Primary and Cognitive User Cooperative Spectrum Sensing in OFDMA Air Interface

Sanjeewa P. Herath, Nandana Rajatheva, Poompat Saengudomlert

Telecommunications Field of Study, Asian Institute of Technology, Klong Luang, Pathumthani 12120, Thailand

VTC Spring
16-19 May 2010
All about the research - an abstract

- How primary user (PU) can assist cognitive users (CUs) in PU’s activity sensing (detection)?
- How a PU should assist a CU,
 1. Minimizing the loss in it’s spectral efficiency?
 2. Maximizing the correct detection probability of it’s presence to a CU?
- PU can assist to improve 15% of the correct detection probability with a 5% reduction in spectral efficiency (in low-moderate SNR with two subcarrier (simplest) system)
- PU assistance only in initial phase/s of the transmission (overall reduction in spectral efficiency is minimized)
- Method is based on subcarrier based air interface and matches well with IEEE 802.22 standard
Spectrum Sensing and Open Issues

- Energy detection is promising. As,
 - Blind and does not exploit unauthorized details of PU communication
 - Simple in structure and less cost in implementation
- Fading, shadowing deteriorates the detection performance
- Receiver diversity combining improves, but not good enough
- CU Cooperation in sensing
 - Share the individual detection decisions among cognitive users
- We propose, PU and CU cooperation in sensing
 - A PU assist a CU to detect its presence
 - PU can assist to improve 15% of the correct detection probability with a 5% reduction in spectral efficiency in low-moderate SNR with two subcarrier (simplest) system
 - Band-manager facilitate the required information sharing
 - Can co-exist with CU cooperative sensing schemes
 - Underline detection by energy detector
 - Subcarrier based air interface (Suitable for IEEE 802.22 standard)
System Model - Detect PU

- OFDMA air interface - N subcarriers indexed from 1 to N
- Interference included in noise (Energy detector cannot differentiate noise and interference)
- Parallel Gaussian channels (PU-CU & PU-BS)
- CU utilizes Energy Detectors
Problem Formulation

- PU has a total of P_t power to allocate among N subcarriers
- Conventional approach - allocate the P_t power to maximize the PU’s spectral efficiency
- Proposed approach - allocate the power by PU to maximize the detection with a capacity constraint
 - Allow CU to detect PU easily - avoid transmissions on false detected spectrum holes
 - Allow CU to control transmitter power - interference constraint systems
 - Allow CU to share the individual decisions and improve detection (Co-existence with CU cooperative sensing schemes)
 - Capacity of PU is not severely reduced
 - PU has the flexibility on the operating point
 - Deployment only in initial connection establishment phases
- PU assist CU to detect its presence : Co-existence & cooperation is necessary among CU & PU in cognitive networks
Assist CU’s Detection under Capacity Constraint

- Optimization problem

maximize: \(P_d \left(\{ p_i \}_{1}^{N}, \lambda \right) \)

subject to: \(p_i \geq 0; \ i = \{1, \ldots, N\} \)

\[
\sum_{i=1}^{N} p_i \leq P_t
\]

\[
\sum_{i=1}^{N} \log \left(1 + \frac{p_i}{n_i^b} \right) \geq C
\]

- \(p_i \) - the power allocated to the \(i^{th} \) indexed channel with noise levels \(n_i^b \) from the PU to the BS
- \(n_i^c \) - noise level of the \(i^{th} \) indexed channel from the PU to the CU
- \(P_d \left(\{ p_i \}_{1}^{N}, \lambda \right) \) - PU detection probability experienced by the CU
- \(\lambda \) - threshold of the energy detector (determined by the \(P_f \))
- \(C \) - Capacity constraint
Objective function - $P_d \left(\{p_i\}_1^N, \lambda \right)$

- **Fusion Rule**
 - CU detects individual subcarriers
 - Combines them through a predetermined fusion rule
 - Fusion based on 'OR' rule

- **Detection Probability by CU**

 $P_d \left(\{p_i\}_1^N, \lambda \right) = 1 - \text{Prob} \left(Y_1 < \lambda, \ldots, Y_N < \lambda \mid H_1 \right)$

 \[= 1 - \prod_{i=1}^{N} \text{Prob} \left(Y_i < \lambda \mid H_1 \right) \]

 \[= 1 - \prod_{i=1}^{N} \left[\left. 1 - Q_u \left(\sqrt{\frac{2p_i}{n_i^c}}, \sqrt{\lambda} \right) \right] \right) \] (2)

- Y_i : decision variable of subcarrier i at CU
- Hypothesis H_1 : presence of PU transmission

- Problem is transformed to become a convex optimization problem
Power Allocation

- Lagrangian

\[
L(\mu, \{p_i\}_1^N) = -\log(P_d) + \mu_0 \left[\sum_{i=1}^{N} p_i - P_t \right] - \sum_{i=1}^{N} \mu_i p_i + \mu_{N+1} \left[C - \sum_{i=1}^{N} \log \left(1 + \frac{p_i}{n_i}\right) \right].
\]

(3)

- Apply Karush-Kuhn-Tucker (KKT) conditions

\[
\mu_0^* = \mu_i^* + \frac{\mu_{N+1}^*}{1 + p_i^*/n_i} + \frac{\partial \log(P_d)}{\partial p_i} \bigg|_{p_i=p_i^*}
\]

(4)

- Complementary slackness

\[
\mu_0^* \left[\sum_{i=1}^{N} p_i^* - P_t \right] = 0.
\]

(5)

- \(\mu_0^* > 0, \sum_{i=1}^{N} p_i^* - P_t = 0 \Rightarrow P_t \) will be allocated for optimality
Numerical Results

- Solved in MATLAB
- Capacity constraint - set by reducing a certain percentage from the capacity (C_{com})
- Two subcarrier system with $P_t = 10\, W$
- Instantaneous noise levels

<table>
<thead>
<tr>
<th>Scenario</th>
<th>PU-BS (W)</th>
<th>PU-CU (W)</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n_1^b</td>
<td>n_2^b</td>
<td>n_1^c</td>
</tr>
<tr>
<td>(1)</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(2)</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(3)</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

- Three different scenarios - noise levels
 1. PU to BS & PU to CU are the same - Scenario (1)
 2. PU to CU better than PU to BS - Scenario (2)
 3. PU to BS better than PU to CU - Scenario (3)
Scenario 1 - PU, BS same

Figure: Capacity and P_d over C_{com} - Scenario (1)

- 5% of C_{com} gains 0.15 in detection
- Rate of improvement in detection decreases as C_{com} increases
- Most efficient trade off at lower values of C_{com}
Scenario 2 - PU, CU better

Figure: Capacity and P_d over C_{com} - Scenario (2)

- Reaches saturation at $C_{com} = 22\%$
- Detection cannot be improved arbitrarily by lowering the capacity
- Consequence of total power constraint
Scenario 3 - PU, BS better

Figure: Capacity and P_d over C_{com} - Scenario (3)

- $C_{com} = 5\%$ gains 0.05
- $C_{com} = 22\%$ gains 0.15 while in Scenario 1,2 over 0.25
- If CU experiences noisy channels, PU cannot facilitate CU with detection (Pick a CU with better channel conditions)
Proposed Implementation

- PU picks a CU with lowest channel noise levels
- Advantages
 - Single CU cooperation scheme - simplicity in resource allocation problem
 - Faster and efficient in implementation
 - PU capacity will not be severely affected
 - Multiple CUs exist around a PU ⇒ share the targeted CU’s decisions among CUs
 - Cognitive network select the best CU and provide the subcarrier noise levels to PU
 - Reduces the burden over the feedback channel
- PU can assist to improve 15% of the correct detection probability with a 5% reduction in spectral efficiency in low-moderate SNR with two subcarrier (simplest) system
- Higher the number of subcarriers, better the performance (see the paper for more results)
Band Detection

- Assume set of N subcarriers are physically adjacent in frequency
- CU detects the whole band without the knowledge of subcarrier boundaries
- CU knows the two edges of whole band
- Avoids the requirement of bank of energy detectors at CU
- Objective function - $P_d \left(\{p_i\}_1^N, \lambda \right)$

\[
P_d = Q_u \left(\sqrt{\frac{2 \sum_{i=1}^{N} p_i}{\sum_{i=1}^{N} n_i^c}}, \sqrt{\lambda} \right).
\]

- Formulation is transformed to be a convex optimization problem
- Total power P_t will be allocated for optimality
Band Detection cont...

- Optimal detection P_d^*

\[
P_d^* = Q_u \left(\sqrt{\frac{2P_t}{\sum_{i=1}^{N} n_i^c}}, \sqrt{\lambda} \right).
\]

\[(7) \]

- CU cannot gain in terms of primary detection
- The optimum power allocation for maximizing capacity is the optimal solution for band detection
Conclusion

- Notions of cooperation among primary and cognitive users for detection
- Primary user assisted cooperative spectrum sensing scheme
- System model: OFDMA based air interface and suits for IEEE 802.22
- Resource allocation - as an optimization problem
- 15% detection improvement by a 5% reduction in capacity (The most basic case with two subcarriers)
- Avoids CU transmission over false detected spectrum holes
 - Avoid severe interfere to primary transmission
 - Improve the overall spectrum utilization
- Coexists with cognitive user collaborative schemes
- Combination of two types of cooperation
 1. Among CUs &
 2. CUs and PUs - detection in lower SNR regions is possible
Future Work

- Multiple user networks
- Channel fading conditions
 - Rayleigh, Rician, Nakagami-m
- Different detection mechanisms - simpler & less complex in implementation
- User mobility
- Imperfect estimates
Some References

