PHC-NSGA-II: A Novel Multi-objective Memetic Algorithm for Continuous Optimization

Slim Bechikh, Nabil Belgasmi, Lamjed Ben Said, and Khaled Ghédira
Higher Institute of Management of Tunis
Intelligent Information Engineering Laboratory
Tunis, Tunisia
{slim.bechikh, nabil.belgasmi}@gmail.com, {lamjed.bensaid, khaled.ghedira}@isg.rnu.tn

Abstract

We introduce in this paper a new multi-objective memetic algorithm. This algorithm is a result of hybridization of the NSGA-II algorithm with a new designed local search procedure that we named Pareto Hill Climbing. Verification of our novel algorithm is carried out by testing it on two sets of multi-objective test problems and comparing it to other multi-objective evolutionary algorithms (MOEAs) and other multi-criterion memetic algorithms (MMAs). Simulation results show the algorithm ability in tackling continuous multi-objective problems in terms of convergence and diversity. Our hybrid algorithm (1) outperforms pure MOEAs, (2) is competent with other gradient based MMAs, and (3) can solve non differentiable problems.

1. Introduction

Multi-objective optimisation, also known as multi-criteria optimization [1], consists in simultaneously optimizing two or more conflicting objectives under certain constraints. Real world optimization problems deal with competing incommensurable objectives in a complex search space. If a multi-objective problem is well-formed, there should not be a single solution that simultaneously minimizes each objective to its fullest, but we are looking for a set of compromise solutions. Evolutionary algorithms are population based metaheuristics that operate on a set of individuals in order to find trade-off solutions as most as possible. This discernible characteristic make them the most adapted to solve multi-objective optimization problems. Several works have been done in this field. For a comprehensive survey, refer to [2]. In most cases, as set out in [3], genetic algorithms are defined to be not enough effective because the crossover and mutation operators do not allow to intensify the search sufficiently. The mutation operator is typically expected to make a slight modification to an individual. Its role is to encourage the diversification of individuals while the selection is charged to conserve the best of them. Evolutionary algorithms researchers have suggested several approaches to overcome the weakness of these search methods and improve their performance by increasing their convergence rate and solutions diversity. One promising approach is hybridization [4] consisting in the merge between evolutionary algorithms and other search methods. The most common and effective technique is to incorporate local search (LS) into evolutionary algorithms. The local search operator replaces or follows the mutation operator, and then helps to intensify the research in various areas pointed by the genetic mechanisms: selection and crossover, we call this type of hybrid algorithms Memetic Algorithms (MAs) [4] or more marginally genetic local search algorithms [5]. We can classify MAs on the basis of the used LS method type:

- **Gradient based schemes**: This type of MAs incorporates LS methods that exploit gradient information. For example, two versions of the NSGA-II [15] algorithm were hybridized with the sequential quadratic programming (SQP): SBX-NSGA-II [7] and PCX-NSGA-II [6]. Another work [8] addresses two hybrid algorithms, named NSGA-SQP and SPEA-SQP, incorporating also the SQP procedure in the two MOEAs NSGA-II and SPEA2 [25] by the means of a modified version of the ε-constraint method. All these works have shown good results in terms of convergence and CPU time.
• Neighbourhood based schemes: Here, MAs integrate LS methods that explore solutions neighbourhoods without using gradient information such that MOGLS [9], PMA [10], IMMOGLS [11] and M-PAES [12].

When designing multi-objective MAs, we are face to face to several design issues. Most of them are evoked in single objective case [13]. These issues can be summarised as follows:

• How to incorporate LS method into MOEAs?
• How to generate neighbourhood?
• How much time does the LS take?
• How often LS should be performed?
• How to select solutions for LS?
• What is the replacement strategy?
• How to maintain population diversity?

For an attractive survey of multi-objective MAs detailing these design problems, refer to [14].

In this work, we introduce a new multi-objective memetic algorithm, PHC-NSGA-II, taking its origin from the hybridization of the NSGA-II algorithm with our new designed LS method that we called Pareto Hill Climbing (PHC). Then, we show our algorithm ability to tackle continuous multi-objective problems using some well known benchmarks [20]-[23]. The remainder of this paper is organised as follows. In section II, we describe the design of our PHC-NSGA-II algorithm. Section III is devoted to experiments and comparisons. Finally, in section IV, we state our concluding remarks and future works.

2. PHC-NSGA-II description

PHC-NSGA-II is a multi-objective genetic local search algorithm integrating the so-called PHC procedure into the well known multi-criterion genetic algorithm NSGA-II [15]. We first describe the NSGA-II algorithm. Second, we present our new local search procedure PHC, and finally we illustrate our new hybrid algorithm PHC-NSGA-II.

2.1. NSGA-II

NSGA-II is an improved version of the non-dominated sorting genetic algorithm NSGA [16]. Initially, a parent population \(P_0 \) is created randomly. Besides, this population is sorted based on the non-domination concept. For each individual, fitness is assigned and it is equal to its non-domination rank. After that, a child population \(Q_0 \) is created from \(P_0 \) by performing binary tournament selection, crossover and mutation operations. From the first generation award, the procedure is different. First, the two populations \(P_t \) and \(Q_t \) are combined to form a population \(R_t \) of size \(2N \) (\(|P_t| = |Q_t| = N \)). Second, a non-dominated sorting is used to classify the entire population \(R_t \). Once, the non-dominated sorting is over, the population \(R_t \) becomes subdivided in several categories. All elements of the same category have the same non-domination rank. Each category is called a non-dominated front. After that, the new parent population \(P_{t+1} \) is filled with individuals of the best non-dominated fronts, one at a time. Since the overall population size is \(2N \), not all fronts may be accommodated in \(N \) slots available in the new population \(P_{t+1} \). When the last allowed front is being considered, it may contain more solutions than the remaining available slots in \(P_{t+1} \). Instead of discarding arbitrary some elements from the last front, it will be judicious to use niching strategy to choose individuals from the last front which reside in the least crowded region in this front. At this point, it may be practical to discuss the crowding distance (CD) assignment and the crowded tournament selection operator used for the NSGA-II selection. But, we will not plunge into too many details on that. More on this can be obtained from [17]-[15]. Figure 1 illustrates the above mentioned mechanism.

![Figure 1. NSGA-II basic iteration [17].](image)

2.2. Pareto Hill Climbing (PHC)

The main issue when designing a local search procedure for the multi-objective case is how to adapt it to optimize more than one objective simultaneously. The basic idea of our hill climbing method is taking advantages of Pareto dominance concept. First a neighbourhood is generated, then our procedure iterates on each one. Only dominated neighbours are rejected. The second crucial issue is how constructing neighbours set when dealing with continuous search space. Unlike the discrete case, it is impossible to explore the overall solution neighbourhood. Hence,
researchers have proposed various methods for sampling the continuous search space, e.g. the n-balls method [26] and the hyper-rectangles methods [27]. To avoid additional computational cost, we use polynomial mutation [18] to generate neighbourhood. Since a set of mutated individuals are similar, so they build a neighbourhood. The PHC algorithm is presented in figure 2. First, the neighbours set of the current solution s (which is subject to local search) is generated by the mean of the mutation operator. Then, we iterate on each individual. An individual replaces current solution unless it is dominated. This process is repeated for a number of iterations N_MAX_ITERATIONS defined by the user (We suggest 5 \leq N_MAX_ITERATIONS \leq 25).

<table>
<thead>
<tr>
<th>Input:</th>
<th>s: solution subject to PHC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>s': solution obtained by PHC.</td>
<td></td>
</tr>
<tr>
<td>Repeat</td>
<td>N(s) \leftarrow Neighbourhood_generating (s, Neighbourhood_size)</td>
</tr>
<tr>
<td>For each neighbour \in N(s) do</td>
<td>If s does not dominate neighbour Then</td>
</tr>
<tr>
<td></td>
<td>s \leftarrow neighbour</td>
</tr>
<tr>
<td>EndIf</td>
<td></td>
</tr>
<tr>
<td>Until (N_MAX_ITERATIONS)</td>
<td></td>
</tr>
<tr>
<td>s' \leftarrow s</td>
<td></td>
</tr>
<tr>
<td>End</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. PHC algorithm.

2.3. PHC-NSGA-II

In this subsection, we describe the design of our new algorithm by answering design issues described in the first section. For a generation \(t \geq 1 \), the PHC-NSGA-II main iteration algorithm is presented in figure 3. As we have mentioned, the PHC-NSGA-II algorithm is a modified version of NSGA-II which integrates the new local search procedure PHC. The main idea of our algorithm is the following: once the parent population \(P_{t+1} \) is created, it is subject to the PHC procedure. This procedure is applied one time to each front \(F_i \) (\(i=1, 2, \ldots, \text{fronts}_\text{number} \)) from \(P_{t+1} \). The solutions selected for LS are the least crowded solutions of front \(F_i \) in objective space. In fact, PHC-NSGA-II selects the \(n \) solutions having the greatest crowding distance values in front \(F_i \) to perform LS in order to explore the neighbourhood of each one (\(n=2M+1 \), M is the number of objectives). This set of solutions is called PHC_set in our algorithm depicted in figure 3. Afterward, each solution from PHC_set performs PHC and the resultant solutions set Improved_set is added to \(F_i \). Once, the front \(F_i \) is updated, the replacement strategy must take care of population diversification. For these reason, we introduce a new distance measure which estimates a solution crowding distance in the decision space and not in the objective space. Similarly to that one in NSGA-II, the distance of a solution \(x_i \) is computed as a function of the decision variables of the nearest neighbours \(x_{i-1} \) and \(x_{i+1} \). Hence, we term it as decision crowding distance (DCD). Figure 4 illustrates the DCD assignment procedure.

<table>
<thead>
<tr>
<th>Input:</th>
<th>(P_r): parent population.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_o): offspring population.</td>
<td></td>
</tr>
<tr>
<td>N: parent population size.</td>
<td></td>
</tr>
<tr>
<td>M: objectives number.</td>
<td></td>
</tr>
<tr>
<td>V: decision variables number.</td>
<td></td>
</tr>
<tr>
<td>Output:</td>
<td>(P_r): updated parent population.</td>
</tr>
<tr>
<td>(Q_o): updated offspring population.</td>
<td></td>
</tr>
<tr>
<td>Begin</td>
<td>R,\leftarrow P_r \cup Q_o</td>
</tr>
<tr>
<td>F \leftarrow \text{Fast_non_dominated_sort} (R, M)</td>
<td></td>
</tr>
<tr>
<td>P_{r+1} \leftarrow \emptyset</td>
<td></td>
</tr>
<tr>
<td>i \leftarrow 1</td>
<td></td>
</tr>
<tr>
<td>While</td>
<td>(</td>
</tr>
<tr>
<td>\text{Crowding_distance_assignment} (F_i, M)</td>
<td></td>
</tr>
<tr>
<td>P_{r+1} \leftarrow P_{r+1} \cup F_i</td>
<td></td>
</tr>
<tr>
<td>i \leftarrow i + 1</td>
<td></td>
</tr>
<tr>
<td>EndWhile</td>
<td></td>
</tr>
<tr>
<td>Sort (F _o <d)</td>
<td></td>
</tr>
<tr>
<td>P_{r+1} \leftarrow P_{r+1} \cup F_i [1: (N_fronts_number)]</td>
<td></td>
</tr>
<tr>
<td>For each front (F_i \in P_{r+1}) do</td>
<td></td>
</tr>
<tr>
<td>\text{PHC_set} \leftarrow \text{Local_search_selection} (F_i)</td>
<td></td>
</tr>
<tr>
<td>Improved_set \leftarrow \emptyset</td>
<td></td>
</tr>
<tr>
<td>For each individual \in PHC_set do</td>
<td></td>
</tr>
<tr>
<td>Improved_set \leftarrow Improved_set \cup PHC_individual</td>
<td></td>
</tr>
<tr>
<td>EndFor</td>
<td></td>
</tr>
<tr>
<td>Decision_crowding_distance_assignment (F_o, V)</td>
<td></td>
</tr>
<tr>
<td>Sort (F_o, DCD, 'ascend')</td>
<td></td>
</tr>
<tr>
<td>F_i \leftarrow \text{Replace} (F_i)</td>
<td></td>
</tr>
<tr>
<td>EndFor</td>
<td></td>
</tr>
<tr>
<td>(Q_{r+1}) \leftarrow \text{make_new_pop} (P_{r+1})</td>
<td></td>
</tr>
<tr>
<td>t \leftarrow t + 1</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3. PHC-NSGA-II basic iteration algorithm.

After assigning DCDs to each solution of front \(F_i \), PHC-NSGA-II sorts \(F_i \) on the basis of DCDs in an ascend order and selects the 2M+1 most crowded solutions in the decision space. In other words, the solutions to be replaced are the 2M+1 solutions having the lowest DCD values. PHC-NSGA-II selects the most crowded individuals in the decision space.
because these individuals can be represented each one by one of its neighbours. So solutions to be replaced are considered to be the less important for the decision maker since each one can be represented by its nearest neighbour in the genotypes space. After updating the parent population P_{t+1}, we apply genetic operators to create the offspring population Q_{t+1}. As we design our PHC-NSGA-II algorithm to tackle continuous optimization problems, we use the Simulated Binary Crossover (SBX) operator [19] and polynomial mutation operator [18] for recombination. These genetic operators are those used in the original version of the NSGA-II algorithm. The SBX operator simulates the binary crossover mechanism to create two offspring solutions by using a specified probability distribution around two selected parent solutions. A higher value of the distribution index η, which controls the children distribution among parents, allows creating near parent solutions and vice versa. The polynomial mutation operator calculates a perturbation factor δ by using a polynomial probability distribution to generate a mutated individual from a parent one.

For a better comprehension of the search process introduced in PHC-NSGA-II, we illustrate an example of front before and after performing PHC. According to figure 5, it is interesting to explore the neighbourhood of individual C (pointed with a dashed line circle) in order to find better solutions (e.g. solution G). In order to preserve the genotypes diversity, we do not replace the most crowded individuals in the objective space by the improved solutions. In fact, these ones may be not crowded in the decision space and its elimination could deteriorate the population diversity. The solutions to be replaced are the most crowded elements in decision space (e.g. solution B, designed by triangle) since its deletion does not ruin the population diversity compared to the random elimination of other solutions.

Input:
I: front without DCDs.
V: decision variables number.

Output:
I: front updated with DCDs.

Begin

\[N \leftarrow |I| \] // number of individuals of front I

\[\text{For } i=1 \text{ to } N \text{ do} \]
\[I[i].\text{distance} \leftarrow 0 \]
\[\text{EndFor} \]

\[\text{For } v=1 \text{ to } V \text{ do} \]
\[I \leftarrow \text{sort}(I, D(v), \text{‘ascend’}) \]
\[I[1].\text{distance} \leftarrow \infty \]
\[I[N].\text{distance} \leftarrow \infty \]
\[\text{For } i=2 \text{ to } (N-1) \text{ do} \]
\[I[i].\text{distance} \leftarrow I[i].\text{distance} + (I[i+1].D(v) - I[i-1].D(v)) \]
\[// I[i].D(v) represents the v^{th} decision variable value of individual i in the front I. \]
\[\text{EndFor} \]

End

Figure 4. Decision crowding distance assignment.

Now, let us explain why we select $2M+1$ solutions. In fact, the original NSGA-II assigns infinite crowding distances to solutions having the maximum and/or minimum value(s) on one or more objectives. Thus, the maximum number of solutions having infinite crowding distances is $2M$. Selecting the $2M$ least crowded individuals for PHC allows the algorithm to explore the edges of Pareto region. We select another 1 solution in addition to the $2M$ solutions in order to assure exploration of the neighbourhood(s) of one or more solution(s) within the Pareto region. In summary, the goals in evolutionary multi-objective optimization are (1) increasing the convergence rate to optimum while (2) preserving a good diversity of solution. These two aims are conflicting and may form a multi-objective optimization problem. Our hybrid algorithm takes into account these goals. First, it tries to improve the convergence by intensifying the search with the
PHC procedure. Second, it tries to preserve population diversity by the CD based selection strategy and the DCD based replacement strategy. This latter can utilize the CD directly, but the use of DCD avoids the case of eliminating solutions that are crowded in the objective space and not crowded in the decision space at the same time.

3. Computational studies

This section is devoted to assess the performance of our hybrid algorithm PHC-NSGA-II on two sets of test problems: 2-dimensional and 3-dimensional test functions. On the first subsection, we compare our algorithm to two other hybrid algorithms that are NSGA-SQP and SPEA-SQP in addition to NSGA-II and SPEA2. On the second subsection that concerns 3-dimensional benchmarks, we make a comparison only between PHC-NSGA-II and NSGA-II due to the data sets availability. It should be noted that parameters values are determined experimentally.

3.1. First set of test problems

In this sub-section, we test the PHC-NSGA-II performance by comparing it to NSGA-II, SPEA2, NSGA-SQP and SPEA-SQP on three bi-objective test functions ZDT1, ZDT2 and ZDT6 [20], which are among the most used in quality measure of multi-objective evolutionary optimizers. The three problems have the same structure:

Min $f_1(x) = x_1$

Min $f_2(x) = g(x)h(f_1(x), g(x))$

ZDT1:

$f_1(x) = x_i$

$g(x) = 1 + \frac{9}{n-1} \sum_{i=2}^{n} x_i$

$h(f_1, g) = 1 - \sqrt{\frac{f_1}{g}}$

where $n=30$ and all $x_i \in [0,1]$.

The Pareto-optimal front is convex and is formed with $g(x)=1$. In other words, the Pareto-optimal set corresponds to $0 \leq x_i^* \leq 1$ and $x_i^* = 0$ for $i = 2,3,\ldots,30$.

ZDT2:

$f_1(x) = x_i$

$g(x) = 1 + \frac{1}{n-1} \sum_{i=2}^{n} x_i$

$h(f_1, g) = 1 - \left(\frac{f_1}{g} \right)^2$

where $n=30$ and all $x_i \in [0,1]$.

The Pareto-optimal front is non-convex and is formed with $g(x)=1$. In other words, the Pareto-optimal set corresponds to $0 \leq x_i^* \leq 1$ and $x_i^* = 0$ for $i = 2,3,\ldots,30$.

ZDT6:

$f_1(x) = 1 - \exp(-4x_i) \sin^6(6\pi x_i)$

$g(x) = 1 + 9 \left(\frac{\sum_{i=2}^{n} x_i}{(n-1)} \right)^{0.25}$

$h(f_1, g) = 1 - \left(\frac{f_1}{g} \right)^2$

where $n=10$ and all $x_i \in [0,1]$.

The Pareto-optimal front is non-convex and is formed with $g(x)=1$. Differently speaking, the Pareto-optimal set corresponds to $0 \leq x_i^* \leq 1$ and $x_i^* = 0$ for $i = 2,3,\ldots,10$. The test function includes two difficulties caused by the non-uniformity of the search space [20]. First, the Pareto-optimal solutions are non-uniformly distributed along the global Pareto front (the front is biased for solutions for which $f_1(x)$ is near one). Second, the solutions density is lower near the Pareto-optimal front and higher away from this front.

Parameters settings of NSGA-II, SPEA2, NSGA-SQP and SPEA-SQP are detailed in [8]. For PHC-NSGA-II algorithm, we use the following parameters values:

- Population size (pop) = 50.
- Number of generations (gen) = 100 for ZDT1 and 50 for both ZDT2 and ZDT6.
- Neighbourhood size (ns) = 12.
- LS iterations number (N_MAX ITERATIONS) = 15.
- Crossover rate = 0.9.
- Mutation rate = 0.1.

In all studies we compare the approximation sets obtained by each algorithm.
Figure 6 and figure 7 illustrates clearly that hybrid MOEAs have better convergence to the Pareto optimal front than the original MOEAs for ZDT1 and ZDT2. This is also true for ZDT6 from figure 8 and the results obtained in [8]. It should be noted that figure 3 illustrates only PHC-NSGA-II, NSGA-SQP and SPEA-SQP non-dominated solutions sets view to data sets availability. It can be observed that solutions of SPEA-SQP represent better diversity than the pure SPEA2 for all problems. And since approximation sets of PHC-NSGA-II are very similar to SPEA-SQP ones in terms of convergence and diversity, it yields that PHC-NSGA-II outperforms SPEA2 for all problems. In addition, it should be noted that ZDT6 does not block PHC-NSGA-II algorithm ability in terms of solutions diversification since it is designed to cause non-uniform density difficulty across the optimal front. From figure 8, it is evident that PHC-NSGA-II solutions have better distribution than SPEA-SQP across the Pareto optimal front.

To emphasize our claims we choose to use the additive binary epsilon indicator as a performance measure since it is complete and compatible [21]. This metric takes a pair of non-dominated solutions sets X and Y as inputs and returns a pair of numbers as outputs. (I_X, I_Y) such that:

$$I_X = I_{\epsilon}(X,Y) = \inf_{\epsilon \in \mathbb{R}} \{ \forall z^2 \in Y, \exists z^1 \in X : z^1 \leq_{\epsilon} z^2 \}$$

$$I_Y = I_{\epsilon}(Y,X) = \inf_{\epsilon \in \mathbb{R}} \{ \forall z^2 \in X, \exists z^1 \in Y : z^1 \leq_{\epsilon} z^2 \}$$

where, for a given $\epsilon > 0$, $z^1 \leq_{\epsilon} z^2$ if and only if $\forall i \in \{1, \ldots, M\}: z^1_i \leq \epsilon + z^2_i,$ (M is the number of objectives, z^i is the i^{th} objective value of solution z^i), assuming minimization (We read z^1 epsilon-dominates z^2). A pair of numbers $(I_X \leq 0, I_Y > 0)$ indicates that X is strictly better than Y [21], while a pair of numbers $(I_X > 0, I_Y > 0)$ means that X and Y are incomparable. Nevertheless, if I_X is less than I_Y, then, in a weaker sense, we can say that X is better than Y because the minimum ϵ value needed to that $X \epsilon$-dominates Y is smaller than the ϵ value needed to so that $Y \epsilon$-dominates X. Table 1 shows different values of the additive binary epsilon indicator for the three problems (assuming the following notation: $N =$ NSGA-II approximation set, $S =$ SPEA2 approximation set, $M =$ PHC-NSGA-II approximation set, $NSQP =$ NSGA-SQP approximation set and $SSQP =$ SPEA-SQP approximation set).

Table 1.

From this table, we can state that PHC-NSGA-II outperforms NSGA-II and SPEA2 in all test problems.
Also, PHC-NSGA-II approximation sets are strictly better than NSGA-SQP one on ZDT6 problem and SPEA-SQP one on ZDT2. For positive values of pairs, we remark that on ¾ of pairs, I_M is the least value. Consequently, we can make a weak statement that PHC-NSGA-II outperforms the two other hybrid algorithms.

To make a more accurate comparison between the hybrid algorithms, we use other performance indices [22]: number of solutions obtained by the first technique which dominate solutions obtained by the second technique and number of solutions obtained by the first technique which are dominated by the solutions obtained by the second technique. For two solutions sets X and Y, which are compared, indices are denoted by $\text{D dominate}(X, Y)$ and $\text{D dominated}(X, Y)$. Table 2 demonstrates obtained results of these indices. It is obvious that PHC-NSGA-II non inferior solutions dominate all NSGA-SQP ones on ZDT6. Besides, there is no solution obtained by SPEA-SQP that dominates any solution from PHC-NSGA-II approximation set on ZDT1 and ZDT2. In addition, no solution from M is dominated by any solution from SSQP on ZDT1 and ZDT2. The superiority of our memetic MOEA may be explained by the performance of our Pareto Hill Climbing heuristic in locating promising regions and finding fitter individuals.

3.2. Second set of test problems

This section is devoted to test PHC-NSGA-II ability to tackle tri-objective test problems. We make a comparison between PHC-NSGA-II and NSGA-II metaheuristics on three tri-criterion test functions DTLZ2a, DTLZ4a and DTLZ7a [23] which are modified versions of DTLZ2, DTLZ4 and DTLZ7 [24] for the three dimensional case.

DTLZ 2a and DTLZ4a

The two problems have three objective functions and eight decision variables.

$$\text{Min } f_1 = (1 + g) \cos(x_1^a \pi / 2) \cos(x_2^a \pi / 2)$$

$$\text{Min } f_2 = (1 + g) \cos(x_1^a \pi / 2) \sin(x_2^a \pi / 2)$$

$$\text{Min } f_3 = (1 + g) \sin(x_1^a \pi / 2)$$

$$g = \sum_{i=3}^{8} (x_i - 0.5)^2$$

$x_i \in [0,1], i \in \{1,\ldots,n\}$, $n = 8$

$$\alpha = \begin{cases} 1, & \text{if function is DTLZ2a} \\ 100, & \text{if function is DTLZ4a} \end{cases}$$

The Pareto front is one eighth of a sphere of radius 1, centred on (0, 0, 0). The Pareto optimal set consists of all solutions where all but the first decision variables are equal to 0.5, and the first decision variable may take any value in [0, 1]. The effect of setting $\alpha = 100$ is to severely bias the density distributions of the solutions towards the $f_3 - f_1$ and $f_2 - f_1$ planes.

DTLZ7a

$$\text{Min } f_1 = x_1$$

$$\text{Min } f_2 = x_2$$

$$\text{Min } f_3 = (1 + g)h$$

$$g = 1 + \frac{9}{6} \sum_{i=3}^{8} x_i$$

$$h = 3 - \sum_{i=1,2} \left[\frac{f_i}{1 + g} (1 + \sin(3\pi f_i)) \right]$$

$x_i \in [0,1], i \in \{1,\ldots,n\}, n = 8$

The optimal Pareto region has four disconnected surfaces in objective space.

Parameters settings of the two algorithms are summarized in Table 3. The parameters values are organized as follows: (pop, gen, ns, N_MAX_ITEARATIONS) / maximum number of functions evaluations. It should be noted that crossover and mutation rates are set to 0.9 and 0.1 respectively for the two algorithms.

It is obvious from different plots (Figure 9, figure 10 and figure 11) that PHC-NSGA-II non-dominated solutions are nearer to the optimal Pareto region than NSGA-II ones on all the three problems. As mentioned above, DTLZ7a problem has four disconnected region in criterion space. Figure 11 shows the ability of our algorithm to find solutions in the four regions while NSGA-II found only solutions in three regions. Besides, non-inferior solutions of PHC-NSGA-II are closer to Pareto surfaces than NSGA-II solutions which proves the contribution and the positive effect of incorporating local search within the evolutionary search process. Table 4 presents the additive binary epsilon indicator values for DTLZ problems. With respect to these values, we can only say in a weak sense, that PHC-NSGA-II approximation set is better than NSGA-II one because the minimum ε value needed to do so that PHC-NSGA-II non-dominated solutions set ε-dominates NSGA-II one is smaller than the ε value needed to do so that NSGA-II approximation set ε-dominates PHC-NSGA-II one.

To more confronting PHC-NSGA-II and NSGA-II algorithm, we illustrate in Table 5 results of the...
4. Conclusions

In this study, a new local search method, named Pareto Hill Climbing, was designed and incorporated into the NSGA-II evolutionary algorithm. New strategies for local search selection and individuals’ replacement have been presented. A new multi-objective memetic algorithm was introduced. Some conclusions could be summarized as follows. First, if there are local traps, the hybrid algorithm is more able than the original MOEA to identify the true optimal Pareto region. Second, the hybridization method does not ruin solutions diversity and for some problems it can enhance the extent of the Pareto region. Third, PHC-NSGA-II is competitive with NSGA-SQP and SPEA-SQP which are gradient based hybrid schemes. In addition, our algorithm can tackle non differentiable problems where gradient based algorithm can not be applied. Hence, our new MMA could be easily extended to solve discrete and/or constrained multi-objective optimization problems. Our future research will focus on (1) applying our hybrid algorithm to solve real world problems such as the multi-location transshipment problem [28] and (2) incorporating an adaptive parameters tuning into it.

References

Table 1
Additive binary epsilon indicator values for ZDT1, ZDT2 and ZDT6.

<table>
<thead>
<tr>
<th>additive binary epsilon indicator values</th>
<th>ZDT1</th>
<th>ZDT2</th>
<th>ZDT6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I(M, N), I(N, M))</td>
<td>(-0.0028, 0.2307)</td>
<td>(-2.1783e-004, 0.5506)</td>
<td></td>
</tr>
<tr>
<td>(I(M, S), I(S, M))</td>
<td>(-0.4032, 1.7789)</td>
<td>(-0.0104, 0.9081)</td>
<td></td>
</tr>
<tr>
<td>(I(M, NSQP), I(NSQP, M))</td>
<td>(0.0612, 0.0549)</td>
<td>(0.0653, 0.1495)</td>
<td>(-8.4952e-006, 1.3936)</td>
</tr>
<tr>
<td>(I(M, SSQP), I(SSQP, M))</td>
<td>(0.0345, 0.1926)</td>
<td>(-0.2855, 2.1801)</td>
<td>(0.0215, 0.0656)</td>
</tr>
</tbody>
</table>

Table 2
Dominate and Dominated indicators values for ZDT1, ZDT2 and ZDT6 (only for PHC-NSGA-II, NSGA-SQP and SPEA-SQP).

<table>
<thead>
<tr>
<th>Dominance and Dominated indicators</th>
<th>ZDT1</th>
<th>ZDT2</th>
<th>ZDT6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M, NSQP) / (M, NSQP)</td>
<td>4/1</td>
<td>4/11</td>
<td>50/0</td>
</tr>
<tr>
<td>(NSQP, M) / (NSQP, M)</td>
<td>1/3</td>
<td>11/5</td>
<td>0/50</td>
</tr>
<tr>
<td>(M, SSQP) / (M, SSQP)</td>
<td>12/0</td>
<td>13/0</td>
<td>8/5</td>
</tr>
<tr>
<td>(SSQP, M) / (SSQP, M)</td>
<td>0/13</td>
<td>0/39</td>
<td>5/4</td>
</tr>
</tbody>
</table>

Table 3
Parameters settings for DTLZ test problems.

<table>
<thead>
<tr>
<th>Parameters settings for DTLZ test problems</th>
<th>DTLZ2a</th>
<th>DTLZ4a</th>
<th>DTLZ7a</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHC-NSGA-II</td>
<td>(100, 50, 5, 10) / 26200</td>
<td>(200, 40, 5, 5) / 25912</td>
<td>(300, 50, 5, 10) / 55200</td>
</tr>
<tr>
<td>NSGA-II</td>
<td>(100, 262) / 26200</td>
<td>(200, 130) / 25912</td>
<td>(300, 200) / 55200</td>
</tr>
</tbody>
</table>

Table 4
Additive binary epsilon indicator values for DTLZ2a, DTLZ4a AND DTLZ 7a.

<table>
<thead>
<tr>
<th>additive binary epsilon indicator values</th>
<th>DTLZ2a</th>
<th>DTLZ4a</th>
<th>DTLZ7a</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I(M, N), I(N,M))</td>
<td>(0.1018, 0.2426)</td>
<td>(0.0288, 0.0580)</td>
<td>(0.0412, 1.1791)</td>
</tr>
</tbody>
</table>

Table 5
Dominate and Dominated indicators values for DTLZ2a, DTLZ4a AND DTLZ7a.

<table>
<thead>
<tr>
<th>Dominate and Dominated indicators</th>
<th>DTLZ2a</th>
<th>DTLZ4a</th>
<th>DTLZ7a</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M, N) / (M, N)</td>
<td>10/8</td>
<td>57/37</td>
<td>113/2</td>
</tr>
<tr>
<td>(N, M) / (N, M)</td>
<td>8/46</td>
<td>41/124</td>
<td>41/163</td>
</tr>
</tbody>
</table>