipath Routing (SEEM)

Performance

SEEM gains a better performance compared to Directed Diffusion routing protocol

- Term
 - Network throughput, Network lifespan, Communication overhead
Introduction (Cont.)

- Quality of Service (QoS)
 - Two attributes
 - Reliability and Delay
 - Reliability
 - Packets delivery ratio
 - Hardware failures
 - Collision
Quality Of Service Multipath Routing Protocol (QOSMR)

- Extends SEEM
- Providing QoS guarantees
 - Network throughput, Network lifetime
- Data transmission at the same time
 - QOSMR: More than one source to the base station
 - SEEM: Only one source to the base station
The main goal for most proposed routing protocols
- Consuming low power, extending the network lifetime
 - Example
 - Habitat monitoring
- For some mission-critical, energy-efficiency is far more enough
 - Example
 - Warning alert systems
Background And Related Works (Cont.)

- QoS have three basic data delivery models
 - Event-driven model
 - Query-driven model
 - Example: Microsoft SensorWeb
 - Continuous delivery model
Background And Related Works (Cont.)

- SensorWeb
 - By Microsoft Corporation
 - Is an example of query-driven applications
 - Deployed by contributors across the globe
 - Use the shared sensing resources, the sensor querying, tasking mechanisms
Background And Related Works (Cont.)

- SensorMap

Reference: http://atom.research.microsoft.com/sensormap/
Brief Description of SEEM

- **SEEM**
 - Secure and Energy-Efficient Multipath routing protocol
 - Better performance
 - Network throughput, Network lifespan, Communication overhead
Brief Description of SEEM (Cont.)

- SEEM consists of three phases
 - Topology Construction
 - Data Transmission
 - Topology Maintenance
Brief Description of SEEM (Cont.)

- Limitation of SEEM
 - Not suitable
 - Multiple source nodes sending data to BS at the same time
 - More sensor nodes transmitting simultaneously
 - Collision occurs
 - QOSMR
 - Overcome the limitations of SEEM
Description of the QoS Multipath Routing Protocol

- QOSMR Overview
 - Adopt the same mechanisms as SEEM
 - Building network topology
 - Multipath
 - Improvements of QOSMR include two points
 - BS selects disjoint paths for different source nodes
 - Send data to the BS at the same time
 - If no disjoint paths are available
 - BS schedules the data transmission of each source node
 - Avoid collisions
Description of the QoS Multipath Routing Protocol (Cont.)

- Example
 - node 5 to node 1
 - 5 ←→ 3 ←→ 2 ←→ 1
 - node 8 to node 1
 - 8 ←→ 5 ←→ 3 ←→ 2 ←→ 1
 - 8 ←→ 7 ←→ 6 ←→ 4 ←→ 1
 - Overlapped with the only available path to node 5
 - Great chance of collisions
Description of the QoS Multipath Routing Protocol (Cont.)

- If all the source nodes send packets to BS simultaneously
 - Cause three problems
 - High collisions occur at the intermediate node
 - Energy will run out very quickly
 - Protocol takes to deal with packets missing

- Avoid this situation
 - Use multiple source nodes
Description of the QoS Multipath Routing Protocol (Cont.)

- **Multiple source nodes**
 - Use the 1st path for node 5
 - Use the 2nd path for node 8

- **Example**
 - 3 ←→ 5 ←→ 2 ←→ 1
 - 6 ←→ 5 ←→ 4 ←→ 1
 - 7 ←→ 5 ←→ 8 ←→ 1
Description of the QoS Multipath Routing Protocol (Cont.)

- One node exists on three paths
 - Intermediate node 5

- Transmission schedule
 - Interval time of sending
 - between two source nodes is 0.1s
 - After the last source node sending packet
 - Pause of 1s
Description of the QoS Multipath Routing Protocol (Cont.)

- **Transmission schedule**

 | 3 | 6 | 7 | pause | 3 | 6 | 7 | pause | ...
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1s</td>
<td>0.1s</td>
<td>0.1s</td>
<td>1s</td>
<td>0.1s</td>
<td>0.1s</td>
<td>0.1s</td>
<td>1s</td>
<td>...</td>
</tr>
</tbody>
</table>

- **Total interval of transmitting two packets**
 - Waiting time of each source node
 \[0.1s + 0.1s + 0.1s + 1s = 1.3s\]
 - When \(N\) source nodes share one intermediate node

 \[0.1s \times N + 1s\]

 - When \(N\) is too large to make the interval too long
 - Decrease waiting or pause time
Performance Evaluation

- Simulation tool
 - Network Simulator NS-2

- Simulation Model and Evaluation Metrics
 - Region: 150m * 150m
 - Change the network size
 - Number of nodes from 30 to 130 nodes
 - Increment of 20 nodes
Performance Evaluation (Cont.)

- Compare the performance
 - QOSMR and SEEM
 - Throughput
 - Source nodes to Base Station
 - Ratio of successfully received data packets
 - Network Lifetime
 - First node failure occurs
 - Energy reserve is reduced to zero
Simulation Results

Network throughput

SEEM

- Not benefit from the increase of network size either
- Collisions occur
Performance Evaluation (Cont.)

- Network throughput (Cont.)
 - QOSMR
 - It can select disjoint path to different source nodes
 - SEEM can not
 - When the network size increases
 - Possibility of finding disjoint path increases
 - Avoid collisions

![Network Throughput Graph]

\[\text{Throughput} \]

\[\text{Density} \]
Performance Evaluation (Cont.)

- Network lifetime
 - SEEM does not perform well
 - Two reasons
 - Energy consumed much faster
 - Send Lost packets, needs additional energy
Conclusion And Future Work

- QOSMR
 - Reliability of packets delivery
 - To guarantee the reliability
 - Decrease the collisions occurred while multiple source nodes send packets to the BS at the same time
 - Adopts two mechanisms
 - Select completely disjoint multipath for different source nodes
 - If no disjoint multipath, use transmission schedule
Conclusion And Future Work (Cont.)

- Future Work
 - Considers another element of QoS routing
 - Delay
 - Vital to some real-time applications
 - Long-time waiting can not be tolerated