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Abstract—Detecting the transportation mode of a user is
important for a wide range of applications. While a number
of recent systems addressed the transportation mode detection
problem using the ubiquitous mobile phones, these studies either
leverage GPS, the inertial sensors, and/or multiple cell towers
information. However, these different phone sensors have high
energy consumption, limited to a small subset of phones (e.g.
high-end phones or phones that support neighbouring cell tower
information), cannot work in certain areas (e.g. inside tunnels
for GPS), and/or work only from the user side.

In this paper, we present a transportation mode detection
system, MonoSense, that leverages the phone serving cell infor-
mation only. The basic idea is that the phone speed can be
correlated with features extracted from both the serving cell
tower ID and the received signal strength from it. To achieve
high detection accuracy with this limited information, MonoSense
leverages diversity along multiple axes to extract novel features.
Specifically, MonoSense extracts features from both the time
and frequency domain information available from the serving
cell tower over different sliding widow sizes. More importantly,
we show also that both the logarithmic and linear RSS scales
can provide different information about the movement of a
phone, further enriching the feature space and leading to higher
accuracy.

Evaluation of MonoSense using 135 hours of cellular traces
covering 485 km and collected by four users using different
Android phones shows that it can achieve an average precision
and recall of 89.26% and 89.84% respectively in differentiating
between the stationary, walking, and driving modes using only the
serving cell tower information, highlighting MonoSense ability to
enable a wide set of intelligent transportation applications.

I. INTRODUCTION

The inference of the human transportation mode (e.g. walk-
ing, driving, etc) is important for a wide range of applications
such as human behavior monitoring [1], road traffic estimation
[2], evaluating transportation related measures and policies
[3]–[5], among others. During the last decade, there has been
rapid growth in the sensing capabilities of commodity phones
combined with their ease of programming and large market
penetration rate. Therefore, a number of unobtrusive systems
that leverage the phone different sensors have been proposed
[6]–[12]. Specifically, GPS-based systems [6]–[9] that depend
on the GPS location or its alternatives [13]–[18], inertial-
sensors (mainly the accelerometer) [10]–[12], or a combination
of both can provide different accuracy for transportation mode
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detection with different garrulities. However, these systems
suffer from high energy consumption, do not work everywhere
(e.g. GPS does not work in tunnels and urban canyons), work
only on smart phones, work in special phone positions (e.g.
outside pocket with clear line of sight to the satellites or in
hand) and do not work from the cellular provider side.

To address these issues, a number of systems have been
recently introduced that leverage cellular network information
only (multiple cell towers IDs and received signal strength
(RSS) from them), e.g. [19]–[23], to detect whether a user
is still, walking, or in a motorized transport. Nevertheless,
previous cellular data based systems require the information
from the serving cell tower as well as all neighboring cell
towers information. Given the fact that the majority of An-
droid phones, which account for more than 80% of the smart
phone market, only provide the serving cell tower information
[24], this sparks the need for new methods that can detect the
mode of transportation accurately, with only a single cell tower
information, from both the phone or cellular provider side, and
work with any phone (including low end phones).

In this paper, we propose MonoSense, a system that lever-
ages the ID and RSS information from the serving cell
tower only from any commodity cellular phone to differentiate
between three human modes of transportation: Stationary,
walking, and driving. The basic idea is that different modes
of transportation can be mapped to different speeds. These
speeds in turn, can be correlated with features extracted from
the serving cell tower ID and RSS. To address the confusion
among different transportation modes with the limited avail-
able information, MonoSense draws on two main concepts:
(a) a novel interesting observation about the input RSS and
(b) features diversity. For the former, we show that both the
linear and logarithmic scales of the RSS can provide different
information about the movement pattern, leading to more
accurate differentiating between the different transportation
modes. For the latter, the diversity in the RSS spaces is
combined with the diversity of features extracted from both
the time and frequency domains as well as diversity of the
window sizes the features are extracted from, expanding the
space of available features and providing a better possibility
for removing the ambiguity between classes.

We evaluate MonoSense using real-world data collected by
four persons using different Android phones with different
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cellular operators over a period of eight months covering 135
hours of cellular traces. Our results show that MonoSense
can achieve an average precision and recall of 89.26% and
89.84% respectively in differentiating between the stationary,
walking, and driving modes using only the serving cell tower
information

In summary, our contribution in this paper is three-fold:
• We provide the architecture and details of the MonoSense

system that can provide accurate, ubiquitous, and energy-
efficient transportation mode detection using the informa-
tion from the serving cell tower only.

• We show that the RSS linear scale can provide inde-
pendent information about the RSS in addition to the
RSS logarithmic scale, which is the only scale used in
traditional cellular-based transportation mode detection
systems. This extends the features pool and helps in han-
dling the limited information available for MonoSense.

• We implement and evaluate MonoSense in typical envi-
ronments with different phones, operators, and users.

The remainder of this paper is organized as follows. Sec-
tion II presents the MonoSense system architecture as well as
details of the different system components. We evaluate the
system in Section III and conclude in Section IV.

II. THE MonoSense SYSTEM

In this section, we start by providing an overview of
MonoSense architecture and the principal of operation fol-
lowed by the details of the different system components,
mainly: preprocessing, features extraction, differences between
the RSS logarithmic and linear scales, and the classifier used.
We end the section by a discussion of different aspects of
MonoSense.

A. Overview

Figure 1 shows the system architecture. The only informa-
tion available for MonoSense to detect the mode of trans-
portation is the serving cell ID and associated RSS. The
basic idea that MonoSense builds on is that some features
extracted from these two sources of data can be correlated
with the user speed. For example, a phone in a fast moving
car would encounter faster changes in the RSS and see more
changes in the associated cell towers compared to a stationary
phone (within the same time duration). This maps to a higher
difference between adjacent RSS readings, higher variance
in RSS, and higher handoff (changes in the serving cell
tower ID) frequency as shown in Figure 2. However, due to
the limited information available from the serving cell tower
only, MonoSense diversifies its features pool to increase the
classification accuracy including using features from the linear
and logarithmic RSS space, in time and frequency domains,
and over different RSS window sizes.

The system starts by collecting a stream of serving cell
tower information (d = d0, d1, ...), where each di is an
ordered pair (IDi,RSSi) representing the ID of the serving
cell tower and the associated received signal strength (RSS) in
logarithmic scale (this is the default scale used by the Android

Fig. 1: MonoSense system architecture.

API) at sample i. These samples can either be collected from
the cell phone or the cellular provider side. For the cell phone
case, since this information is available from almost all phones
and during the normal phone operation, MonoSense consumes
zero extra energy, making it a ubiquitous and energy-efficient
solution.

The input data stream is then pre-processed to filter noisy
data and then the RSS is mapped from the logarithmic to the
linear scale. It then passed to a feature extractor to extract
different features in the time and frequency domain over
different sliding window sizes to enrich the feature space.

A decision tree classifier is then applied to differentiate
between the three modes of transportation, corresponding to
three different ranges of speed: stationary (speed almost zero
km/h), walking (maximum speed about 3-6 km/h, and in
vehicle (free running speeds from 40-100 km/h). Note that
the different modes may overlap in some cases. For example,
in traffic congestion, the car speed can approach the user
walking speed. These cases may reduce the accuracy of the
classifier. Nevertheless, the different features help in reducing
the ambiguity in this case as we quantify in Section III.

B. Preprocessing

The goal of this module is to reduce the noise in the
input data, mainly due to the ping-pong effect. Specifically,
due to the noisy nature of the wireless propagation and the
unpredicted load on the cell tower, the user serving cell tower
can change back and forth between different nearby serving
cells. This is called the ping-pong phenomenon [25], [26]. To
handle this phenomenon, we apply a smoothing filter, where
a low number of samples from a certain cell tower between
two groups of samples from another dominant cell tower are
replaced by the dominant cell ID.

C. Time and Frequency Domain Features

All features in MonoSense are calculated within a non-
overlapping sliding window with a fixed size. Different par-
allel window sizes are used to capture different granularities.
We combine the following features from both the time and
frequency domain to enrich its features set:
Time domain features:

These features are extracted from the time domain for
different window sizes covering changes in both the cell ID
and RSS values.

1) Number of unique serving cell IDs within a time win-
dow: For a fixed window size, the higher this number,
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(a) Number of unique cell IDs
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(b) Cell residence time
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(c) Average RSS difference between con-
secutive measurements
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(d) Variance of RSS

Fig. 2: Effect of the speed on the different time domain features. All features extracted within a certain window size.
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Fig. 3: Effect of phone speed on the signal energy.

the higher the speed (Figure 2a). This is directly related
to the handoff frequency.

2) Average cell residence time: Which is the average dwell
time spent in each serving cell. The higher this number,
the lower the phone speed (Figure 2b).

3) RSS variance: Refers to the variance of the signal
strength within the feature extraction window. This is
based on the fact that higher speeds lead to faster
changes and a noisier signal in the RSS and hence higher
variance [27] (Figure 2d).

4) Average RSS difference between consecutive measure-
ments: This is similar to the previous feature. In the
extreme case, when the phone in stationary, one should
expect that consecutive readings will almost be identical,
which is complectly different from the high speed case
(Figure 2c).

Frequency domain features: These features are extracted
from the frequency domain using the fast Fourier transform
algorithm (FFT) over different window sizes of RSS values.

1) Frequency with the highest energy: The intuition is that
the movement speed affects the rate of RSS change.
This can be captured by the dominant frequency after
removing the DC component.

2) Signal energy: Defined as the sum of the square am-
plitudes of the FFT spectrum, which reflects the energy
in the RSS signal. The slower the speed, the lower the
energy in the signal should be. (Figure 3).

D. Linear versus Logarithmic RSS Scale

Typically, RSS is measured in the logarithmic scale. For
example, using the free space loss model, the received signal
strength in logarithmic scale (pr(dB)) at a distance d from the
transmitter is given by:

pr(dB) = p0 − 10 ∗ α ∗ log
(
d

d0

)
(1)

where p0 is the power in dB at a reference distance d0 from the
transmitter and α is the path loss exponent. Therefore, based
on the RSS logarithmic scale, equal changes in the physical
distance on the roads from the transmitter (i.e. serving cell
tower) lead to equal distances in the RSS log space. However,
this is not the case in the linear RSS scale, where equal road
distances from the transmitter map to different distances in
the linear RSS space. Based on this observation, MonoSense
leverages both the logarithmic and linear RSS readings to
extract the classification features. This scale diversity reduces
the ambiguity between classes.

E. Transportation Mode Classifier

We use a decision tree classifier for differentiating between
the three different modes of transportation due to its simplicity
and efficient implementation . We use a total of 36 features
(six main features from Section II-C repeated for both linear
and logarithmic scales for three different window sizes).

F. Discussion

MonoSense leverages features from different window sizes
to enrich its feature space and hence obtain higher accuracy.
As shown in this section, longer windows usually lead to better
differentiation between the different speeds due to the more
available information. However, longer windows increase the
latency of estimation and extra large windows (not shown in
this section) can worsen the performance as they may span
different speeds within the same window.

Moreover, smaller window sizes can provide better differ-
entiation in some features. For example, shorter window sizes
can differentiate better between the stationary and walking
modes for the cell resident time feature (Figure 2b).

To balance these factors, we use three window sizes in our
implementation: 10, 30, and 60 seconds.
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(c) Overall system (all features)

TABLE I: Precision using features extracted from the RSS logarithmic scale, RSS linear scale, and both (overall system).
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(a) Using RSS logarithmic scale
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Walking 1.00 % 87.76 % 11.22 %

Driving 0.00 % 18.24 % 81.76 %

(c) Overall system (all features)

TABLE II: Recall using features extracted from the RSS logarithmic, RSS linear scale, and both (overall system).

III. EVALUATION

In this section, we evaluate MonoSense in different real
testbeds.We start by describing the experimental setup fol-
lowed by the performance analysis.

A. Experimental Setup

We implemented a data collector on the Android Android
SDK 2.3.3 (API Level 10). The collector gathers the serving
cell tower ID, RSS, and time stamp periodically at a rate
of one sample per second. The GPS location and speed
are also collected as ground truth. The collector enables the
user to add custom annotations, for example to manually
enter the current ground truth transportation mode for traces
that span multiple modes of transportation. We deployed our
collector on different Android phones including a Samsung
Nexus S, Nexus One, Galaxy S 7562, and Galaxy Tab 1000.
The collected traces were analyzed offline, were the features
extraction and classifier were implemented using Matlab.

using 135 hours of cellular traces collected by four users
using different android

We collected a total of 135 hours dataset over the course of
eight months from January to August 2014 uniformly covering
different modes of transportation. The combined traces length
account for 485 km. Four different users were involved in the
data collection process from the three operators in Egypt.

B. Performance Metrics

We use five-fold cross validation to evaluate our classifier.
We use two metrics for evaluation: precision and recall defined
as:

• Precision= True positives
True positives + False positives = Correctly detected

Total detected .
Precision captures the accuracy of the detected modes
(percentage of detected modes that are correct).

• Recall= True positives
True positives + False negatives = Correctly detected

Total actual events

High precision indicates that the classifier returns more correct
results than incorrect ones. On the other hand, high recall
means that the classifier detects most of the correct modes
from the ground truth.

We use a confusion matrix between the different modes of
transportation for each of the metrics. The values along the
diagonal indicate the classifier performance. The off-diagonal
elements quantify the confusion classes when error occurs.

C. Performance Analysis

In this section, we analyze the performance of the classifier
for the different RSS scales using the different metrics. We
start by showing the performance for the logarithmic and linear
scales independently, followed by the combined classifier
performance using all features (representing our overall system
performance).

1) Features extracted from the log scale: Table I,II (a)
shows the confusion matrices for the precision and recall
respectively. The table shows that the diversity of features from
the time and frequency domain as well as features extracted
from the different window sizes lead to high classification
accuracy. The stationary mode is the easiest to detect. Most of
the classification errors are between the walking and driving
classes. This can be explained by noting that low driving
speeds, e.g. due to traffic congestion, lead to speeds that
are comparable to the walking speeds. The driving mode of
transportation is the hardest due to the wide span of speeds it
covers compared to the other modes. Nevertheless, the average
precision and recall are 85.13% and 85% respectively. These
are further enhanced by combining the logarithmic and linear
features as we quantify in Section III-C3.

2) Features extracted from the linear scale: Table I, II
(b) shows the confusion matrices for the precision and recall
respectively based on the features extracted from the RSS



linear scale. The table shows similar results to logarithmic
scale results. Linear scale features slightly perform better for
the stationary and walking classes while the logarithmic scale
features perform better in the driving class. This validates our
observation that the features are independent and can be fused
together to provide better performance as in the next section.

3) Overall system performance: Combined log and linear
space features: Table I,II(c) shows the confusion matrices
using all the 36 combined features. The table shows that
using all features lead to an overall average precision and
recall of 89.26% and 89.84% respectively. This highlights
that MonoSense can achieve its goals of ubiquitous, high
accuracy, and energy-efficient transportation mode detection
using minimal information from the serving cell tower only.

IV. CONCLUSION

We presented a ubiquitous, energy-efficient, and accurate
mode of transportation detection system, MonoSense, that
completely relies on the information from the serving cell
tower only. We showed how MonoSense leverages the diversity
of features in the logarithmic and linear scales, time and
frequency domain, as well as different window sizes to extend
its feature space and achieve high accuracy.

Real world implementation and experiments using different
Android phones spanning 135 hours and 485 km over an eight
months period confirm the effectiveness of MonoSense show-
ing an average precision and recall of 89.26% and 89.84%
respectively, highlighting MonoSense ability meet its goals of
high accuracy, energy efficiency, and ubiquitous deployment
on different phone types as well as on the user and cellular
provider sides.

Currently, we are expanding MonoSense in different di-
rections including leveraging more features, classifying more
modes of transportation, implementation on other phone op-
erating systems, among others.
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