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We compute the sensitivity of a double harmonic oscillator system inserted in a back-action-evasion
scheme of electromechanical transduction. This sensitivity is presented by deriving the effective temper-
ature and the optimum observation time of the detector. Finally, the performances of this scheme on a
resonant gravitational wave antenna at low temperature are discussed.
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I. INTRODUCTION

To monitor the status of a mechanical harmonic oscil-
lator an electromechanical power conversion must be
provided [1]. It has been pointed out that better perfor-
mances are reached when a resonant transducer, tuned to
the oscillator, is used. A typical example of this scheme
is given by the gravitational wave (GW) bar detectors
currently under development by several groups in the
world. In this case the first oscillator is the actual probe
of the external impulsive forces and the second oscillator
is involved in the power conversion process. The
behavior of the whole system is basically that one of a
two coupled harmonic oscillators [2] as we discuss in Sec.
IL.

If a linear scheme is operated, the monitoring sensitivi-
ty is limited because of the back-action narrow band
noise, due to the electronic amplifier located at the end of
the detection apparatus [3]. A nonlinear transduction
scheme can be performed by coupling dynamically the
double mechanical oscillator, whose angular frequencies
are o_ and w4, to an electric oscillator with angular fre-
quency o, >>o_,w (Sec. III) [4,5]. In this experimen-
tal setup the transducer must be more complex in order
to limit the effect due to other noise sources. Then, the
coupling of the double mechanical oscillator to the elec-
trical one is obtained by inserting the resonant elec-
tromechanical transducer into a parametric bridge (para-
bridge) [6-8] (Sec. IV). Here we present a theoretical
model which deals with all basic requirements which
must be satisfied to study and improve the features of the
experiment (Sec. V). In Sec. VI the signal-to-noise ratio
(SNR) analysis is presented and discussed in the frame-
work of the current generation of GW bar antennas.

II. THE SYSTEM: A MECHANICAL DOUBLE
HARMONIC OSCILLATOR

The theoretical and experimental background of this
issue is related with the improvement of the sensitivity of
the gravitational wave resonant antennas. We usually
deal with a system whose features are similar to those of
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massive cryogenic resonant bar detectors. In the model
of two oscillators in series the first harmonic oscillator
schematizes the first longitudinal vibration mode of the
massive cylinder (bar) and the second one represents the
resonant capacitive transducer clamped on one of its
faces [1]. The Hamiltonian of the system is
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where f, and f, are the external forces applied to the os-
cillators. Here we have 2 degrees of freedom and two
normal modes of vibration. By defining u=m,/m, and
vy, v, the frequencies of the uncoupled oscillators, it can
be shown that the frequencies of the two normal modes of
the system are

ve={[V2(1+p)++2]
+V/ [2(14+p)+v2 P-4 )12 (2)

A complete description of the system is also given in
terms of its normal modes by writing the Hamiltonian as
the sum of the Hamiltonians of uncoupled harmonic os-
cillators having frequencies, equivalent masses, and coor-
dinates of the normal modes, respectively, oy, m4, £4:
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The equivalent masses of the two modes are

my=m,+Aim, , 4
where the A, parameters are defined as
A Vi (5
+™ 5
]

and the two reduced normal coordinates £_ and £, are
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related to x and y by the relations
_ T(x A T '_'y )
§:1: A_— }\'+ .

F.(t) are the components of the applied forces expressed
in terms of the normal coordinates and related to f, and

Sy as
Fi()=fx+Asf) - N

Let us notice that, if the force acting on the transducer
is zero (f}, =0), we have

F,=F_=F()=f, .

(6

The variable which is monitored by the transducer is
(y —x) Fig. 1, and it can be expressed in terms of normal
coordinates:

yp—x=&_(A_—D+E&(AL—1). (8)

III. THE READOUT APPARATUS: THE BACK-ACTION-
EVADING PARABRIDGE

We consider the case in which the electromechanical
power conversion is obtained by means of a capacitive
transducer [2].

In a parametric configuration, the monitored system is
dynamically coupled to a readout circuit. This is an elec-
tric LC circuit which resonates at the angular frequency
®,>>o..,0.. The interaction Hamiltonian between the
double harmonic oscillator system and the readout device
is

H;=E(t)g(y —x)
=E(t)glé_(A_—1)+E. (A —DT, 9

where E (t) is the dynamical electric coupling field (the
pump). We deal with a continuous monitoring of the har-
monic oscillator position, with respect to the case of the
stroboscopic measurement approach [9]. In the continu-
ous case, the back-action-evading (BAE) coupling field
can be defined, according with [5,6], as ‘

E(t)=Egap(t)=E[cosw,t cos(w 1) —cosm,t cos(w_t)]
Ey
2

{cos[(w,—@_)t+m]+cos[(w, o _)t+m]

+cos[(@w, —w)t]+cos[(w, + @ )]} .
(10)

The complete Hamiltonian of the scheme, when a clas-
sical force F(t) is applied to the first mechanical oscilla-
tor, is

2 2
_py 1 20, P- 1 2 £2
H= oo tymeosfito —hom ol & +H,
2
+-§%+%Lw§q2—F(t)(§++§—)"‘IR(t) - an

The quantity q is the charge variation in the capacitive
transducer, ¢ is the magnetic flux into the inductor L,
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FIG. 1. The mechanical double oscillator system.

and R (2) is the electric noise put in the readout ap-
paratus by the amplifier. Heffner has shown that all
linear amplifiers are unavoidably noisy [10]. We schema-
tize the voltage amplifier of the readout circuit following
the classic representation given in the literature [11] as it
is shown in Fig. 2. The current noise generator acts
back, through the circuit, onto the mechanical oscillator.
We give later the explicit expression for R (¢). Then, six
equations can be deduced from the Hamiltonian (11):

p_=—m_o*&_—E(t)g(A_—1)+F(z),
. _p__
g—_ m_
pr=—m o0&, —E(t)g(A,—1)+F(2),
(12)
£, = P+ )
+ m_,_. )

¢=—Lalg+R(O—EW[E_(A_—1)+E,(A,.—1)],
P
q L *

We note that the system (12) describes two normal os-
cillators, of masses m_ and m . and frequencies v_ and
v4, coupled in parallel to the same electric oscillator
resonating at v,. Two basic requirements characterize a
BAE configuration. The former is the particular time-
dependent coupling of the parametric readout, expressed
by Eq. (10). The latter concerns a proper choice of vari-
ables involved by the measurement strategy.

We introduce the components of the complex ampli-
tudes =_;, . ;, and Q;, where i =1,2 of the three oscilla-
tors:

jo_t

- - 1 . , —Jo_
=—2+J=—1=w_(§—+1w—§— Je »

—jot

- 1 . ,
st B =—(E Hjwf e ’ (13)
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m

1

@,

jo,t

Q,+jQ=-——(¢+jw.q)e

Substituting these expressions in Eq. (12) we have
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FIG, 2, Complete scheme of the double mechanical oscillator
and the readout electric circuit.
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—=sinw, H{A  —

Q,=="""sinw,t(A_

—1INE_ cosw_t+E_,sinw_t)
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Equations (14) show that the components of complex am-
plitudes of the oscillators are cross related in couples. If
a back action noise R (¢) is present in the readout circuit,
a monitoring of @, and Q,, performed to detect an exter-
nal force F(t), is not effective.

If we introduce the explicit expression of the electric
field for the BAE configuration (10) in the system (14), by
averaging over periods greater than 27/0., 27/w_,
2r/w,, we have

"':."_1=-———E—(Lsinw_t ;
m_o_
Efh_—1) F()
2_,=+ + _t,
2 4m_co_ 2 m_ow_ cosw
maor (15)
= Eo(k+ 1) F(t)
Ei == yE— + . cosw .t ,
+ @4 +@4
s __R(@)
Ql La)e Sma) t,
. E, _ _
Q2='—4L ["’ 1(1_}\._)+:-+1(}\-+“‘1)]
Rt )
+ Lo, sinw, t .
In Egs. (15) we synthesize the basic back-action evad-

ing (BAE) behavior of the whole system. The com-
ponents = ., and Z_ | determine the evolution of Q, com-
ponent of the readout circuit (forward correlation).
Therefore Q, carries information about any interaction
of the mechanical oscillator with an external classical
force F(t).

F(t)
m

=—~————coso_t{Q;cosw, t+Q2s1na> t)+Lt)—

F(z)
m_ o
F (1)
my o,

)(E+1005(0+t +E+25inw+t)—

IXE ;coswpt +E  psinw t)—
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sinw_t ,

cosw_1 ,

sinw + t,

cosw.,t ,
(14)

(2)

D,

sinw,? ,

R(2)
Lo,

[

sinw,t .

The electric noise component R (t) spoils both com-
ponents of the electric readout, but it is squeezed only
onto two homologous mechanical components (backward
correlation). In such a way the information about F(¢)
contained in ., and E_,, which has no forward cross
relation, is covered by the noise. A picture of the rela-
tions between the six complex amplitude components is
shown in Fig. 3.

To improve the sensitivity of actual detectors using the
BAE technique two crucial subjects must be taken into
account. First, a finite value of the quality factors of the
oscillators makes them nonadiabatic and this point is a
crucial problem to deal with an experimental setup. The
second relevant issue is the presence of the phase and am-
plitude noise due to the pumps. Present technology al-
lows to obtain high mechanical quality factors by cooling
down the mechanical system and the readout apparatus at
low temperatures (T < 100 mK) [13], although in case of
resonant GW antenna (GWA) mechanical quality factors
are usually 1 order of magnitude greater than electric
ones [12]. Stochastic excitation of the mechanical reso-
nator of the transducer can be avoided by means of a
differential capacitor and the electric noise of the pumps
is limited by inserting the differential capacitor in a

FIG. 3. Picture of relations between the six complex ampli-
tude components. The relations depend on the interaction
Hamiltonian: (a) generic; (b) back action evading (BAE).
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FIG. 4. Parabridge readout configuration.

bridge configuration, as shown in Fig. 4 [8].

The signal pick-up is done at the central arm coil. In
this configuration any noise coming from the biasing elec-
tric field sources is reduced by the static impedance bal-
ance of the bridge 7, that has to be as good as possible.

The equivalent voltage of the central arm is related to
the pumps amplitude ¥, by the expression

T S L B (16)
A (Z FZNZyt2Zg) P e

where
Z,=R,+- for n=1,2,3,4. a7

n

If we suppose to have both a capacitive and resistive
unbalance [8], so that C;=C;=C,=C, C,=C+AC(,
R,=R;=R,=R, R,=R+AR, with ,RC<<],
AR /R <1, AC/C << 1, the factor 77, can be written as

2 172
AC

C

1

2
AR?+ v

nf%wc (18)

The resistive component of the unbalance is reduced by
using superconducting materials and, for the capaci-
tances, low loss dielectric insulators. Hereafter we as-
sume that the unbalance is only due to the capacitive
terms.

IV. EQUATIONS OF MOTION OF THE
DISSIPATIVE SYSTEM

As discussed in the previous sections the double oscil-
lator system can be completely described in terms of its
normal coordinates. In order to analyze the behavior of
the actual device the equations of motion must include all
dissipative terms. Thus we introduce

miy .
Fom=— §:I:!
Tx

where 7. are the decay times of the normal modes at fre-
quencies @, and the electric dissipative term
L

Fde=—?e'q ’

FIG. 5. Picture of the complete scheme taking into account
the dissipations. ¥, is expressed by (21) in the text.

where 7, is the characteristic decay time of the readout
circuit. The term R (¢) that appears in the Hamiltonian
(11) is expressed as

R(t)=LI+F,, ,

where I is the back action current due to the amplifier
and we include on it also the residual current due to the
Johnson noise resistance of the bridge. The output of the
physical system shown in Fig. 5 is the voltage at the in-
ductive central arm of the bridge. We will refer all our
considerations to this variable instead of the charge vari-
ation into the capacitive transducer.

The complete equations in terms of normal coordinates
are

. 1 . 3 2C F_ .
-t T & VIA_—1l)=——, - =~
§ 'r_g @ ,§‘+m_DVp,(A b m_ e
Eobi, vaore, +—2C p o, =1t

T4 . m_,_D P m ’
T TS 7
V+’ZV+‘%V+ 2D VIE (AL —1D+E_(A_—D)]

—_1; 2
—EI—T[za)eVp . (19)

Here the coefficients A, come out from the specific in-
teraction Hamiltonian (9) that depends upon the displace-
ment coordinates (y —x) expressed in (8).

To compute the SNR we analyze the response of the
apparatus to an impulsive excitation and then we present
the noise analysis of the system. To approach this task
we express the coordinates involved in (19) by means of
their signal (s) and noise (#) components:

§+=§+s+§+n ’ §—=§—s+§—n ’ V=Vs+Vn N (20)

Noise sources are basically related to the pumps, to the
thermal bath, and to the electronics.
Let us express formally the pump voltage as

Vo=VpstVp, 21)
and the external forces as
F (t)=F,+F,, , (22)

where we assume that the signal (deterministic) is acting
onto the bar and F ., are the noise components (stochas-
tic) forcing both the mechanical oscillators. o
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V. RESPONSE OF THE SYSTEM TO
AN IMPULSIVE FORCE

If we introduce definitions (20), (21), (22) in (19},
separating the signal analysis from the noise one, we ob-
tain, for the former,

2C _ Ko

Et+— § +o 2§_,+—DVI,,V(>L_ -,
.. 1 . _2C F. ()
§+s+;:§+s+w%i-§+s D psV()"+ 1)= m, s

2

ps
T, 2D

Vel§ s (A= D) +E_(A_—1)]

=—n,02V, (23)

ps ot
Then we write the system (23) in terms of the complex
amplitudes of the mechanical and electric oscillators =,
Z_, and ¥ and we specify the pump coupling voltage for
the BAE configuration

Vus =Volcosw,t cosw  t —cosw,t cosw_t) .
We obtain
4,1 g = Fs sinw . t
dt r | F! o4 +
d . 1]
[dt+2¢ Enty =1}V,
FS
= cosw.t ,
myoy
d ) 24)
[E'l" 21'e Vl _0 ’
d 1 B.agpag
[71?_'_2% ]V2+ [EsAy—1)—E_(A_—1)]
=_’7z0’3V0

2 (cosw ..t —cosw_t) ,
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We solve the system in (24) under the hypothesis that the

external signal force is a pulse at the time ¢ =t¢,:
F:(t)=P08(t_to) .

For t > t, we obtain the solutions

Posinm_‘_to —(t-—to)/21-+
= e

- )
+1 Mmooy

Ir]

_ Pocoswity —(i—g)pr,
42T e s
m_ o,

[x]

and

_ Pysine_t o g2

m_w_ ?

PocOSw_ty ~(t—~10)/2r_
R — -4

b

m_e_
which give, for £, (¢) and £_(¢)

PO e —(t—~15)/ 27,
m_ oy

§+,(t)= smco_,_(t ) N (25)

Py —(—sg2r_
— -1

£ . (t)= = sinw_(£—t,) . (26)

The vibration amplitude for the transducer with respect
to the antenna is

yt)—x()=& ()N A —1)+E_ (&) (A._.—1)
Pyh,—1) _ . PoA—=1) —(—t1j2r
M (=10)/2 +smw+(t-—-to)+0—-————e (=to)/2 “sinw_(t—tgy) , 27N
m+a)+ m__o._. !

where each normal mode responds with an amplitude depending inversely on the corresponding equivalent mass.
We derive the amplitude output voltage from the fifth and sixth equations in (24) obtaining

Vl(t)=0
Py(Ay—1) —(t—15)/2 ~(t~15)/2 Po(A_—1) | ~(t—t)/2 —tt—10)/2
Vz(t)=aBAEL——sinw+to(e Ulo)2rs _ g mlimt T‘)—aBAE——O———sma)_to(e TRV g f02/%Te)
m, o, —@_
Vo @, | . 1 Vo L. | . 1
_nsz Slnw+t—_m+ ccosa)+t +q,— ya smco_t—3 23 cosw_t| , (28)

and
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Po(A,—1) —(t— - —(t— - Py(A_—1) —(t— —(t— .
V() =aps [-—om—:a')_'-—sina)+to(e (t—14)/2 +t_g (t tovzz)__(in—:;)_—smw—to(e (z tO)/21-___e (¢ to)/zr")]smwet
Vo a, ] )
—772—4—w— cos(w, —w )t +cos(w, +o )t — Yoy [sin(w, —w )t +sin(w, +a )]
+ +7e
Vo @, . .
+,7sz COS(&)e—a)_)t+COS(GJe+Cl)——)t— 7% [sm(coe—co_)t+s1n(coe+a)_)t] . (29)
—_ — ‘e

It is worth noticing that the equations system has been solved by imposing the initial conditions
£, (r=0)=0, &£_(t=0)=0,
£, (t=0)=0, £_(t=0)=0,

and by stating that is present a residual current flowing through the central arm, also in absence of a signal, because of
the imperfect balance of the bridge:

. @2V, 1
V(t=0)=0, V,(t=0)=n, L% |t~
e + _

Equation (29) shows that, as in the case of one mechanical oscillator alone, the system is phase sensitive. Further-
more, we have now to consider a more restrictive condition on the electric merit factor,

@,

2

Qe > 2(&)+ '_CO__)

in order to neglect the Fourier components at frequencies w, — (0 —®_) and , +(w . —w_). In Fig. 6 the time evolu-
tion of the transducer coordinate and the corresponding phase diagrams of the normal coordinates £, and £_ are
shown. In Fig. 7 the time evolution of output voltage amplitude and the corresponding phase diagrams of the electrical
variable V are shown. We stress that the signal due to the impulsive force is present on phase ¥, alone.

V1. NOISE ANALYSIS

Following the same procedure of the signal analysis we derive the equation describing the noise behavior of the sys-
tem:

y-x
Ll *
° f\M‘ x MMMA A AAAAAAAAAAS AAAA
WWWW VWWWVV" datatiiiinstaias
0 FTTTY
a) :
t I 1 3 1
a) -+ + + $ P
E-«-l :'-1
_ 1 Vs
0 (]
0
b) o ,
¢ = ’ = b) L —t
+2 2 : i
FIG. 6. Theoretical behavior of the transducer: (a) time evo- FIG. 7. (a) Time evolution of the response to an impulsive ex-

lution of the physical displacement coordinate; (b) phase dia-  citation at time #y=47/(w4+w-). (b) Phase diagram of the
grams of the normal coordinates £_ and &. electrical variable V.
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2

55 VonlE+s e —DHE(A_— 1],

where F,(¢)* are the normal mode forces that take into account the thermal fluctuations of both the mechanical oscilla-

tors. In the case of BAE pumping ¥, is

v, .
Von =—2(l{a1+cos(co, +o. )t —¢isin(w, +0,.)t —¢F sin(w, —o )t +a; coslw, — o)t}
-—T"{a T cos(w, +o_ )t — 7 sin(w, +o_ )t +a; cos(w, —o_ )t —¢; sin(w, —w_)t} . 31)

af,af and ¢F,4F are the amplitude and phase fluctua-
tions of the electromagnetic pumps which we assume to
have constant uncorrelated power spectra. From Eq. (31)
we derive the corresponding linearized equations for the
variables ., Z_, and V:

d 1 1o _

E‘*‘Z -ﬁil—‘nil(li_l) ’

d 1 |_ CVy

dt 2ry |"F7 | 2myiw. D Vs —1)

=niy(Ae—1),

i { (32)
dt 27, Viz=ns,
[ d 1 Be BAE [ _

dt+ 2T, V,+ 2 [Efd,—1)

_:_1(}\‘_"“1)]:714 y

where ny;, i=1,2, n,,n, include the thermal forces and
noise terms due to the pumps and the amplifier. In the
Appendix the full expressions of these terms are given.
All the other terms depend upon the product of the out-
put variables times the noise fluctuation of the pumps.
We consider these terms as perturbations in the case of
small signals.

In the n; and n, terms we consider, in the first approx-
|

imation, only contributes depending upon the current
noise of the output amplifier and the terms due to the
bias voltage V,,. To obtain the output noise spectra we
solve Eqgs. (32) in the frequency domain by introducing
for each stochastic variable the corresponding bilateral
noise power spectrum. For a complete presentation of
the algebra procedure we refer to [14]. We recall here
our fundamental assumptions: (1) The readout circuit is
able to filter out the 2w,, 2w, terms and the higher har-
monics; (2) all the source of noise are uncorrelated; (3) the
power spectra of the fluctuations of the electromagnetic
pumps are constant: i.e.,

Sa?: =Sag: =Sa, Sé{t =S¢g: =S¢ .

The power spectrum of the quantities

B0
mi&):t()\,i_l)alnwi ’

F,(2)
COSCl)it,

miwi(ki - 1 )

in both cases is equal to
B: kyT

(A’:t— 1 )2 miwi )

Following a perturbation approach we obtain the first or-
der spectra

2 2 2
1 Bik, T o, *[[ v, B B
Sy =80 =si= +n3BaeC | 5 | 1[5~ - ry.
T ) (Ap—1)? T:Poax Q. 2 St Sy 20 |5 +S 20% ’
(33)
e e 1 2k, T 2V5
Sng —Sng—Swf—W S1n+ R +('T]z60e) T(Sa+S¢) s (34)
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where
Ca%AE
Bsag= 2
myoy
are the energy coupling factors between the mechanical normal modes . and the electric oscillator.
Finally we obtain the spectral densities of the output voltage components:
i 2 )
1 Qe Qe 2 VO
—|S +2k, T + —(S,+S
2 |7 »,C b w,C (n:Q.) 2 (Sq+Sy)
S v, = - Pl +S ) (35)
1+ 20,2 l
we
2 2
Ay — Q
AR ky T +12Bias— Sy LS
_ m_ o Qe
Sy, =Sy, + T :
12+ i+ 20,2 | | 1+ |20, 2
4 Q. ‘o, to
2 2
(2473 A.E(A'— —1 ) Q
- a2 ka+7]zBBAE weC(S +Snc )
m_ o Q.
+ @ p) 3 , S : (36)
o) [5)
—— |14 |2 _—
4 Q_ [ Q. w, ] Il+ 20 o_
|
where motion and the residual noise terms due to the elec-
2 2 tromagnetic pumps that depends on 7,.
S .= & De S, +S (37) Then, in spite of the larger complexity of this scheme,
Vo 2 00, ¢ ZwiQe we obtain the same results derived for the single oscilla-
tor [8]. If the balance of the bridge makes negligible the
and noise of the electromagnetic pumps the narrow-band
v 2 o, o noise terms are only due to the Brownian motion of the
S'i = |- S,+S p i = mechanical oscillators and the system is back action
2 | w40, 2050, Ox evading [16].
(38)

The quantity (37) represents the perturbation effect of the
bias pumps at the frequencies (@, —® ), (0, T o) on the
normal mode @, (a similar effect is present for the w_
mode and the other two pumps), while the quantity (38)
represents a crossed effect of the pumps (w,—wy),
(w,+®,) on the normal mode w_ (a similar effect is
present for the other pumps and the mode w..).

We note from (35) and (36) that the noise behavior of
the two-oscillators system is very similar to the single-
oscillator one. On Sy, the wideband noise contribution

terms are only present whereas on Sy, there are also in

addition two narrow-band terms. These are composed by

the contributions of the signal due to the Brownian
J

T = Vs
<, (Ap—1?%  (A_—1)
apaEks 2 5
m, o5 m_ o>
=T |14n2 |22 1
" |, (Ar—17 (A_—17
ky T .
m_ o m 0)2
+O% -0

] 2 Qz B BAE ]

VII. SIGNAL-TO-NOISE RATIO

We have shown in the previous sections that the
response of the system to a mechanical excitation is con-
tained in one (e.g., ¥,) component of the complex electric
output signal. Moreover, the peculiarity of this phase
sensitivity is that two noise terms are present, both hav-
ing the spectrum bandwidths of the mechanical reso-
nances @_ and o. These two terms, due to the thermal
noise plus the residual pump noise, are referred to the
normal modes of the system.

As is usually done in the sensitivity analysis of a gravi-
tational wave detector an equivalent equipartition tem-
perature of the system can be defined that, in this case, is
related to only one phase of the transducer output:

)4
(S(z) +S(1)) ,

(39)

i z
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FIG. 8. T.g vs ¥, using the balance factor 7, as a parameter:
performance of Explorer GWA.

where V2, is the variance of the narrow band noise mea-
sured at the transducer output. T, can be regarded as a
measure of the energy sensitivity of the detector. From
(39) it follows that if the second term is made negligible
with respect to 1, either lowering the pump noise or ob-
taining a low value for n,, there is no back action of the
amplifier on the mechanical oscillator. For the detection
of burst signals the energy variation sensitivity is more
significant. The usual way to evaluate this sensitivity in
resonant bar detector experiments is to introduce an
effective temperature of the detector T.4. In this case
T, will be obtained by optimizing the signal to noise ra-
tio S/N on the sensitive phase of the detector. Following
the general theory of data analysis [18], the general ex-
pression for the signal to noise ratio verifies the inequality

e e T : 0._.;.. e
111 SRR R P sté—,niﬂ—z&e)\—r a +2'50
4] 50 100 Vo(V)

FIG. 9. Tz vs ¥V using the balance factor 7, as a parameter:
performance of Nautilus GWA.
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FIG. 10. Best sensitivity of Explorer GWA versus balance
parameter 7,.
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where H(w) represents the transfer function of the op-
timum filter that we are trying to derive. In order to in-
troduce the effective temperature we assume that S/N is
equal to 1 and the response of the system for an impulsive
signal is maximized. The release of energy in the antenna
is given by

P§

. @4n
2m,

kb Teﬁ' =

The compact expression for the effective temperature is
obtained:

T + A + B
= do
T’?V dm ky fw a-+bot+tcot+dw®
T 1
e 42
dm k, 1’ (42)

where

TABLE I. Mechanical parame&ers of cryogenic GWA’s Ex-
plorer and Nautilus.

e ~ Explorer Nautilus

T 2 K 100 mK

m, 1135 kg 1160 kg
vy 915 Hz 915 Hz
0.=0- 1108 5% 10°
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The equivalent bandwidth W of the detector can also
be computed as

o yode
W= — 0 = =7 =
Y 0=0) G0 ‘A’ “6)

TABLE II. Typical parameters of BAE scheme.

S; =5X107% 42/Hz Sy

Sn¢=—135 dBc/Hz i
v,=200000 Hz

T,=6.9X107! K
0, =10000

=1.8X107Y V?2/ Hz

I
where G¢(0) is the function spectral gain and yrla) is the
Fourier transform of the system response at the output of
the optimum filter.

W corresponds to the inverse of the optimum integra-
tion time:

2w

o= - 47

t

VIII. DISCUSSION AND CONCLUSIONS

The detection sensitivity depends on several parame-
ters of the system as it has shown by the expressions
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FIG. 12. Optimum time corresponding to the best sensitivity
versus the balance parameter in the case of Nautilus GWA.

given in the previous section. The optimization of the
effective temperature Ty and the optimum detection
time 7, can be performed by studying these dependences
in a specific case. We consider the typical features of
cryogenic GWA’s [12,13] under development (Table I)
and combining the parameters of these double mechani-
cal oscillators with those of different BAE setups. In
Figs. 8 and 9 the prediction of the sensitivity versus the
coupling voltage is shown for various values of the bal-
ance 717,. These trends are derived by assuming for the
parameters Sy , Sy > S¢s Q,, and v, those reported in

Table II. All these values are realistic at the present
status of technology and the corresponding transducer
systems can be assembled using commercial instruments.
We stress that best performances are obtained when the
balance factor is low and the coupling voltage amplitude
|
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is high. The Ty has a minimum whose value depends on
the n, parameter. In Fig. 10 the plot of the minimum
values of T4 is shown to be linearly dependent on 7,. In
Figs. 11 and 12 the optimum times are plotted versus the
balance parameter 7,. In Tables III and IV we syn-
thesize our results for different hypotheses about the
pump noise level.

The best sensitivity is reached by using very low noise
pumps and low values of balance factor. Oscillators with
a phase noise of the order of — 165 dBc are commercially
available [17].

We observe that a BAE configuration could be also ap-

. plied successfully to cryogenic GWA’s cooled at 2 K, im-

proving remarkably their sensitivity. With these detec-
tors, usually operated in a linear detection scheme, a typi-
cal figure sensitivity of 5 mK is reached. Moreover this
scheme would play a crucial role for ultra GWA’s, allow-
ing them to reach the planned figure of (T =~1077 K) near
the quantum limit of this detector, well below the best
sensitivity achievable in a linear configuration (0.1 mK)
[18].
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APPENDIX

In this appendix we report the complete expressions of
the noise terms appearing in the system (32):

ny =— mimFZ:;\,):—l) ainwit{ ii:‘lm:; sinw, ¢+ :1;% [Vi(¢F—¢E)+Vylaf —aF)]
EE%B {coswzt sinwyt[—V,(¢F +¢5 )+ V (ay +a )]
+sinw,tsinozt[Vyla; +aF)+V(¢F —T)1), (A1)
Ry,= wiijtE::—~)cosmit_wi’igl? sinw#t:F Z—’% [— V(¢ +oE)+V (af +aF)]
%—D— {coswztcoswrt] =V, (¢ +é7 )+ Vila] +af)]

TABLE III. Best sensitivity and corresponding optimum time for GWA Explorer considering

different pump noise levels.

—123 dBc/Hz —135 dBc/Hz —165 dBc/Hz
- VO T?ﬂ"n t opt VO T:ﬂi'n 4 opt _ VO Penﬁl'n Z opt .
107* 07V 096K 317s 19V 021 K 729s 169 V 74 mK 25s
1075 3.1V 94 mK 32.7 s 85V 2t mK 735 s 793 V 810 uK 0.26 s
107¢ 145V 9.6 mK 33 s 457 V 22mK  072s 347V 120 uK 25 ms
107"7 655V 1 mK 033 s 1753V 270 uK 81ms 1227V 31 uK 7.7 ms
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TABLE IV. Best sensitivity and corresponding optimum time for GWA Nautilus considering
different pump noise levels.
—123 dBe/Hz —135 dBe/Hz ~165 dBc/Hz
72 VO ei%n topt VO ”z:ﬁi:n 7tqpt i ,VO *gf%‘n _topt -
107 01V 0.2 K 3882.2 s 0.6 V. 34 mK 803 s 79V 810 uK 263 s
10—3 11V 14 mK 46342s 36V 24 mK 8l.1s 367V 110 uK 29 s
1008 61V 14mK 4555 166V 290 uK 871s 1386V 24uK 05s
1077 23.6 V 180 uK 52s 706V 48uK  1s 450V TuK 0ls o
+coswyt sinozt[Vylay +ai )+ V(¢ —d7)1}, (A2)
ny= 2@ C @, V,, [sinw t+2D Vorl€ (A —1)+E_(A_—1)]sinw, t
B.a _ L
+eTm{[s+2(a;—ar)-.~_+1(¢;+¢1+)](x+—1)—[=_2<a2 —a7)=E_ (¢ +o7)(A_—1)]
B.apax - - - X o — L g—v ; .
+ 2 {—[E qillay —ai )cosw tsinw_t —(p; +¢; )cosw t cosw_t1]
+[E4,llay —ay )sinw  tsinw _t —($; +¢ )sinw, fcosw_t]j (AL —1)
+['.':‘_1[(a2+ —a i )cosw_t sinw t — (5 +d7 cosw _t cosw 1]
+[E_,[(ay —ai )sinw_t sinw ¢ — (¢ + ¢ Isinw_t cosw 2t ]J(A_—1)} , (A3)
= |1 y t— =S [ (A — 1) +E_ (A —1)]cosw,t
ng= 2coeC @, Vpy |COSW, Ip P +s V- —s\ i — e
B.o . e o e -
+ 2R (12 g — )= ilad —a i )0 ~ D —[E 87 —4T)—E_ (a5 —ai )N —1)}
Be.2par = — = — - .
-I—T{—[:_H[(a2 +ay Jeosw ¢t cosw_t+ (¢, —¢) Jcosw  t sinw_t]
+[E,(ay +ay Isinw f cosw_t (¢, —¢7 sinw zsinw_t]J(A,—1)
+[E_,[(a;) +ai Yeosw_t cosw t — (] —d] )cosw_t sinw .t ]
+[E_,[(af +ai Yeosw_t cosw .t + (¢S —7 Isinw  t cosw_t]J(A_—1)} . (A4)
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