On b-colorings in regular graphs

Mostafa Blidia a, Frédéric Maffray b,*, Zoham Zemir a

a Département de Mathématiques, Université de Blida, B.P. 270, Blida, Algeria
b C.N.R.S, Laboratoire G-SCOP, 46 Avenue Félix Viallet, 38031 Grenoble Cedex, France

A B S T R A C T

A b-coloring is a coloring of the vertices of a graph such that each color class contains a vertex that has a neighbor in all other color classes. El-Sahili and Kouider have conjectured that every d-regular graph with girth at least 5 has a b-coloring with $d + 1$ colors. We show that the Petersen graph infirms this conjecture, and we propose a new formulation of this question and give a positive answer for small degree.

1. Introduction

A proper coloring of a graph $G = (V, E)$ is a mapping c from V to the set of positive integers (colors) such that any two adjacent vertices are mapped to different colors. Each set of vertices colored with one color is a stable set of vertices of G, so a coloring is a partition of V into stable sets. The smallest number k for which G admits a coloring with k colors is the chromatic number $\chi(G)$ of G.

Many graph invariants related to colorings have been defined. Most of them try to minimize the number of colors used to color the vertices under some constraints. For some other invariants, it is meaningful to try to maximize this number. The b-chromatic number is such an example. When we try to color the vertices of a graph, a simple trick consists in starting from a coloring and trying to decrease the number of colors by reducing them in some way, for example by merging two color classes. This motivated the introduction of the achromatic number by Harary and Hedetniemi [6]: the achromatic number of a graph G is the largest integer k such that G admits a coloring with k colors for which there is an edge between any two color classes. Clearly, the process of merging suggested above is impossible if we have such a coloring. So the achromatic number is a measure of how hard it is to obtain a coloring with few colors. This inspired Irving and Manlove [8,13] to consider another procedure, which consists in trying to reduce the number of colors by transferring all vertices from one color class to other classes. A b-coloring is a proper coloring such that every color class i contains at least one vertex that has a neighbor in all the other classes. Any such vertex will be called a b-dominating vertex of color i. The b-chromatic number $b(G)$ is the largest integer k such that G admits a b-coloring with k colors.

For a graph G, and for any vertex v of G, the neighborhood of v is the set $N(v) = \{u \in V(G) \mid uv \in E(G)\}$ and the degree of v is $\deg(v) = |N(v)|$. Let $\Delta(G)$ be the maximum degree in G, and let $m(G)$ be the largest integer k such that G has k vertices of degree at least $k - 1$. It is easy to see that every graph G satisfies $b(G) \leq m(G) \leq \Delta(G) + 1$.

* This research was supported by the Algerian/French program CMEP/Tassili 05 MDU 639.
* Corresponding author.

0166-218X/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2009.01.007
(the first inequality follows from the fact that if G has any b-coloring with k colors then it has k vertices of degree at least $k - 1$; the second inequality follows from the definition of $m(G)$), Irving and Manlove [8,13] proved that every tree T has b-chromatic number $b(T)$ equal to either $m(T)$ or $m(T) - 1$, and their proof is a polynomial-time algorithm that computes the value of $b(T)$. On the other hand, Kratochvíl, Tuza and Voigt [12] proved that it is NP-complete to decide if $b(G) = m(G)$, even when restricted to the class of connected bipartite graphs such that $m(G) = \Delta(G) + 1$. These NP-completeness results have incited researchers to establish bounds on the b-chromatic number in general or to find exact or approximate values for subclasses of graphs [1–4,7,9–11].

Here we focus on a recent problem concerning regular graphs. A graph G is d-regular if every vertex of G has degree equal to d. Note that every d-regular graph G satisfies $m(G) = d + 1$. The girth of G is the length of a shortest cycle in G. In [3], El-Sahli and Kouider pose the following question:

Question ([3]). Is it true that every d-regular graph G with girth $g(G) \geq 5$ satisfies $b(G) = d + 1$?

We observe that the Petersen graph offers a negative answer to this question. However, we also propose some positive results in the case where $d \leq 6$ which suggest that the Petersen graph might be the only counterexample to the question.

2. Preliminary results

For integer $k \geq 3$, we let C_k denote the cycle with k vertices.

Theorem 1. The Petersen graph has b-chromatic number 3.

Proof. Let G be the Petersen graph, with vertices $v_1, \ldots, v_5, w_1, \ldots, w_5$ such that v_1, v_2, v_3, v_4, v_5 induce a 5-cycle in this order, w_1, w_2, w_3, w_4, w_5 induce a 5-cycle in this order, and $v_i w_1$ is an edge for each $i = 1, \ldots, 5$. Since $\chi(G) = 3$, we have $b(G) \geq 3$. Suppose that G admits a b-coloring with 4 colors. For $j = 1, \ldots, 4$, let d_j be a b-dominating vertex of color j, and let $D = \{d_1, \ldots, d_4\}$. Note that each vertex d_j must have exactly one neighbor of each of the three colors different from j.

Suppose that D induces a stable set. So, up to symmetry, we can assume that $D = \{v_1, v_3, w_4, w_5\}$, with $d_1 = v_1$, $d_2 = v_3$, $d_3 = w_4$, $d_4 = w_5$. Without loss of generality, v_2 has color 2, and so w_2 does not have color 2. Since v_1 is b-dominating, it must have a neighbor of color 4, which can only be w_1, and a neighbor of color 3, which can only be v_5. Since v_3 is b-dominating, it must have a neighbor of color 4, which can only be v_4, and a neighbor of color 1, which can only be w_3. But then w_3 cannot have a neighbor of color 2, a contradiction. So D does not induce a stable set.

We may assume that d_1, d_2 are adjacent, and so, up to symmetry, that $d_1 = v_1$ and $d_2 = v_2$ (since all edges of the Petersen graph play the same role). Now, it is easy to see that, wherever d_3 may be, there is a C_5 of G that contains d_1, d_2, d_3. So (since all C_5’s of the Petersen graph play the same role), we can assume that d_3 is one of v_3, v_4, v_5. Up to symmetry, this leads to two cases.

Case 1: $d_3 = v_3$. Since v_3 is b-dominating, it has a neighbor of color 4, which can only be w_2. One of v_4, v_5, say v_5, does not have color 4. Since v_1 is b-dominating, it has a neighbor of color 4, which can only be w_1, and a neighbor of color 3, which can only be v_5. Since v_3 is b-dominating, it has a neighbor of color 4, which can only be v_4, and a neighbor of color 1, which can only be w_3. Note that w_5 can only have color 2. But now, the vertices of color 4 are w_1, w_2, v_4 and no other vertex, and each of these three vertices has two neighbors of the same color, so none of them can be b-dominating, a contradiction.

Case 2: $d_3 = v_4$. Since v_1 is b-dominating, it has a neighbor of color 3, which can only be w_1, and a neighbor of color 4, which can only be v_5. Likewise v_3 has a neighbor of color 3, which can only be w_2, and a neighbor of color 4, which can only be v_3. But then v_4 has two neighbors of color 4, so it cannot be b-dominating, a contradiction.

We will need the following result, for which we give a new proof. Our proof is rather similar to the proof of Proposition 2 in [3]; we include it here for the sake of completeness and because it prepares the more complicated proof of Theorem 5.

Theorem 2 ([9]). Every d-regular graph G with girth $g(G) \geq 6$ has a b-coloring with $d + 1$ colors.

Proof. Let x be a vertex of G, and let x_1, \ldots, x_d be its neighbors. For each $i = 1, \ldots, d$, let $N_i = N(x_i) \setminus \{x\}$. Then each N_i is a stable set, for otherwise G would contain a cycle of length three. Then any two N_i’s are disjoint, for otherwise G would contain a cycle of length four; and there is no edge between them, for otherwise G would contain a cycle of length five. We construct a coloring with $d + 1$ colors $0, 1, \ldots, d$ as follows. Assign color 0 to x, color i to x_i ($i = 1, \ldots, d$), and assign to the vertices of N_i the colors from $[1, \ldots, d] \setminus \{i\}$, in a one-to-one fashion. Finally, color the remaining vertices in arbitrary order, assigning to each v a color from $[0, 1, \ldots, d]$ different from the colors already assigned to its neighbors. Clearly, we obtain a b-coloring with $d + 1$ colors in which the vertices x, x_1, \ldots, x_d are b-dominating.

3. A new proof of El-Sahli and Kouider’s theorem

El-Sahli and Kouider [3] proved the following theorem.

Theorem 3 ([3]). If G is a d-regular graph with girth $g(G) \geq 5$ and G contains no C_6, then $b(G) = d + 1$.

We propose here a new proof of \textbf{Theorem 3}, using a classical theorem of \textit{Vizing on list coloring}. Let L be a mapping that assigns to each vertex v of a graph G a set $L(v)$ of admissible colors. An \textit{L-coloring} is a coloring c of the vertices of G such that $c(v) \in L(v)$ for every vertex v of G. If G admits an L-coloring it is said to be \textit{L-colorable}. Given an integer k, G is k-\textit{list-colorable} if it admits an L-coloring for every L such that $|L(v)| \geq k$ for every $v \in V$. The list-chromatic number $\chi_l(G)$ is the smallest integer k such that G is k-list-colorable.

\textbf{Theorem 4} ([5,15]). Let G be a connected graph different from a complete graph and from an odd cycle. Then G is Δ-list-colorable, where \(\Delta\) is the maximum degree in G.

\textbf{Proof of Theorem 3.} The theorem holds trivially when $d = 0$ or 1. If $d = 2$, then G is a disjoint union of cycles, all of length 5 or more. Then $b(G) = 3$. Indeed, in order to obtain a b-coloring with 3 colors, it suffices to give colors 1, 2, 3, 1 to five consecutive vertices in one cycle, and to color the rest of G with colors 1, 2, 3. Now we assume that $d \geq 3$.

Pick a vertex v of G and let its neighborhood be $N(v) = \{v_1, v_2, \ldots, v_\ell\}$. For each $i = 1, \ldots, \ell$, let $N_i = N(v_i) \setminus \{v\}$, and let G_i be the subgraph of G induced by $N_i \cup \cdots \cup N_\ell$. We make a few observations about G_i. Consider any vertex x in G_i; so $x \in N_i$ for some $i \in \{1, \ldots, \ell\}$. Vertex x has no neighbor in N_i, for otherwise G_i would have a cycle of length three. Vertex x cannot have two neighbors $y, z \in N_i (j \neq i)$, for otherwise x, y, v_i, z would induce a cycle in G; and x cannot have two neighbors $y \in N_i$, $z \in N_k$ (with i, j, k pairwise different), for otherwise x, y, v_i, v_k, z would induce a cycle in G. Thus, in G_i, every vertex has degree at most 1.

For $i = 1, \ldots, \ell$, set $E_i = \{xy \mid x, y \in N(v_i) \setminus \{v\}, x \neq y\}$. Then let H_i be the graph obtained from G_i, by adding to its edge set all the elements of $E_1 \cup \cdots \cup E_\ell$ (so each N_i is a clique in H_i). It follows from the preceding observations that, in H_i, every vertex has degree at most $d - 1$. Moreover, if $d \geq 4$, then the largest cliques in H_i are induced by the sets $N_i (i = 1, \ldots, \ell)$, which have size $d - 1$; and if $d = 3$ then the largest cliques in H_i have size 2. We claim that:

$$\chi_l(H_i) \leq d - 1. \quad (1)$$

Consider the contrary case. Since the maximum degree in H_i is at most $d - 1$, by \textbf{Theorem 4} we must have either (a) some component of H_i is a complete graph K_d, or (b) $d - 1 = 2$ and some component of H_i is an odd cycle. However, (a) is impossible because the largest cliques in H_i have size $d - 1$. So suppose that (b) holds. Then $d = 3$, so the graph H_i has six vertices, and so the only possible odd cycle in H_i is C_5, but then some vertex of this C_5 has two neighbors in G_i, a contradiction. Thus (1) holds.

We define a list assignment L on H_i as follows. If x is any vertex of H_i, we have $x \in N_i$ for some $i \in \{1, \ldots, \ell\}$, and we assign the list $L(x) = \{1, \ldots, d\} \setminus \{i\}$ to x. Thus each vertex x of H_i satisfies $|L(x)| = d - 1$. By (1), there is an L-coloring of H_i. Extend c to a coloring of G as follows. Give color 0 to v and color 1 to $v_i (i = 1, \ldots, \ell)$; then color the remaining vertices in arbitrary order, giving to each vertex a color from $\{0, 1, \ldots, d\}$ different from the colors already assigned to its neighbors. Then we obtain a coloring of G with $d + 1$ colors, and clearly the vertices v, v_1, \ldots, v_d are b-dominating. Thus $b(G) = d + 1$.

\section{When the degree is small}

\textbf{Theorem 5.} Let G be a d-regular graph with girth $g(G) \geq 5$, different from the Petersen graph, and with $d \leq 6$. Then $b(G) = d + 1$.

\textbf{Proof.} We distinguish one case for each value of the degree.

\textbf{Case 1:} $d = 1$. Then G is a matching and clearly $b(G) = 2 = d + 1$.

\textbf{Case 2:} $d = 2$. Then G is a disjoint union of cycles, all of length at least 5. We can obtain a b-coloring with 3 colors by assigning colors 1, 2, 3, 1, 2 to five consecutive vertices in one cycle of G, and to color the rest of G with colors 1, 2, 3 greedily. So $b(G) = 3$.

Now let $d \geq 3$. We may assume that G contains a cycle of length 5, for otherwise the result follows from \textbf{Theorem 2}. Therefore in Cases 3, 4, and 5 below, we let x_1, \ldots, x_5 be five vertices of G that induce a cycle C in this order.

\textbf{Case 3:} $d = 3$. For each $i = 1, \ldots, 5$, let u_i be the neighbor of x_i that is not in the cycle C. First suppose that the edge u_1u_2 exists for every $i = 1, \ldots, 5$. Then the vertices $x_1, \ldots, x_5, u_1, \ldots, u_5$ induce the Petersen graph and form one connected component of G. Since G itself is not the Petersen graph, it must have another component Z. In that case, give color 1 to x_1, x_3, x_2, x_5, x_3, and color 4 to x_1, u_1, u_2, u_3 and to some vertex z of Z, and give colors 1, 2, 3 to the neighbors of z. So x_1, x_2, x_3, z are b-dominating vertices of colors 1, 2, 3, 4 respectively, and this coloring can be extended to a coloring of G with four colors in any greedy way.

Now we can assume, up to symmetry, that u_1u_3 is not an edge of G. We construct a b-coloring with 4 colors such that x_1, x_2, x_3, u_2 are b-dominating vertices of colors 1, 2, 3, 4 respectively. To do this, we first give color 1 to x_1, x_3, color 2 to x_2, x_3, and color 4 to u_1, u_2, u_3. Note that x_1, x_2, x_3 are b-dominating vertices of colors 1, 2, 3 respectively. Now consider u_2. Let a, b be the two neighbors of u_2 different from x_2. (Possibly $[a, b] \cap \{u_2, \} \neq \emptyset$.) Note that a and b are not adjacent to x_1, x_2, x_3, for otherwise G would contain a cycle of length 3 or 4. Moreover, and for the same reason, each of a, b is adjacent to at most one of x_4, x_5; and if each of them is adjacent to one of x_4, x_5 then it is not to the same vertex; in other words the edge set between $[a, b]$ and $[x_4, x_5]$ is a matching of size at most two. So it is possible to give color 1 to one of a, b and color 3 to the other without having two adjacent vertices of the same color. Now u_2 is a b-dominating vertex of color 4. Finally this coloring can be extended to a coloring of G with four colors in any greedy way.
Case 4: $d = 4$. For each $i = 1, \ldots, 5$, let A_i be the set of the two neighbors of x_i that are not in C. Here all subscripts on the A_i's are understood modulo 5 and from the set $\{1, \ldots, 5\}$. Since G contains no cycle of length 3 or 4, it is easy to see that:

- A_i is a stable set;
- $A_i \cap A_j = \emptyset$ if $i \neq j$;
- There is no edge between A_i and A_{i+1};

We construct a b-coloring of G with five colors such that x_1, \ldots, x_5 are b-dominating vertices of colors $1, \ldots, 5$ respectively, as follows. For each $i = 1, \ldots, 5$, assign color i to x_i and colors $i+2$ and $i+3$ (modulo 5) to the two vertices of A_i. Fact (4), and the fact that the two colors assigned to the vertices of A_i are different from the two colors assigned to A_{i+2} resp. A_{i+3}, ensures that no two adjacent vertices in $A_1 \cup \cdots \cup A_5$ receive the same color. Thus all vertices of A_1, \ldots, A_5 have received a color, and each of x_1, \ldots, x_5 has neighbors of all colors other than its own. Finally, since the uncoulored vertices have degree 4, we can color them successively with one of the five colors, in any greedy way. Thus we obtain a b-coloring of G with five colors.

Case 5: $d = 5$. For each $i = 1, \ldots, 5$, let A_i be the set of the three neighbors of x_i that are not in C. All subscripts on A_1, \ldots, A_5 are understood modulo 5 and from the set $\{1, \ldots, 5\}$. Since G contains no cycle of length 3 or 4, it is easy to see that:

- A_i is a stable set;
- $A_i \cap A_j = \emptyset$ if $i \neq j$;
- There is no edge between A_i and A_{i+1};
- Every vertex different from x_i has at most one neighbor in A_i.

For each $i = 1, \ldots, 5$, we can find a neighbor s_i of x_i such that the set $S = \{s_1, \ldots, s_5\}$ is a stable set, as follows. Pick any $s_1 \in A_1$, then $s_2 \in A_1 \setminus N(s_1), s_3 \in A_5 \setminus N(s_2), s_4 \in A_2 \setminus N(s_3)$, and $s_5 \in A_4 \setminus (N(s_1) \cup N(s_2))$. Such vertices exist because of (7) and (8). It follows from this construction that $S = \{s_1, \ldots, s_5\}$ is indeed a stable set. We rename vertex s_1 as x_0. For $i = 1, \ldots, 5$, let $B_i = A_i \setminus \{s_i\}$; so $|B_i| = 2$. Let $B_6 = N(x_0) \setminus \{x_1\}$; so $|B_6| = 4$. Since G contains no cycle of length 3 or 4, it is easy to see that:

- B_6 is a stable set;
- $B_6 \cap (B_1 \cup B_2 \cup B_3) = \emptyset$;
- $|B_6 \cap B_i| \leq 1$ for $i \in \{3, 4\}$;
- There is no edge between B_6 and B_1;
- Every vertex different from x_0 has at most one neighbor in B_6.

Note that condition (7) implies that:

- There is no edge between B_i and B_{i+1} ($i \in \{1, \ldots, 5\}$, modulo 5);

and conditions (8) and (13) imply that:

- The edges between B_i and B_{i+1} form a matching ($i, j \in \{1, \ldots, 6\}, i \neq j$).

We construct a b-coloring of G with six colors such that x_1, \ldots, x_6 will be b-dominating vertices of colors $1, \ldots, 6$ respectively. We start by assigning color i to x_i for each $i = 1, \ldots, 5$ and color 6 to the vertices of $S = \{s_1, \ldots, s_5\}$. Now we must find a way to assign colors $i+2$ and $i+3$ (modulo 5) to the two vertices of B_i, for each $i = 1, \ldots, 5$, and colors $2, 3, 4, 5$ to the four vertices of B_6. We view this as a list-coloring problem, where each vertex of B_i ($i = 1, \ldots, 5$) has a list of allowed colors $L_i = \{i+2, i+3\}$ and each vertex of B_6 has a list of allowed colors $L_6 = \{2, 3, 4, 5\}$. See Fig. 1. In that figure, each box represents a set B_j with its list L_j; a line between two boxes means that there may be edges between the corresponding sets, subject to condition (15); and no line between two boxes illustrates conditions (12) and (14). During our coloring procedure, we will say that a vertex x loses a color j if this color must be removed from the list of allowed colors for x (because it has been assigned to a neighbor of x).
Recall from (11) that B_0 may have one common vertex with any of B_1, B_4. Let the vertices of B_0 be called a, b, c, d such that: if $B_0 \cap B_3 \neq \emptyset$, then a is the (unique) vertex in that intersection; and if $B_0 \cap B_4 \neq \emptyset$, then b is the (unique) vertex in that intersection. Assign colors 5, 2, 3, 4 to a, b, c, d respectively.

By (14), and since the sets of colors we want to assign to B_i and B_{i+2} (modulo 5) are disjoint, we can ignore the edges between any two such sets. Therefore we may color the sets B_1, \ldots, B_5 independently from each other and no conflict will arise between any two sets.

By (12), we can color the two vertices of B_1 with colors 3 and 4. Because of the assignment in B_0, and by (15), for each $j \in \{4, 5\}$ at most one vertex of B_2 loses color j, and that is a different vertex for each j. So it is possible to color the two vertices of B_2 with colors 4 and 5. The same holds for B_3 with colors 2 and 3. Now consider B_4. If $a \in B_3$, then a is a vertex of color 5 in B_3 and the remaining vertex of B_3 can be colored 1. If $a \notin B_3$ then one vertex of B_3 may lose color 5, but it is still possible to color the two vertices of B_3 with colors 1 and 5. The same holds for B_4 with colors 1, 2. Thus all vertices of B_1, \ldots, B_6 have received a color, and each of x_1, \ldots, x_6 has neighbors of all colors other than its own. Finally, since the uncolored vertices have degree 5, we can color them successively with one of the six colors, in any greedy way. Thus we obtain a b-coloring of G with six colors.

Case 6: $d = 6$. The proof here uses similar arguments as in the case $d = 5$, but the situation is more complicated. We can assume that G contains a cycle of length 6, for otherwise the result follows from Theorem 3. Let x_1, \ldots, x_6 be six vertices of G that induce a cycle in this order. For each $i = 1, \ldots, 6$, let $A_i = N(x_i) \setminus \{x_{i-1}, x_{i+1}\} \setminus \{x_j\}$; so $|A_i| = 4$. Here all subscripts on A_1, \ldots, A_6 are understood modulo 6 and from the set $\{1, \ldots, 6\}$. Since G contains no cycle of length 3 or 4, it is easy to see that:

- A_i is a stable set; \hspace{1cm} (16)
- $A_i \cap A_{i+1} = \emptyset$ and $A_i \cap A_{i+2} = \emptyset$; \hspace{1cm} (17)
- $|A_i \cap A_{i+3}| \leq 1$; \hspace{1cm} (18)
- There is no edge between A_i and A_{i+1}; \hspace{1cm} (19)
- Every vertex different from x_i has at most one neighbor in A_i. \hspace{1cm} (20)

For each $i = 1, \ldots, 6$, we find a neighbor s_i of x_i such that the set $S = \{s_1, \ldots, s_6\}$ is a stable set, as follows:

- If $A_1 \cap A_4 \neq \emptyset$, let s_1 and s_4 be equal to the (unique) vertex in $A_1 \cap A_4$. If $A_1 \cap A_4 = \emptyset$, let s_1 be any vertex in A_1 and s_4 be any vertex in $A_4 \setminus N(s_1)$ (such s_4 exists by (20)). \hspace{1cm} (21)
- If $A_3 \cap A_6 \neq \emptyset$, let s_3 and s_6 be equal to the (unique) vertex in $A_3 \cap A_6$. Note that, by (19), this vertex is not adjacent to the vertices s_1 and s_4 found previously. If $A_3 \cap A_6 = \emptyset$, let s_3 be any vertex in $A_3 \setminus (N(s_4) \cup N(s_1))$ (vertices s_3 and s_6 exist by (20)). \hspace{1cm} (22)
- If $A_5 \cap A_2 \neq \emptyset$, let s_5 and s_2 be equal to the (unique) vertex in $A_5 \cap A_2$. Note that, by (19), this vertex is not adjacent to any of the vertices s_1, s_3, s_4, s_6 found previously. If $A_5 \cap A_2 = \emptyset$, then, by (20), there are at least two vertices in $A_5 \setminus (N(s_1) \cup N(s_3))$ and at least two vertices in $A_2 \setminus (N(s_4) \cup N(s_6))$; and by (20) again, among these four vertices there are non-adjacent vertices $s_5 \in A_5$ and $s_2 \in A_2$. \hspace{1cm} (23)

It follows from this construction that the set $S = \{s_1, \ldots, s_6\}$ is a stable set. We rename vertex s_1 as x_7. For $i = 1, \ldots, 6$, let $B_i = A_i \setminus \{s_i\}$; so $|B_i| = 3$. Note that B_1, \ldots, B_6 are pairwise disjoint by (17), (18) and the definition of $\{s_1, \ldots, s_6\}$. Let $B_7 = N(x_7) \setminus \{x_1\}$; so $|B_7| = 5$. Since G contains no cycle of length 3 or 4, it is easy to see that:

- B_7 is a stable set; \hspace{1cm} (24)
- $B_7 \cap (B_1 \cup B_2 \cup B_6) = \emptyset$; \hspace{1cm} (25)
- $|B_7 \cap B_i| \leq 1$ for $i \in \{3, 4, 5\}$; \hspace{1cm} (26)
- There is no edge between B_7 and B_i; \hspace{1cm} (27)
- Every vertex different from x_7 has at most one neighbor in B_7. \hspace{1cm} (28)

Note that condition (19) implies that:

There is no edge between B_i and B_{i+1} ($i \in \{1, \ldots, 6\}$, modulo 6); \hspace{1cm} (29)

and conditions (20) and (25) imply that:

The edges between B_i and B_j form a matching ($i, j \in \{1, \ldots, 7\}, i \neq j$). \hspace{1cm} (30)

In particular:

If sets $X \subseteq B_i$ and $Y \subseteq B_j$ are such that $|X| > |Y|$, then some vertex of X has no neighbor in Y. \hspace{1cm} (31)

We construct a b-coloring of G with seven colors such that x_1, \ldots, x_7 will be b-dominating vertices of colors $1, \ldots, 7$ respectively. We start by assigning color i to x_i for each $i = 1, \ldots, 6$ and color 7 to the vertices of $S = \{s_1, \ldots, s_6\}$. Now we must find a way to assign colors $i + 2$, $i + 3$, $i + 4$ (modulo 6) to the three vertices of B_i for each $i = 1, \ldots, 6$, and colors 2, 3, 4, 5, 6 to the five vertices of B_7. We view this as a list-coloring problem, where each vertex of B_i ($i = 1, \ldots, 6$) has a list
of allowed colors $L_1 = \{i + 2, i + 3, i + 4\}$ and each vertex of B_7 has a list of allowed colors $L_7 = \{2, 3, 4, 5, 6\}$. See Fig. 2. In that figure, each box represents a set B_i with its list L_i; a line between two boxes means that there may be edges between the corresponding sets, subject to condition (27); and no line between two boxes illustrates conditions (24) and (26). During our coloring procedure, we will say that a vertex x loses a color j if this color must be removed from the list of allowed colors for x.

Recall from (23) that B_7 may have one common vertex with any of B_3, B_4, B_5. Up to symmetry, we may assume that $|B_7 \cap B_3| \geq |B_7 \cap B_5|$, in other words, if B_7 intersects one of B_3, B_5 then it intersects B_3. Define vertices a, b, c of B_7 as follows, where we distinguish two cases:

Case (i): $B_7 \cap B_4 \neq \emptyset$. Let a be the (unique) vertex in $B_7 \cap B_4$. Then, if $B_7 \cap B_3 \neq \emptyset$, let b be the (unique) vertex in $B_7 \cap B_3$ (note that b has no neighbor in B_4 by (19)); else, let b be a vertex in $B_7 \setminus \{a\}$ that has no neighbor in B_4 (such a vertex exists by (28)). Finally, if $B_7 \cap B_3 = \emptyset$, let c be the vertex in $B_7 \cap B_5$; else, let c be any vertex in $B_7 \setminus \{a, b\}$.

Case (ii): $B_7 \cap B_4 = \emptyset$. If $B_7 \cap B_3 \neq \emptyset$, let b be the (unique) vertex in this intersection (note that b has no neighbor in B_4 by (19)); else, let b be a vertex in B_7 that has no neighbor in B_4 (such a vertex exists by (28)). Then, if $B_7 \cap B_3 \neq \emptyset$, let c be the vertex in this intersection; else, let c be any vertex in $B_7 \setminus \{b\}$. Finally, let a be any vertex in $B_7 \setminus \{b, c\}$.

Note that in all cases vertices a, b, c are well defined and different since B_3, B_4, B_5 are pairwise disjoint as mentioned above; and b has no neighbor in B_4. Then a vertex $d \in B_7$ is chosen as follows:

If $b \in B_3, c \in B_5, a$ has a neighbor $v_5 \in B_5$ and v_5 has a neighbor $v_3 \in B_3$, then choose d in $B_7 \setminus \{a, b, c\}$ and not adjacent to v_3 (such a vertex exists by (28)); else let d be any vertex in $B_7 \setminus \{a, b, c\}$.

Finally let e be the remaining vertex of B_7. Assign colors $2, 6, 3, 5, 4$ to a, b, c, d, e respectively. Pick a vertex $f_2 \in B_2$ not adjacent to e and a vertex $f_6 \in B_6$ not adjacent to e or f_2; such vertices exist by (20). Assign color 4 to f_2 and f_6.

Let $i \in \{1, \ldots, 6\}$. By (19) there is no edge between B_i and $B_{i-1} \cup B_{i+1}$. Moreover, the sets of colors we want to assign to B_i and to B_{i+3} are disjoint, so we can ignore the edges between these two sets. Therefore we can color $B_1 \cup B_2 \cup B_5$ and $B_2 \cup B_4 \cup B_6$ independently of each other with no conflict between the two sets.

Let us consider B_2, B_4, B_6. Because of the assignment in B_7, and by (20), for each $j \in \{5, 6\}$ at most one vertex of $B_2 \setminus \{f_j\}$ loses color j (a different vertex for each j). So it is possible to assign colors 5 and 6 to the two vertices of $B_2 \setminus \{f_2\}$. Likewise, for each $k \in \{2, 3, 4\}$ at most one vertex of $B_4 \setminus \{f_6\}$ loses color k (a different vertex for each k), so it is possible to assign colors 2 and 3 to the two vertices of $B_4 \setminus \{f_6\}$. Call t the vertex of B_4 that receives color 2; so t is not adjacent to a. We are left with coloring the vertices of B_4. First suppose that $a \in B_4$ (case (i)). Then a is a vertex of color 2 in B_4 (recall that a, t are not adjacent), and the two vertices of $B_4 \setminus \{a\}$ lose color 2. Because of the assignment in $B_2 \cup B_6$, and by (20), at most one vertex of B_4 can lose a color (color 6), and by the choice of b no other vertex of B_4 can lose color 6. So it is possible to assign colors 1 and 6 to the two vertices of $B_4 \setminus \{a\}$. Now suppose that $a \notin B_4$ (case (ii)). Because of the assignment in $B_2 \cup B_4 \cup B_6$, and by (20), at most two vertices of B_4 lose color 2, and by the choice of b at most one loses color 6. So it is possible to assign colors 1, 2, 6 to the three vertices of B_4. Thus, in either case all vertices of $B_2 \cup B_4 \cup B_6 \cup B_7$ have received a color, and each of x_2, x_4, x_5, x_7 has neighbors of all colors other than its own.

Now we deal with B_2, B_5. First suppose that $c \in B_5$, which implies $b \in B_3$ since $|B_7 \cap B_3| \geq |B_7 \cap B_5|$. Then the vertices of $B_3 \setminus \{b\}$ lose color 6 and the vertices of $B_5 \setminus \{c\}$ lose color 3. Because of the assignment in B_7, at most one vertex $v_3 \in B_3 \setminus \{b\}$ loses a color (color 5) and at most one vertex $v_5 \in B_5 \setminus \{c\}$ loses a color (color 2). We assign color 1 to v_3 and v_5. Note that, by the choice of d, we may assume that v_3 and v_5 are not adjacent. Then we assign color 5 to the third vertex of B_3 and color 2 to the third vertex of B_5. Now suppose that $c \notin B_5$. Because of the assignment in B_7, for each $j \in \{2, 3\}$ at most one vertex of B_5 loses color j (a different vertex for each j), so some vertex $w_5 \in B_5$ loses no color. If $b \in B_3$, then the vertices of $B_3 \setminus \{b\}$ lose color 6 and, because of the assignment in B_7, at most one vertex $v_5 \in B_3 \setminus \{b\}$ loses a color (color 5). So we assign color 1 to v_3 and color 5 to the remaining vertex of B_3. Because of this assignment in B_3, at most one vertex of B_5 loses color 1. So it is possible to assign colors 1, 2, 3 to the three vertices of B_3. If $b \notin B_3$, then for each $j \in \{5, 6\}$ at most one vertex of B_3 loses color j (a different vertex for each j), so some vertex $w_3 \in B_3$ loses no color. By (20), among the four vertices of $(B_3 \cup B_5) \setminus \{w_3, v_3\}$, there are two non-adjacent vertices, one in B_3 and one in B_5, to which we assign color 1. Then it is possible to assign color 5 and 6 to the remaining vertices of B_3 and colors 2 and 3 to the remaining vertices of B_5.
Now we deal with B_1. Recall that (22) and (24) hold. Because of the assignment in B_3, at most one vertex of B_1 loses a color (color 5) and because of the assignment in B_2 at most one vertex of B_1 (possibly the same vertex) loses a color (color 3). So it is possible to color the three vertices of B_1 with the colors 3, 4, 5. Thus all vertices of $B_1 \cup B_2 \cup B_3$ have received a color, and each of x_1, x_2, x_3 has neighbors of all colors other than its own.

Finally, since the uncolored vertices have degree 6, we can color them successively with one of the seven colors, in any greedy way. Thus we obtain a b-coloring of G with seven colors. □

The proof above illustrates a technique which can probably not be extended to the general case. Indeed we tried to make a similar proof for graphs with $d = 7$, but the case analysis seems to become inextricable.

Remark. In view of the case $d = 7$, we may consider the so-called Hoffman–Singleton graph HS, which is the smallest 7-regular graph with girth at least 5. This graph is famous for many interesting properties related to its highly symmetric structure; see [14,16]. It is natural to suspect that HS might be a counterexample to El-Sahili and Kouider’s question. However, the b-chromatic number of HS is 8 (it is not hard to construct a b-coloring of HS with eight colors such that one vertex and its neighbors are b-vertices of colors 1, . . . , 8).

In conclusion we propose the following reformulation of El-Sahili and Kouider’s question:

Conjecture 1. Every d-regular graph with girth at least 5, different from the Petersen graph, has a b-coloring with $d + 1$ colors.

Acknowledgments

We thank András Gyárfás for the remark that precedes Conjecture 1. We are grateful to the referees for their careful reading of the manuscript and useful comments and suggestions.

References