Independence number of iterated line digraphs

Nicolas Lichiardopol

I3S-ESSI, BP 145, 06903 Sophia Antipolis, France

Received 2 July 2003; received in revised form 7 June 2004; accepted 18 August 2004

Abstract

In this paper, we deal with the independence number of iterated line digraphs of a regular digraph G. We give pertinent lower bounds and give an asymptotic estimation of the ratio of the number of vertices of a largest independent set of the nth iterated line digraph of G.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Line digraph; Independent set; Independence number

1. Introduction, notation

Initially, we were interested in the independence number of the De Bruijn digraphs. In [4], we have proved that asymptotically, for a given even integer $d \geq 2$, the number of the vertices of a largest independent set of the de Bruijn digraph $B(d, D)$ is one half of the number of vertices of $B(d, D)$. It is known that $B(d, D)$ is the $(D - 1)$th iterated line digraph of $B(d, 1)$.

In our paper, we generalize this result, more precisely, we prove that asymptotically, for a regular digraph G of degree $d \geq 2$ (even or not), the ratio of the number of vertices of a largest independent set of the nth iterated line digraph $L^n(G)$ of G is $\frac{1}{2}$.

Some notation and basic definitions are necessary.

We consider digraphs G without multiple arcs. We denote by $V(G)$ the vertex set of G and by $v(G)$ its cardinality. We denote by $\mathcal{A}(G)$ the set of arcs of G. For an arc (x, y), x is the starting point and y is the ending point.

E-mail address: lichiar@club-internet.fr

0012-365X/S - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2004.08.030
For $x \in V(G)$, a vertex y such that $(x, y) \in \mathcal{A}(G)$ is a successor of x. $N^+_G(x)$ is the set of successors of x. The outdegree $d^+_G(x)$ of x is the number of successors of x. A vertex y such that $(y, x) \in \mathcal{A}(G)$ is a predecessor of x. $N^-_G(x)$ is the set of predecessors of x. The indegree $d^-_G(x)$ of x is the number of predecessors of x.

An element x of $V(G)$ such that $(x, x) \in \mathcal{A}(G)$ is called a vertex with loop and the arc (x, x) is a loop. We denote by $V_L(G)$ the set of vertices with loop and by $v_L(G)$ its cardinality.

A regular digraph of degree d is a digraph G such that $d^+_G(x) = d^-_G(x) = d$ for any $x \in V(G)$.

For a digraph G, the line digraph $L(G)$ is the digraph whose vertex set is $\mathcal{A}(G)$ and whose arcs are the pairs $((x, y), (y, z))$ where (x, y) and (y, z) are arcs of G. Clearly, for each arc $(x, y) \in \mathcal{A}(G)$, we have $d^+_L((x, y)) = d^+_G(y)$ and $d^-_L((x, y)) = d^-_G(x)$. It is also clear that $V_L(L(G)) = \{(x, x); x \in V_L(G)\}$.

For an integer $n \geq 1$, the nth iterated line digraph is the digraph defined recursively by $L_1(G) = L(G)$ and $L^n(G) = L(L^{n-1}(G))$.

$L^n(G)$ is also the digraph whose vertices are the walks of G of length n and whose arcs are the pairs $(x_1 \ldots x_{n+1}, y_1 \ldots y_{n+1})$ of walks of length n, with $x_2 \ldots x_{n+1} = y_1 \ldots y_n$.

For a vertex $x = x_1 \ldots x_i \ldots x_{n+1}$ of $L^n(G)$, $p_i(x) = x_i$ is the ith coordinate of x.

It is easy to prove that for any $n \geq 1$, we have $v_L(L^n(G)) = v_L(G)$.

It is clear that for a regular digraph of degree d, $L^n(G)$ is a regular digraph of degree d with $v(L^n(G)) = v(G)d^n$.

It is known that a line digraph G has the following property (P):

- for vertices x and y of G, we have either $N^+_G(x) = N^+_G(y)$ or $N^+_G(x) \cap N^+_G(y) = \emptyset$.

It was proved that a digraph is a line digraph if and only if it has property (P) (see [3]).

For $d \geq 2$ and $D \geq 2$, the De Bruijn digraph $B(d, D)$ is the digraph whose vertex set is \mathbb{Z}_d^D and whose arcs are the couples $(x_1, x_2 \ldots x_D, x_2 \ldots x_D i)$ with $i \in \mathbb{Z}_d$. The De Bruijn digraph $B(d, 1)$ is the complete digraph K_d^+ (with a loop in each vertex). $B(d, D)$ is a regular digraph of degree d. The undirected De Bruijn graph $UB(d, D)$ is the underlying graph of $B(d, D)$.

An independent set S of a digraph G is a set of vertices such that there are no arcs between any two distinct elements of S. The independence number of G is the maximum cardinality of the independent sets of G and is denoted by $\alpha(G)$.

2. Results on regular line digraphs

Our first result is:

Proposition 2.1. For any regular line digraph H of degree $d \geq 2$, we have

$$\alpha(H) \leq \frac{v(H)}{2}.$$

Proof. Let S be an independent set of H with $|S| = s = \alpha(H)$. If S does not contain vertices with loop, every vertex x of S has its neighbours in $V(H) \setminus S$. Consequently, there are $2sd$
Theorem 3.1. For $0 < x < 1$, we have

$$\lim_{m \to +\infty} \sum_{0 \leq k \leq m} \left(\frac{m}{k} \right)^2 x^{2k} (1-x)^{2m-2k} = 0.$$
The proof which follows, shorter than our initial proof, was suggested by one of the referees. We begin by:

Lemma 3.2. For $0 < x < 1$, we have $\lim_{m \to +\infty} \left(\frac{m}{w_m} \right)^x (1 - x)^{m - w_m} = 0$, where $w_m = \lfloor (m + 1)x \rfloor$ for $m \in \mathbb{N}^*$.

Proof. We can write $(m + 1)x = w_m + r_m$ with $0 \leq r_m < 1$, and then $x = (w_m + r_m)/(m + 1)$. We denote $b_m = \left(\frac{m}{w_m} \right)^x (1 - x)^{m - w_m}$. We have

$$b_m = \left(\frac{m}{w_m} \right)^x (\frac{w_m + r_m}{m + 1})^{w_m} \left(\frac{m - w_m + 1 - r_m}{m + 1} \right)^{m - w_m},$$

that is

$$b_m = \frac{m!}{w_m!} \frac{(w_m + r_m)^{w_m}(m - w_m + 1 - r_m)^{m - w_m}}{(m + 1)^m}.$$

By Stirling formula (see [2] for proofs), we know that

$$\lim_{n \to +\infty} \frac{n!}{(n/e)^n \sqrt{2\pi n}} = 1.$$

Let us denote

$$U_m = \frac{n!}{(n/e)^n \sqrt{2\pi n}}.$$

It is easy to prove that $\lim_{m \to +\infty} w_m = +\infty$ and $\lim_{m \to +\infty} m - w_m = +\infty$.

Consequently, we have $\lim_{m \to +\infty} U_{w_m} = 1$, that is

$$\lim_{m \to +\infty} \frac{w_m!}{(w_m/e)^w_m \sqrt{2\pi w_m}} = 1$$

and $\lim_{m \to +\infty} U_{m - w_m} = 1$, that is

$$\lim_{m \to +\infty} \frac{(m - w_m)!}{((m - w_m)/e)^{m - w_m} \sqrt{2\pi (m - w_m)}} = 1.$$

This implies that the sequence b_m is equivalent when $m \to +\infty$ to the sequence

$$v_m = \frac{(m/e)^m \sqrt{2\pi m}}{2\pi (w_m/e)^{w_m} (m - w_m)/e)^{m - w_m} \sqrt{w_m(m - w_m)}} \times \frac{(w_m + r_m)^{w_m}(m - w_m + 1 - r_m)^{m - w_m}}{(m + 1)^m},$$

that is

$$v_m = \sqrt{\frac{m}{2\pi w_m(m - w_m)} (m + 1)^m \frac{(w_m + r_m)^{w_m}}{w_m^m} \frac{(m - w_m + 1 - r_m)^{m - w_m}}{(m - w_m)^{m - w_m}}}.$$
We have \(\frac{m^m}{(m + 1)^m} < 1 \). We have also
\[
\frac{(w_m + r_m)^{w_m}}{w_m^{w_m}} \leq \left(1 + \frac{1}{w_m} \right)^{w_m}
\]
and
\[
\frac{(m - w_m + 1 - r_m)^{m - w_m}}{m - w_m^{m - w_m}} \leq \left(1 + \frac{1}{m - w_m} \right)^{m - w_m}
\]
and as
\[
\lim_{m \to +\infty} \left(1 + \frac{1}{w_m} \right)^{w_m} = \lim_{m \to +\infty} \left(1 + \frac{1}{m - w_m} \right)^{m - w_m} = e,
\]
the sequences \((w_m + r_m)^{w_m} / w_m^{w_m} \) and \((m - w_m + 1 - r_m)^{m - w_m} / (m - w_m)^{m - w_m} \) are bounded.

As
\[
\frac{m}{w_m(m - w_m)} = \frac{m}{(mx + x - r_m)(m(1 - x) - x + r_m)},
\]
clearly, we have
\[
\lim_{m \to +\infty} \frac{m}{w_m(m - w_m)} = 0.
\]
It follows \(\lim_{m \to +\infty} v_m = 0 \), hence \(\lim_{m \to +\infty} b_m = 0 \). So, the lemma is proved.

Now, we can prove Theorem 3.1:

For fixed \(x, 0 < x < 1 \) and for \(0 \leq k \leq m \), we denote \(F_k = \binom{m}{k} x^k (1 - x)^{m - k} \). Let us put
\[
\varphi(m) = \max_{0 \leq k \leq m} F_k.
\]
We have
\[
\sum_{0 \leq k \leq m} \binom{m}{k}^2 x^{2k} (1 - x)^{2m - 2k} \leq \varphi(m) \sum_{0 \leq k \leq m} \binom{m}{k} x^k (1 - x)^{m - k}
\]
that is
\[
\sum_{0 \leq k \leq m} \binom{m}{k}^2 x^{2k} (1 - x)^{2m - 2k} \leq \varphi(m).
\]
We have
\[
F_{k+1} / F_k = (m - k)x / ((k + 1)(1 - x)) < 1 \text{ for } k > (m + 1)x - 1 \text{ and } F_{k+1} / F_k > 1 \text{ for } k < (m + 1)x - 1.
\]
This means that the maximum of \(F_k \) is reached for \(k = \lfloor (m + 1)x \rfloor = w_m \).

Consequently, \(\varphi(m) = F_{w_m} \) and by Lemma 4.1, we have \(\lim_{m \to +\infty} \varphi(m) = 0 \), which implies \(\lim_{m \to +\infty} \sum_{0 \leq n \leq m} \binom{m}{k}^2 x^{2k} (1 - x)^{2m - 2k} = 0 \). So, Theorem 3.1 is proved.

Let \(G \) be a regular digraph of degree \(d \geq 2 \) and let us denote \(H = L(G) \).
We fix an integer \(r \) verifying \(1 \leq r \leq d - 1 \) and an element \(f \) of \(F_r(H) \).
For an integer \(n \geq 1 \), we define
\[
\Psi_{H,f,n} : V(L^n(H)) \to \mathbb{Z} \text{ by } \Psi_{H,f,n}(x_1 \ldots x_{n+1}) = \sum_{1 \leq i \leq n+1} (-1)^{i+1} f(x_i).
\]
It is clear that \(\Psi_{H,f,n}(x) \) is minimum when the coordinates in odd rows of \(x \) have 0 as image by \(f \) and the coordinates in even rows have 1 as image and
that $\Psi_{H,f,n}(x)$ is maximum when the opposite holds. Consequently, $\Psi_{H,f,n}(x)$ goes from $-[(n+1)/2]$ to $[(n+2)/2]$.

It is clear that if n is odd, for $x \in V(L^n(H))$ we have $\Psi_{H,f,n}(x) = -\Psi_{H,1-f,n}(x)$ and that if n is even, for $x \in V(L^n(H))$ we have $\Psi_{H,f,n}(x) = 1 - \Psi_{H,1-f,n}(x)$.

Lemma 3.3. Let $m \geq 2$ be an integer. For $0 \leq i \leq m$, we have

(a) $|\Psi^{-1}_{H,f,2m-1}(i)| = (v(H)/d) \sum_{0 \leq k \leq m-i} \binom{m}{k} \binom{m}{k+i} r^{2k+i}(d-r)^{2m-2k-i}$,

(b) $|\Psi^{-1}_{H,f,2m-1}(-i)| = |\Psi^{-1}_{H,f,2m-1}(i)|$.

Proof. (a) For $0 \leq k \leq m-i$, let us denote by $A_{i,k}$ the set of vertices $x = x_1\ldots x_{2m}$ of $L^{2m-1}(H)$ such that exactly $k+i$ coordinates of x in odd rows have 1 as image by f and exactly k coordinates of x in even rows have 1 as image by f.

Clearly, the $A_{i,k}$, $0 \leq k \leq m-i$, are disjoint and $\Psi^{-1}_{H,f,2m-1}(i) = \bigcup_{0 \leq k \leq m-i} A_{i,k}$. Let us consider first $1 \leq i \leq m-1$ (which implies $m \geq 2$).

For $0 \leq k \leq m-i-1$, the number of vertices $x_1\ldots x_{2m}$ of $A_{i,k}$ with $f(x_1) = 1$ is $(v(H)/d) r^{m-i-1} (d-r)^{m-k-1} \binom{m}{k} r^k (d-r)^{m-k}$, that is $(v(H)/d) \binom{m}{k+i} r^{k+i} (d-r)^{2m-2k-i}$.

The number of vertices $x_1\ldots x_{2m}$ of $A_{i,k}$ with $f(x_1) = 0$ is $(v(H)/d) (d-r) \binom{m}{k+i} r^{k+i} (d-r)^{2m-2k-i}$.

In a similar way, one can prove that the result holds for $i \in \{0, m\}$.

(b) It is clear that if $\Psi_{H,f,2m-1}(x) = -i$, we have $\Psi_{H,1-f,2m-1}(x) = i$ and so $\Psi^{-1}_{H,f,2m-1}(-i) = \Psi^{-1}_{H,1-f,2m-1}(i)$. By the proof of part (a), we have

$$|\Psi^{-1}_{H,1-f,2m-1}(i)| = \frac{v(H)}{d} \sum_{0 \leq k \leq m-i} \binom{m}{k} \binom{m}{k+i} (d-r)^{2k+i} r^{2m-2k-i}.$$
This implies \(|\Psi^{-1}_{H,1-f,2m-1}(i)|=|\Psi^{-1}_{H,f,2m-1}(i)|\), hence \(|\Psi^{-1}_{H,1-f,2m-1}(-i)|=|\Psi^{-1}_{H,f,2m-1}(i)|\)

The following result is essential:

Lemma 3.4. If \(x \in \Psi^{-1}_{H,1-f,2m-1}(i)\) and \(y \in \Psi^{-1}_{H,f,2m-1}(j)\) are adjacent in \(L^{2m-1}(H)\), we have \(i + j \in \{-1, 0, 1\}\).

Proof. Let \(x = x_1 \ldots x_{2m}\) and \(y = y_1 \ldots y_{2m}\).

We have \(f(x_1) - f(x_2) + \cdots + f(x_{2m-1}) - f(x_{2m}) = i\) and \(f(y_1) - f(y_2) + \cdots + f(y_{2m-1}) - f(y_{2m}) = j\). If \(y\) is a successor of \(x\), by adding, we obtain \(f(x_1) - f(y_{2m}) = i + j\), which implies \(i + j \in \{-1, 0, 1\}\). If \(y\) is a predecessor of \(x\), by adding, we obtain \(f(y_1) - f(x_{2m}) = i + j\), which again implies \(i + j \in \{-1, 0, 1\}\). □

Now, we can give pertinent lower bounds:

Theorem 3.5. Let \(m \geq 2\) be an integer and let us denote

\[
N(m, d, r) = \frac{1}{2} d^{2m} - \frac{1}{2} \sum_{k=0}^{m} \binom{m}{k}^2 r^{2k}(d-r)^{2m-2k} + \sum_{k=0}^{m-2} \left(\frac{m-1}{k} \right) \left(\frac{m-1}{k+1} \right) r^{2k+2}(d-r)^{2m-2k-2}.
\]

Then

(a) \(\alpha(L^{2m}(G)) \geq v(G)N(m, d, r)\),
(b) \(\alpha(L^{2m+1}(G)) \geq d v(G)N(m, d, r)\).

Proof. Let us define sets \(A_m\) and \(B_m\), by

\[
A_m = \Psi^{-1}_{H,f,2m-1}(1) \cup \cdots \cup \Psi^{-1}_{H,f,2m-1}(m), \quad \text{and}
\]

\[
B_m = \{ x \in \Psi^{-1}_{H,f,2m-1}(0); \ f(p_1(x)) = 0, \ f(p_{2m}(x)) = 1 \}.
\]

Clearly, \(A_m\) and \(B_m\) are disjoint. Since for \(i\) and \(j\) in \([1, \ldots, m]\), we have \(i + j \notin \{-1, 0, 1\}\), Lemma 3.3 implies that \(A_m\) is an independent set of \(L^{2m-1}(H) = L^{2m}(G)\). \(B_m\) is also an independent set of \(L^{2m}(G)\).

Indeed, the existence of an arc \((x_1 \ldots x_{2m}, y_1 \ldots y_{2m})\) with extremities in \(B_m\) would imply \(f(x_1) - f(x_2) + \cdots + f(x_{2m-1}) - f(x_{2m}) = 0\), \(f(y_1) - f(y_2) + \cdots + f(y_{2m-1}) - f(y_{2m}) = 0\) and by addition, we would have \(f(x_1) - f(y_{2m}) = 0\), that is \(-1 = 0\), which is false.

A vertex of \(A_m\) and a vertex of \(B_m\) are not linked. Indeed, suppose that there exists an arc \((x, y)\) with extremities in \(A_m\) and \(B_m\).

By denoting \(x = x_1 \ldots x_{2m}\) and \(y = y_1 \ldots y_{2m}\), we get

\[
f(x_1) - f(y_{2m}) = \Psi_{H,f,2m-1}(x) + \Psi_{H,f,2m-1}(y).
\]
If \(x \) is in \(A_m \) and \(y \) is in \(B_m \), we have \(f(x_1) - 1 = \Psi_{H,f,2m-1}(x) \), hence \(\Psi_{H,f,2m-1}(x) = 1 \), which is false. And if \(x \) is in \(B_m \) and \(y \) is in \(A_m \), we get \(-f(y_{2m}) = \Psi_{H,f,2m-1}(y) \), again false. We conclude that \(A_m \cup B_m \) is an independent set of \(L^{2m}(G) \).

Since \(|\Psi_{H,f,2m-1}^{-1}(-i)| = |\Psi_{H,f,2m-1}^{-1}(i)| \) for \(1 \leq i \leq m \), we deduce

\[|A_m| = \frac{v(G)d^{2m} - |\Psi_{H,f,2m-1}^{-1}(0)|}{2}. \]

The elements \(x_1 \ldots x_{2m} \) of \(B_m \) are characterized by

\[
\begin{align*}
&f(x_1) = 0, \quad f(x_{2m}) = 1, \\
&f(x_2) - f(x_3) + \cdots + f(x_{2m-2}) - f(x_{2m-1}) = -1.
\end{align*}
\]

By Lemma 3.2b, we deduce that \(|B_m| = r(d - r)|\Psi_{H,f,2m-3}^{-1}(1)| \), let

\[|B_m| = v(G)r(d - r) \sum_{0 \leq k \leq m-2} \binom{m-1}{k} \binom{m-1}{k+1} r^{2k+1}(d - r)^{2m-3-2k}. \]

Since \(A_m \cup B_m \) is independent, we have \(\alpha(L^{2m}(G)) \geq |A_m \cup B_m| \) and the assertion is proved.

(b) We have \(L^{2m+1}(G) = L^{2m}(H) \). By applying the previous conclusion, the result follows.

This theorem yields in fact \(d - 1 \) lower bounds of \(\alpha(L^n(G)) \) and we conjecture that the best lower bound is provided by \(r = [d/2] \).

Now we can give the main result:

Theorem 3.6. For a regular digraph \(G \) of degree \(d \geq 2 \), we have

\[
\lim_{n \to +\infty} \frac{\alpha(L^n(G))}{v(L^n(G))} = \frac{1}{2}.
\]

Proof. For \(m \in \mathbb{N} \) and \(1 \leq r \leq d - 1 \), from Theorem 3.5 and Proposition 2.1, we deduce

\[
v(G) \left(\frac{1}{2}d^{2m} - \frac{1}{2} \sum_{0 \leq k \leq m} \binom{m}{k}^2 r^{2k}(d - r)^{2m-2k} \right) \leq \alpha(L^{2m}(G)) \leq \frac{v(L^{2m}(G))}{2},
\]

hence

\[
\frac{1}{2} - \frac{1}{2} \sum_{0 \leq k \leq m} \binom{m}{k}^2 \left(\frac{r}{d} \right)^{2k} \left(\frac{d - r}{d} \right)^{2m-2k} \leq \frac{\alpha(L^{2m}(G))}{v(L^{2m}(G))} \leq \frac{1}{2}.
\]

By Theorem 3.1, we have

\[
\lim_{m \to +\infty} \sum_{0 \leq k \leq m} \binom{m}{k}^2 \left(\frac{r}{d} \right)^{2k} \left(\frac{d - r}{d} \right)^{2m-2k} = 0.
\]
It follows that
\[
\lim_{m \to +\infty} \frac{\alpha(L^{2m}(G))}{v(L^{2m}(G))} = \frac{1}{2}.
\]
Similarly one can prove that
\[
\lim_{m \to +\infty} \frac{\alpha(L^{2m+1}(G))}{v(L^{2m+1}(G))} = \frac{1}{2}.
\]
Consequently, we have
\[
\lim_{n \to +\infty} \frac{\alpha(L^n(G))}{v(L^n(G))} = \frac{1}{2}. \quad \Box
\]

A cover set of a digraph \(G \) is an independent set \(S \) of \(G \) with no loops and such that any vertex in \(V(G) \setminus S \) has at least one neighbour in \(S \). We denote by \(\alpha'(G) \) the maximum cardinality of the cover sets of \(G \).

It is not difficult to prove that for a regular digraph \(G \) of degree \(d \geq 2 \), \(A_m \cup B_m \) is a cover set of \(L^{2m}(G) \) (\(A_m \) and \(B_m \) are the sets defined in the proof of Theorem 3.5).

As for Theorem 3.6, this implies that
\[
\lim_{n \to +\infty} \frac{\alpha'(L^n(G))}{v(L^n(G))} = \frac{1}{2}.
\]
In particular, this disproves a conjecture of Bryant and Fredricksen (see [1]) stating that, asymptotically, the number of the vertices of a cover set of the binary de Bruijn digraph \(B(2, D) \) cannot exceed \(\frac{4}{9} \) of the total number, \(2^D \), of vertices of \(B(2, D) \). This conjecture had already been disproved by the author in [4].

Acknowledgements

I would like to thank Claudine Peyrat and the referees for their helpful comments.

References