Publications

  • Mrinmay Chakrabarti, Swapan K Ray
    01/2014: pages 7x10 - (NBC-R); , ISBN: 978-1-63117-246-5
  • M Chakrabarti, N L Banik, S K Ray
    [Show abstract] [Hide abstract]
    ABSTRACT: Protection of motoneurons is an important goal in the treatment of spinal cord injury (SCI). We tested whether neuroprotective microRNAs (miRs) like miR-206, miR-17, miR-21, miR-7-1, and miR-106a could enhance efficacy of estrogen receptor (ER) agonists such as 1,3,5-tris (4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT, ERα agonist), Way200070 (WAY, ERβ agonist), and estrogen (EST, ERα and ERβ agonist) in preventing apoptosis in the calcium ionophore (CI) insulted VSC4.1 motoneurons. We determined that 200 nM CI induced 70% cell death. Treatment with 50 nM PPT, 100 nM WAY, and 150 nM EST induced overexpression of ERα, ERβ, and both receptors, respectively, at mRNA and protein levels. Treatment with ER agonists significantly upregulated miR-206, miR-17, and miR-7-1 in the CI insulted VSC4.1 motoneurons. Transfection with miR-206, miR-17, or miR-7-1 mimic potentiated WAY or EST to inhibit apoptosis in the CI insulted VSC4.1 motoneurons. Overexpression of miR-7-1 maximally increased efficacy of WAY and EST for down regulation of pro-apoptotic Bax and upregulation of anti-apoptotic Bcl-2. A search using miRDB indicated that miR-7-1 could inhibit expression of L-type Ca(2+) channel protein alpha 1C (CPα1C). miR-7-1 overexpression and WAY or EST treatment down regulated CPα1C but upregulated p-Akt to trigger cell survival signaling. The same therapeutic strategy increased expression of the Ca(2+)/calmodulin-dependent protein kinase II beta (CaMKIIβ) and the phosphorylated cAMP response element binding protein (p-CREB) so as to promote Bcl-2 transcription. Whole cell membrane potential and mitochondrial membrane potential studies indicated that miR-7-1 highly potentiated EST to preserve functionality in the CI insulted VSC4.1 motoneurons. In conclusion, our data indicated that miR-7-1 most significantly potentiated efficacy of EST for functional neuroprotection and this therapeutic strategy could be used in the future to attenuate apoptosis of motoneurons in SCI.
    Neuroscience 10/2013; · 3.12 Impact Factor
  • Mrinmay Chakrabarti, Naren L Banik, Swapan K Ray
    [Show abstract] [Hide abstract]
    ABSTRACT: Decrease in expression of the tumor suppressor microRNA-138 (miR-138) correlates well with an increase in telomerase activity in many human cancers. The ability of almost all human cancer cells to grow indefinitely is dependent on presence of telomerase activity. The catalytic component of human telomerase reverse transcriptase (hTERT) regulates telomerase activity in most of the human cancers including malignant neuroblastoma. We observed an indirect increase in the expression of miR-138 after the transfection with hTERT short hairpin RNA (shRNA) plasmid in human malignant neuroblastoma SK-N-DZ and SK-N-BE2 cell lines. Transfection with hTERT shRNA plasmid followed by treatment with the flavonoid apigenin (APG) further increased expression of miR-138. Direct transfection with miR-138 mimic was more powerful than transfection with hTERT shRNA plasmid in potentiating efficacy of APG for decreasing cell viability and colony formation capability of both cell lines. Upregulation of miR-138 was also more effective than down regulation of hTERT in enhancing efficacy of APG for induction of apoptosis in malignant neuroblastoma cells in vitro and in vivo. We delineated that apoptosis occurred with induction of molecular components of the extrinsic and intrinsic pathways in SK-N-DZ and SK-N-BE2 cells both in vitro and in vivo. In conclusion, these results demonstrate that direct miR-138 overexpression is more powerful than hTERT down regulation in enhancing pro-apoptotic effect of APG for controlling growth of human malignant neuroblastoma in cell culture and animal models.
    Experimental Cell Research 04/2013; · 3.56 Impact Factor
  • Mrinmay Chakrabarti, Naren L Banik, Swapan K Ray
    [Show abstract] [Hide abstract]
    ABSTRACT: Human telomerase reverse transcriptase (hTERT) plays a key role in conferring immortality to human malignant neuroblastomas. We first determined differential expression of hTERT in four human malignant neuroblastoma SH-SY5Y, SK-N-DZ, SK-N-BE2, and IMR-32 cell lines. We then used SK-N-DZ and SK-N-BE2 cell lines, which showed the highest expression of hTERT, to investigate the therapeutic effects of sequential hTERT knockdown and apigenin (APG) treatment. We performed cell invasion assay and studied alterations in expression of matrix metalloproteinases and cell cycle regulatory molecules after this combination therapy. We also investigated induction of apoptosis by using in situ Wright staining, Annexin V staining, and Western blotting. Sequential hTERT knockdown and APG treatment significantly downregulated expression of hTERT so as to cause over 90 % inhibition of cell invasion and 70 % induction of apoptosis in both SK-N-DZ and SK-N-BE2 cell lines. Western blotting demonstrated downregulation of the molecules involved in cell invasion and proliferation, but upregulation of the cell cycle inhibitor and apoptosis-inducing molecules. In conclusion, our current results clearly showed that sequential hTERT knockdown and APG treatment could be a promising therapeutic strategy for effective inhibition of invasion and proliferation and induction of apoptosis in hTERT overexpressing malignant neuroblastoma cells.
    Journal of Molecular Neuroscience 02/2013; · 2.89 Impact Factor
  • Source
    Nishant Mohan, Mrinmay Chakrabarti, Naren L Banik, Swapan K Ray
    [Show abstract] [Hide abstract]
    ABSTRACT: Malignant neuroblastoma is an extracranial solid tumor that usually occurs in children. Autophagy, which is a survival mechanism in many solid tumors including malignant neuroblastoma, deters the efficacy of conventional chemotherapeutic agents. To mimic starvation, we used 200 nM rapamycin that induced autophagy in human malignant neuroblastoma SK-N-BE2 and IMR-32 cells in cell culture and animal models. Combination of microtubule associated protein light chain 3 short hairpin RNA (LC3 shRNA) plasmid transfection and genistein (GST) treatment was tested for inhibiting rapamycin-induced autophagy and promoting apoptosis. The best synergistic efficacy caused the highest decrease in cell viability due to combination of 50 nM LC3 shRNA plasmid transfection and 25 µM GST treatment in rapamycin-treated SK-N-BE2 cells while combination of 100 nM LC3 shRNA plasmid transfection and 25 µM GST treatment in rapamycin-treated IMR-32 cells. Quantitation of acidic vesicular organelles confirmed that combination of LC3 shRNA plasmid transfection and GST treatment prevented rapamycin-induced autophagy due to down regulation of autophagy promoting marker molecules (LC3 II, Beclin 1, TLR-4, and Myd88) and upregulation of autophagy inhibiting marker molecules (p62 and mTOR) in both cell lines. Apoptosis assays showed that combination therapy most effectively activated mitochondrial pathway of apoptosis in human malignant neuroblastoma in cell culture and animal models. Collectively, our current combination of LC3 shRNA plasmid transfection and GST treatment could serve as a promising therapeutic strategy for inhibiting autophagy and increasing apoptosis in human malignant neuroblastoma in cell culture and animal models.
    PLoS ONE 01/2013; 8(10):e78958. · 3.73 Impact Factor
  • Source
    Mrinmay Chakrabarti, Naren L Banik, Swapan K Ray
    [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastoma is the most common malignant brain tumor in humans. We explored the molecular mechanisms how the efficacy of photofrin based photodynamic therapy (PDT) was enhanced by miR-99a transfection in human glioblastoma cells. Our results showed almost similar uptake of photofrin after 24 h in different glioblastoma cells, but p53 wild-type cells were more sensitive to radiation and photofrin doses than p53 mutant cells. Photofrin based PDT induced apoptosis, inhibited cell invasion, prevented angiogenic network formation, and promoted DNA fragmentation and laddering in U87MG and U118MG cells harvoring p53 wild-type. Western blotting showed that photofrin based PDT was efficient to block the angiogenesis and cell survival pathways. Further, photofrin based PDT followed by miR-99a transfection dramatically increased miR-99a expression and also increased apoptosis in glioblastoma cell cultures and drastically reduced tumor growth in athymic nude mice, due to down regulation of fibroblast growth factor receptor 3 (FGFR3) and PI3K/Akt signaling mechanisms leading to inhibition of cell proliferation and induction of molecular mechanisms of apoptosis. Therefore, our results indicated that the anti-tumor effects of photofrin based PDT was strongly augmented by miR-99a overexpression and this novel combination therapeutic strategy could be used for controlling growth of human p53 wild-type glioblastomas both in vitro and in vivo.
    PLoS ONE 01/2013; 8(2):e55652. · 3.73 Impact Factor
  • Mrinmay Chakrabarti, Banik NL, Ray SK
    [Show abstract] [Hide abstract]
    ABSTRACT: Protection of motoneurons is an important goal in the treatment of spinal cord injury (SCI). We tested whether neuroprotective microRNAs (miRs) like miR-206, miR-17, miR-21, miR-7-1, and miR-106a could enhance efficacy of estrogen receptor (ER) agonists such as 1,3,5-tris (4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT, ERα agonist), Way200070 (WAY, ERβ agonist), and estrogen (EST, ERα and ERβ agonist) in preventing apoptosis in the calcium ionophore (CI)-insulted ventral spinal cord 4.1 (VSC4.1) motoneurons. We determined that 200 nM CI induced 70% cell death. Treatment with 50 nM PPT, 100 nM WAY, and 150 nM EST induced overexpression of ERα, ERβ, and both receptors, respectively, at mRNA and protein levels. Treatment with ER agonists significantly upregulated miR-206, miR-17, and miR-7-1 in the CI-insulted VSC4.1 motoneurons. Transfection with miR-206, miR-17, or miR-7-1 mimic potentiated WAY or EST to inhibit apoptosis in the CI-insulted VSC4.1 motoneurons. Overexpression of miR-7-1 maximally increased efficacy of WAY and EST for down regulation of pro-apoptotic Bax and upregulation of anti-apoptotic Bcl-2. A search using microRNA database (miRDB) indicated that miR-7-1 could inhibit the expression of L-type Ca2+ channel protein alpha 1C (CPα1C). miR-7-1 overexpression and WAY or EST treatment down regulated CPα1C but upregulated p-Akt to trigger cell survival signaling. The same therapeutic strategy increased expression of the Ca2+/calmodulin-dependent protein kinase II beta (CaMKIIβ) and the phosphorylated cAMP response element binding protein (p-CREB) so as to promote Bcl-2 transcription. Whole cell membrane potential and mitochondrial membrane potential studies indicated that miR-7-1 highly potentiated EST to preserve functionality in the CI-insulted VSC4.1 motoneurons. In conclusion, our data indicated that miR-7-1 most significantly potentiated efficacy of EST for functional neuroprotection and this therapeutic strategy could be used in the future to attenuate apoptosis of motoneurons in SCI.
    Neuroscience 01/2013; · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuroblastoma is a childhood tumor that arises from immature neuroblasts of the sympathetic nervous system. Krüpple-like factor 4 (KLF4) is a transcription factor, the precise function of which in neuroblastoma is unclear. We examined the effects of KLF4 overexpression and apigenin (APG) treatment in human malignant neuroblastoma SK-N-DZ and IMR-32 cell lines. KLF4 overexpression in both SK-N-DZ and IMR-32 cell lines was confirmed by laser scanning immunofluorescent confocal microscopy and Western blotting. We found that 100 nM KLF4 plasmid and 25 μM APG synergistically inhibited the growth of SK-N-DZ and IMR-32 cells. We also found increase in KLF4 expression in response to treatment with various concentrations of APG. Combination of KLF4 plasmid and APG treatment significantly increased the amounts of apoptosis in both cell lines when compared with control vector or single treatment. We also noticed that the combination therapy decreased expression of the anti-apoptotic proteins Bcl-2 and Mcl-1, increased expression of the pro-apoptotic proteins Bax, Noxa, and Puma, upregulated p53, and caused activation of caspase-3 for cleavage of the inhibitor of caspase-activated DNase (ICAD) leading to completion of apoptosis machinery. Further, combination of KLF4 overexpression and APG treatment was highly effective in inhibiting migration of both neuroblastoma cell lines and was associated with down regulation of matrix metalloproteinases (MMPs) such as MMP-2 and MMP-9. Collectively, our results from this investigation strongly suggest that KLF4 functions as a tumor suppressor and potentiates the anti-cancer activities of APG in two different human malignant neuroblastoma cell lines.
    Molecular oncology 12/2012; · 6.70 Impact Factor
  • Mrinmay Chakrabarti, Walden Ai, Naren L Banik, Swapan K Ray
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuroblastoma is an extracranial solid tumor that usually occurs in infants and children. Malignant neuroblastomas remain mostly refractory to currently available chemotherapeutic agents. So, new therapeutic agents and their molecular mechanisms for induction of cell death must be explored for successful treatment of human malignant neuroblastomas. Two polyphenolic compounds, which are abundant in green tea, are (-)-epigallocatechin (EGC) and (-)-epigallocatechin-3-gallate (EGCG) that possess impressive anti-cancer properties. It is not known yet whether EGC and EGCG can modulate the levels of expression of specific microRNAs (miRs) for induction of apoptosis in human malignant neuroblastomas. In this investigation, we revealed that treatment with EGC or EGCG caused induction of apoptosis with significant changes in expression of specific oncogenic miRs (OGmiRs) and tumor suppressor miRs (TSmiRs) in human malignant neuroblastoma SH-SY5Y and SK-N-DZ cell lines. Treatment of both cell lines with either 50 μM EGC or 50 μM EGCG decreased expression of the OGmiRs (miR-92, miR-93, and miR-106b) and increased expression of the TSmiRs (miR-7-1, miR-34a, and miR-99a) leading to induction of extrinsic and intrinsic pathways of apoptosis. Our data also demonstrated that overexpression of miR-93 decreased efficacy while overexpression of miR-7-1 increased efficacy of the green tea polyphenols for induction of apoptosis in both cell lines. In conclusion, our current investigation clearly indicates that overexpression of miR-7-1 can highly potentiate efficacy of EGCG for induction of apoptosis in human malignant neuroblastoma cells.
    Neurochemical Research 11/2012; · 2.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Antheraea mylitta, a tasar silk-producing insect of Saturniidae family, expresses a fungal protease inhibitor named as A. mylitta fungal protease inhibitor-1 (AmFPI-1). AmFPI-1 inhibits alkaline protease of Aspergillus oryzae but its mechanism of action is not known. To understand the mode of inhibition of AmFPI-1 against the fungal protease, it was purified from the hemolymph of A. mylitta larvae and inhibitory activity against A. oryzae protease was studied. Kinetic analysis of purified AmFPI-1 on alkaline protease of A. oryzae showed that AmFPI-1 acts as a canonical-type competitive inhibitor with equilibrium dissociation constant (K ( i )) of 60 nM. Expression of AmFPI-1 in different body tissues of fifth instar A. mylitta larvae was determined by real-time PCR, and the highest expression was observed in fat body followed by integument, silk gland, and gut, indicating that AmFPI-1 has pleiotropic functions including protection from invading fungi. The cDNA of AmFPI-1 was expressed in Escherichia coli, and recombinant His-tagged fusion protein was purified by Ni-NTA chromatography. Recombinant AmFPI-1 showed inhibitory activity against A. oryzae protease and suggested its use in various biological applications to prevent proteolysis.
    Applied biochemistry and biotechnology 08/2012; · 1.94 Impact Factor
  • Source
    Mrinmay Chakrabarti, Mehrab Khandkar, Naren L Banik, Swapan K Ray
    [Show abstract] [Hide abstract]
    ABSTRACT: Malignant neuroblastomas are childhood tumors that remain mostly incurable. We explored efficacy of N-(4-hydroxyphenyl) retinamide (4-HPR) and (-)-epigallocatechin-3-gallate (EGCG) in altering expression of oncogenic microRNAs (OGmiRs) and tumor suppressor miRs (TSmiRs) for controlling growth of human malignant neuroblastoma SK-N-BE2 and IMR-32 cells. Combination of 4-HPR and EGCG most significantly decreased expression of OGmiRs (miR-92, miR-93, and miR-106b) and increased expression of TSmiRs (miR-7-1, miR-34a, and miR-99a) in both cell lines. Overexpression of miR-93 and miR-7-1, respectively, decreased and increased efficacy of treatments. Thus, alterations in expression of specific OGmiRs and TSmiRs by 4-HPR and EGCG inhibited growth of malignant neuroblastomas.
    Brain research 03/2012; 1454:1-13. · 2.46 Impact Factor
  • Mrinmay Chakrabarti, Swapan K Ray
    01/2012; , ISBN: 978-1-61942-052-6
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activation-induced cytidine deaminase (AID) is induced in B cells during an immune response and is essential for both class-switch recombination (CSR) and somatic hypermutation of Ab genes. The C-terminal 10 aa of AID are required for CSR but not for somatic hypermutation, although their role in CSR is unknown. Using retroviral transduction into mouse splenic B cells, we show that the C terminus is not required for switch (S) region double-strand breaks (DSBs) and therefore functions downstream of DSBs. Using chromatin immunoprecipitation, we show that AID binds cooperatively with UNG and the mismatch repair proteins Msh2-Msh6 to Ig Sμ and Sγ3 regions, and this depends on the C terminus and the deaminase activity of AID. We also show that mismatch repair does not contribute to the efficiency of CSR in the absence of the AID C terminus. Although it has been demonstrated that both UNG and Msh2-Msh6 are important for introduction of S region DSBs, our data suggest that the ability of AID to recruit these proteins is important for DSB resolution, perhaps by directing the S region DSBs toward accurate and efficient CSR via nonhomologous end joining.
    The Journal of Immunology 09/2011; 187(5):2464-75. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome segment 2 (S2) from Antheraea mylitta cypovirus (AmCPV) was converted into cDNA, cloned and sequenced. S2 consisted of 3798 nucleotides with a long ORF encoding a 1116 amino acid long protein (123 kDa). BLAST and phylogenetic analysis showed 29% sequence identity and close relatedness of AmCPV S2 with RNA dependent RNA polymerase (RdRp) of other insect cypoviruses, suggesting a common origin of all insect cypoviruses. The ORF of S2 was expressed as 123 kDa soluble His-tagged fusion protein in insect cells via baculovirus recombinants which exhibited RdRp activity in an in vitro RNA polymerase assay without any intrinsic terminal transferase activity. Maximum activity was observed at 37 degrees C at pH 6.0 in the presence of 3 mM MgCl(2). Site directed mutagenesis confirmed the importance of the conserved GDD motif. This is the first report of functional characterization of a cypoviral RdRp which may lead to the development of anti-viral agents.
    Virology 08/2010; 404(1):21-31. · 3.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antheraea mylitta cytoplasmic polyhedrosis virus (AmCPV), a cypovirus of Reoviridae family, infects Indian non-mulberry silkworm, Antheraea mylitta, and contains 11 segmented double stranded RNA (S1-S11) in its genome. Some of its genome segments (S2 and S6-S11) have been previously characterized but genome segments encoding viral capsid have not been characterized. In this study genome segments 1 (S1) and 3 (S3) of AmCPV were converted to cDNA, cloned and sequenced. S1 consisted of 3852 nucleotides, with one long ORF of 3735 nucleotides and could encode a protein of 1245 amino acids with molecular mass of approximately 141 kDa. Similarly, S3 consisted of 3784 nucleotides having a long ORF of 3630 nucleotides and could encode a protein of 1210 amino acids with molecular mass of approximately 137 kDa. BLAST analysis showed 20-22% homology of S1 and S3 sequence with spike and capsid proteins, respectively, of other closely related cypoviruses like Bombyx mori CPV (BmCPV), Lymantria dispar CPV (LdCPV), and Dendrolimus punctatus CPV (DpCPV). The ORFs of S1 and S3 were expressed as 141 kDa and 137 kDa insoluble His-tagged fusion proteins, respectively, in Escherichia coli M15 cells via pQE-30 vector, purified through Ni-NTA chromatography and polyclonal antibodies were raised. Immunoblot analysis of purified polyhedra, virion particles and virus infected mid-gut cells with the raised anti-p137 and anti-p141 antibodies showed specific immunoreactive bands and suggest that S1 and S3 may code for viral structural proteins. Expression of S1 and S3 ORFs in insect cells via baculovirus recombinants showed to produce viral like particles (VLPs) by transmission electron microscopy. Immunogold staining showed that S3 encoded proteins self assembled to form viral outer capsid and VLPs maintained their stability at different pH in presence of S1 encoded protein. Our results of cloning, sequencing and functional analysis of AmCPV S1 and S3 indicate that S3 encoded viral structural proteins can self assemble to form viral outer capsid and S1 encoded protein remains associated with it as inner capsid to maintain the stability. Further studies will help to understand the molecular mechanism of capsid formation during cypovirus replication.
    Virology Journal 01/2010; 7:181. · 2.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glyceraldehyde-3-phosphate dehydrogenase from Antheraea mylitta (AmGAPDH) was cloned in pQE30 vector, overexpressed in Escherichia coli M15 (pREP4) cells and purified to homogeneity. The protein was crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to the orthorhombic space group I222, with unit-cell parameters a = 85.81, b = 133.72, c = 220.37 A. X-ray diffraction data were collected and processed to a maximum resolution of 2.2 A. The presence of three molecules in the asymmetric unit gave a Matthews coefficient (V(M)) of 2.80 A(3) Da(-1), with a solvent content of 56.08%.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 10/2009; 65(Pt 9):937-40. · 0.55 Impact Factor
  • SR Jangam, M Chakrabarti, AК Ghosh
    International Journal of Virology 01/2007; 3(2):60-72.

16 Following View all

16 Followers View all