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Composite Sliding Mode Control of Induction Motors 
Using Singular Perturbation Theory 

 
 

A. Mezouar1, T. Terras1, M. K. Fellah2, S. Hadjeri2 
 
 
Abstract – In this paper, a composite sliding mode control-observer approach is presented for 
the induction motor drive. This approach, based on the singular perturbation theory, decomposes 
the original system into separate slow and fast subsystems and permits that separate slow and fast 
control and observer can be designed for each subsystem and then combined into a composite 
control and observer for the original system. The controller design uses the sliding mode 
technique and is divided in two phases: slow control and fast control so that a final composite 
control is obtained. In addition and assuming that only the fast states are available; a two time 
scale sliding mode observer design is proposed for which a stability analysis is easily made. The 
simulations results validate the performance of the proposed approach. Copyright © 2012 Praise 
Worthy Prize S.r.l. - All rights reserved. 
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Nomenclature 
I.M. Induction motor 
ω , *ω  Electrical rotor speed and reference rotor speed 

sd sqv , v  Stator voltages in the synchronous rotating 
frame 

sd sqi , i  Stator currents in the synchronous rotating 
frame 

sd sq,φ φ  Stator fluxes in the synchronous rotating frame 

sω , slω  Synchronous and slip frequencies 

s rL , L  Stator and rotor inductances 

s rR , R  Stator and rotor resistances 

s rT , T  Stator and rotor time constants 
M ,σ  Mutual inductance and leakage factor 
J  Moment of rotor inertia 
f  Coefficient of viscous friction 
p  Number of pole pairs 
em LT , T  Electromagnetic and load torques 

t  Slow time scale (real time) 
τ  Fast time scale ( )0t t /τ ε= −  

cS  Sliding mode control surface 

c,sS  Slow sliding mode control surface 

c, fS  Fast sliding mode control surface 
S  Sliding mode observer surface 
x̂ , *x  Estimated and reference value of x  

I. Introduction 
In the past two decades, the variable structure control 

(VSC) strategy using the sliding mode concept has been 
widely studied and developed for control and state 
estimation problems since the works of Utkin [1]-[3]. 

For induction motor drive, this control technique has 
many good properties to offer such as insensitivity to 
parameter variations, external disturbance rejection and 
fast dynamic response [4]-[7]. Furthermore, sliding mode 
observers have been used for estimating the states of the 
control system. 

Sliding mode observers, also, have the same robust 
features as the sliding mode control [8]-[12]. 

In other hand, singular perturbation theory provides 
the mean to decompose two time scale systems into slow 
and fast subsystems of lower order described in separate 
time scales, which greatly simplify their structural 
analysis and any subsequent control design[13]-[15]. 

Then, the control (and/or observer) design may be 
done for each lower order subsystem, and the combined 
results yield to a composite control (and/or observer) for 
the original system. 

So, the idea of combining singular perturbation theory 
and sliding mode technique constitutes a good possibility 
to achieve classical control objectives for systems having 
unmodeled or parasitic dynamics and parametric 
uncertainties [16]-[20]. Such a structure needs to have 
information about all state variables of the process. So, it 
is necessary to estimate the inaccessible states of the 
process by using a state observer [21]-[24]. 

Recently, singular perturbation theory has been 
widely used in observers for sensorless control drives, 
because it greatly simplifies the observer design [25]-
[27]. This paper is organized as follows: In section II, we 
briefly review the two time scale approach based on the 
singular perturbation theory. 
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The general design of a two time scale sliding mode 
observer is presented in section III. In section IV, the two 
time scale sliding mode control of induction motors is 
briefly reviewed. In section V, we present the design of 
the proposed two time scale sliding mode observer for 
the induction motors. In that section, a study of stability 
analysis of this observer is made via singular 
perturbation method and Lyapunov stability theory. 

In section VI, and through simulation, the studied 
observer is associated to the sliding mode composite 
control of the induction motor where stator fluxes are 
replaced by those delivered by the observer. 

Finally, in section VII, we give some comments and 
conclusions. 

II. Two Time Scale Approach Review 
The two time scale approach, based on the singular 

perturbation theory, can be applied to systems where the 
state variables can be split into two sets, one having 
“fast” dynamics, the other having “slow” dynamics. The 
difference between the two sets of dynamics can be 
distinguished by the use of a small multiplying scalar ε . 

Generally, the scalar parameter ε  is the speed ratio of 
the slow versus fast phenomena. If the slow states are 
expressed in the t  time scale, then, the fast ones will be 
in the τ  time scale defined by: 

 
 ( )0t t /τ ε= −  (1) 
 
where 0t  is the initial time. The reader is referred to [13], 
[14] and [15] for the general theory on singular 
perturbation. 

II.1. Singularly Perturbed Systems 

In this paper, we consider the following class of 
nonlinear singularly perturbed systems described by the 
so-called standard singularly perturbed form: 

 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 0 0

2 2 2 0 0

  

  

d x f x F x z g x u, x t x
dt
d z f x F x z g x u, z t z
dt

ε

= + + =

= + + =
 (2) 

 
where nx∈ℜ  is the slow state, mz∈ℜ is the fast state, 

pu∈ℜ is the control input, ε  is a small positive 
parameter such that [ ]0  1,ε ∈ . The matrices 1 2f , f ,  

1 2 1 2 and  F ,F ,g g  are assumed to be bounded with their 
components and analytic real vector fields. It is also 
assumed that the matrix 2F  is nonsingular for all x . 

An additional assumption is that ( ) ( )1 20 0 0f f= =  

and, for 0u = , the origin ( ) ( )0 0x,z ,=  is an isolated 
equilibrium state. 

II.2. Slow Reduced System 

In the limiting case, as 0ε →  in (2), the 
asymptotically stable fast transient decays 
‘instantaneously’ leaving the reduced order model in the 
t time scale defined by the quasi steady states ( )sx t  and 

( )sz t : 
 

 ( ) ( ) ( )0 0      s s s s s s s
d x f x g x u , x t x
dt

= + =  (3) 

 
 ( ) ( ) ( ) ( )1

2 2 2s s s s s sz h x F x f x g x u− ⎡ ⎤= = − +⎣ ⎦  (4) 
 

where sx , sz  and su  denote the slow components of the 
original variables x , z  and u , respectively and: 
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1
1 1 2 2

1
1 1 2 2

s s s s s s

s s s s s s

f x f x F x F x f x

g x g x F x F x g x

−

−

= −

= −
 

 
The slow invariant manifold can be defined as: 
 

( ){ }m
z sM z D : z h xε = ∈ ⊂ ℜ =  

 
where zD  is closed, bounded and centered in 0z = , and 
the so-called manifold condition: 
 

( ) ( ) ( )

( ) ( ) ( )
1 1 1

2 2 2

h f x F x z g x u
x

f x F x z g x u

ε ∂ + + =⎡ ⎤⎣ ⎦∂
= + +

 

 
must be satisfied for Mε  to an invariant manifold [15]. 

II.3. Fast Reduced System 

The fast dynamic (also known as boundary layer 
system) is obtained by transforming the slow time scale 
t  to the fast time scale ( )0t t /τ ε= − . We rewrite (2) in 
the fast time scale τ  and introducing the derivation of z  
from Mε , i.e., ( )f sz z h x= − , so: 

 

 ( ) ( ) ( )1 1 1f s
dx f x F x z z g x u
d

ε
τ

⎡ ⎤⎡ ⎤= + + +⎣ ⎦⎣ ⎦  (5) 

 

 
( ) ( )( ) ( )

( ) ( )

2 2 2

2 2      

f
f s

s

dz
F x z g x u u f x

d
h dxF x h g x u
x d

τ

τ

= + − + +

∂
+ + −

∂

 (6) 

 
where ( ) ( )0 00fz z h x= − , ( ) 00x x=  and f su u u= −  is 
the fast control, and again examine the limit as 0ε → .  
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Then 0dx / dτ = , that is constantx =  in the fast time 
scale. So, the only fast variations are the variation of z  
from its quasi steady state sz . Making 0ε =  in (5) and 
(6), we obtain an ( )O ε approximation of the fast 
subsystem: 

 

 ( ) ( ) ( ) ( )2 2 0 00f
f f f

dz
F x z g x u , z z h x

dτ
= + = −  (7) 

II.4. Composite Control 

The fast and slow control laws can be combined into a 
composite control structure: 

 

 ( ) ( ) ( )( )s fu x,z u x u z h x= + −  (8) 
 
where su  and fu  denotes the slow and fast components 
of the control law, respectively. 

III. Two Time Scale Sliding Mode 
Observer 

Now, consider the above continuous nonlinear 
singularly perturbed system of (2) which can be 
expressed as follows: 

 

 
( )
( )

x

z

x f x,z,u,

z f x,z,u,

ε

ε ε

=⎧⎪
⎨

=⎪⎩
 (9) 

 
where  and x zf f  are assumed to be bounded and analytic 
real vector fields, and consider a vector of measurement 
that is linearly related to the fast state vector as: 
 

my z, y= ∈ℜ  
 

It is also assumed that the above system is controllable 
and observable [23]. Consequently, the observer design 
may be considered for the state observation of the slow 
variables from the measurement of the fast variables. 

III.1. Sliding Mode Observer Design 

By structure, observer based on sliding mode 
technique is very similar to the standard full order 
observer with replacement of the linear corrective terms 
by a discontinuous function [11], [23] and [27]. 

The corresponding sliding mode observer for the 
system of (9) can be written as a replica of the system 
with an additional nonlinear auxiliary input term as 
follows: 

 

 
( )
( )

x x s

z z s

ˆ ˆx f x,z,u, G

ˆẑ f x,z,u, G

ε

ε ε

⎧ = + Γ⎪
⎨

= + Γ⎪⎩
 (10) 

where ( )( )s ˆsign S y, yΓ =  is the switching function. 

xG  and zG  are the observer gains with ( )n m×  and 

( )m m×  dimensions respectively, to be determined. 
The observer sliding surface S  can be chosen as a 

linear function of ( )ˆy y−  as given in [11] and [27], so: 
 

 ( ) ( )ˆ ˆS y, y y y= Λ −  (11) 
 
where ( ) ( ) ( ) ( )1 1 2 2

T
m m...ˆ ˆ ˆ ˆy y y y y y y y− = − − −⎡ ⎤⎣ ⎦  

and Λ  is ( )n m×  gain matrix to be specified. 
The error dynamics is calculated by subtracting (10) 

from (9): 
 

 
( ) ( )
( ) ( )

x x x x s

z z z z s

ˆe f x,z,u, f x,z,u, G
ˆe f x,z,u, f x,z,u, G

ε ε

ε ε ε

= − − Γ⎧⎪
⎨

= − − Γ⎪⎩
 (12) 

 
or: 

 x x x s

z z z s

e f G
e f Gε
= ∆ − Γ⎧

⎨ = ∆ − Γ⎩
 (13) 

 
where: 

x ˆe x x= − , z ˆe z z= −  
 

( ) ( )x x x ˆf f x,z,u, f x,z,u,ε ε∆ = −  

 

( ) ( )z z z ˆf f x,z,u, f x,z,u,ε ε∆ = −  
 
Since (13) is a singularly perturbed system, the 

observer design can be based on sequential application of 
resulted subsystems of (13) by applying singular 
perturbation methodology. 

III.2. Stability Analysis in the Fast Time Scale 

For fast error dynamic subsystem, the associated time 
scale is defined by ( )0t t /τ ε= − , then (13) can be 
transformed into: 

 

 
( )x

x x s

z
z z s

de
f G

d
de

f G
d

ε
τ

τ

⎧ = ∆ − Γ⎪⎪
⎨
⎪ = ∆ − Γ
⎪⎩

 (14) 

 
Setting 0ε =  in (14), it yields: 
 

 z
z z s

de
f G

dτ
= ∆ − Γ  (15) 

 
In this time scale, the stability analysis consists of 

determining zG  so that in this time scale ( )τ , the surface 
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( ) 0S τ =  is attractive. 
It can be shown that when sliding mode occurs on 
( )S τ , the equivalent value of the discontinuous observer 

maxillary input is found by solving the Eq. (15) for 
z sG Γ  after insuring zero for zde dτ : 
 

 z s zG fΓ = ∆  (16) 
 
a nd the equivalent switching vector is obtained as: 
 

 1
s z zG f−Γ = ∆  (17) 

III.3. Stability Analysis in the Slow Time Scale 

Slow error dynamic subsystem can be found by 
making 0ε =  in (16), so: 

 

 x
x x s

de
f G

dt
= ∆ − Γ  (18) 

 
 0 z z sf G= ∆ − Γ  (19) 
 

From (19), the equivalent switching vector can be 
found: 

 
1

s z zG f−Γ = ∆  
 

Therefore, by appropriate choice of xG , the desired 
rate of convergence 0xe →  can be obtained. 

IV. Two Time Scale Sliding Mode Control 
of induction motors 

The design of the classical sliding mode control 
consists generally of two stages: design of the switching 
surface cS  and design of the sliding mode controller [2], 
[3]. The control law used is of the type: 

 
eq Nu u u= +  

 
where equ  is the equivalent control which acts when the 

system is restricted to 0cS = , while Nu  is the 
discontinuous part of the control u  acting when 0cS ≠ . 

The sliding mode control should be chosen such that 
the candidate Lyapunov function satisfies the Lyapunov 
stability criteria. The two time scale sliding mode control 
for the system (2) is designed in two steps [14]-[17]. 

First, the sliding mode controllers for each reduced 
subsystem are designed separately. Then, they are 
combined to obtain a composite control for the complete 
system. In this work, the composite control with sliding 
mode is considered as a case study. The reader is referred 

to [16]-[20] for more information on the singularly 
perturbed sliding mode control design. 

IV.1. Induction Motor Model 

The classical state space model of the induction motor 
expressed in the ( )d ,q  axis rotating reference frame 

with ( )sd sq sd sqi ,i , , ,φ φ ω  as state variables and 

( )sd sq slv ,v ,ω  as control variables is [28]: 
 

      

( )

1 1 1

1 1 1

s sd s sd sd sq
s r r

s sq sl sd

s sq s sq sd sq
s r r

s sd sl sq

sd s sd sq sq sl sd

sq s sq sd sd sl sq

em L

dL i L i
dt T T T

L i v

dL i L i
dt T T T

L i v

d R i v
dt
d R i v
dt
d p fT T
dt J J

σ φ ωφ

σ ω

σ ωφ φ

σ ω

φ ωφ φ ω

φ ωφ φ ω

ω ω

⎧ ⎛ ⎞
= − + + + +⎪ ⎜ ⎟

⎝ ⎠⎪
⎪ + +⎪
⎪ ⎛ ⎞
⎪ = − + − + +⎜ ⎟
⎪ ⎝ ⎠
⎪ − +⎨
⎪
⎪ = − + + +

= − − − +

= − −
⎩

⎪
⎪
⎪
⎪
⎪
⎪

 (20) 

 
where slω  is the slip frequency sl s ,ω ω ω= −  

s s sT L / R ,=  r r rT L / R=  and ( )21 s rM / L Lσ = − . 
The electromagnetic torque expressed in terms of the 

state variables is: 
 

 ( )em sd sq sq sdT p i iφ φ= −  (21) 

IV.2. Singularly Perturbed Induction Motor Model 

Based on the well known of the induction machine 
model dynamics [21], [25]-[27], the slow variables are 

( )sd sq, ,ω φ φ  and the fast variables are ( )sd sqi ,i .  
Therefore, the corresponding standard singularly 

perturbed form with ε σ= , ( )Tsd sqx , ,ω φ φ= , 

( )Ts sd s sqz L i ,L i=  and ( )Tsd sq slu v ,v ,ω=  is: 
 

 

( )

( )
( )

1 2 2 3 1 1

2 1 1 3 3 3 1

3 2 1 2 2 3 2

1 1 2 1 3 2 3 1

2 2 3 1 2 1 3 2

L
f px k x z x z x T
J J

x z x x x u u
x z x x x u u

z z x x x z u u

z z x x x z u u

α
α

ε α β β ε

ε α β β ε

⎧ = − − −⎪
⎪

= − + + +⎪
⎪ = − − − +⎨
⎪ = − + + + + +⎪
⎪ = − + + − − +
⎪⎩

 (22) 

 
with: 
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s sR / Lα =  ; r rR / Lβ =  ; ( )2
sk p / JL=  

IV.3. Fast Reduced Subsystem 

Following the methodology presented in Section II, 
the ( )O ε  approximation of the exact fast subsystem is 
given by: 

 

 1 1 1

2 2 2

0
0

f f f

f f f

z z ud
z z ud

α β
α βτ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+⎡ ⎤
= − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥+⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (23) 

 
or: 

 f f f f
d z A z u
dτ

= − +  (24) 

IV.4. Slow Reduced Subsystem 

For the slow reduced subsystem, we can obtain: 
 

 

( )
( )
( )

2 2
1 2 3

1

2 1 3 2

1 2 33

13 2

3 2

2 3

0
       0

0

s s s L
s

s s s s

s s ss

ss s

s s

s s

f px x x Tx J J
x x x x

x x xx

ux x
x u
x u

λ

δ α
δ α

λ λ
δ

δ

⎡ ⎤− − + −⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥ = − +⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ − +⎣ ⎦ ⎣ ⎦
− ⎡ ⎤⎡ ⎤

⎢ ⎥⎢ ⎥+ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥−⎣ ⎦ ⎣ ⎦

 (25) 

 

or: 
 ( ) ( )s s s s s sx f x g x u= +  (26) 
 

with: 
βδ

α β
=

+
, kλ

α β
=

+
 

 

and: 

 1 1 2 1

1 3 22

1s s s s

s s ss

z x x u
x x uz
β

βα β
⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪= +⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−+ ⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎩ ⎭

 (27) 

IV.5. Composite Control 

The composite sliding mode control for the induction 
motor is made on the basis of the decomposed 
subsystems (23) and (25). Following the procedure 
described in [14] and [16], the fast and slow control laws 
can be easily formulated. For the design of the fast 
control fu , the proposed sliding mode control surface 
was: 

 ( ) 1 1 1

2 2 2

f f f
c, f f

f f f

S k z
S z

S k z
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (28) 

 
where 1 fk  and 2 fk  are positive constants chosen in 
order to assure proper stability proprieties of the fast 

subsystem. For the design of the slow control, we use 
again the sliding mode concept. For this control, another 
sliding mode control surface must be proposed. We have 
used the sliding surface given by: 

 

 ( )
( )
( )
( )

1 1 11

2 2 2 2

3 3 3 3

s s ds

c,s x s s s d

s s s d

k x xS
S x S k x x

S k x x

⎡ ⎤−⎡ ⎤
⎢ ⎥⎢ ⎥= = −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦

 (29) 

 
where 1 2 3and d d dx ,x x  are the reference angular speed, 
and d-q reference fluxes. 1sk , 2sk  and 3sk  are positive 
constants that allow to ensure proper stability 
performances of the closed loop system. 

For both fast and slow control laws, the same 
demonstration used in [21] can be applied to carry out its 
stability analysis. Finally, the composite control can be 
synthesized as: 
 f su u u= +  (30) 

V. Two Time Scale Sliding Mode 
Observer Design 

For induction motor, rotor speed and stator currents 
are easily measured but stator fluxes are rather difficult 
to measure. In fact, different observer structures have 
been proposed to estimate those fluxes from rotor speed 
and state currents [21] and [27]. In this paper, we use a 
sequential methodology for designing a sliding mode 
observer for induction motor drive using singular 
perturbation theory. The two time scale decomposition of 
the original system of the observer error dynamics into 
separate slow and fast subsystems permits a simple 
design and sequential determination of the observer 
gains. 

V.1. Singularly Perturbed Observer 

With reference to the above singularly perturbed 
induction motor model of (22), and considering the 
measured stator currents as the system outputs, the 
corresponding sliding mode observer can be constructed 
as follows: 

 

 

( )

( )

( )

( )

1 2 2 3 1 1 1

1 1 1

2 1 1 3 3 3 1 2

3 2 1 2 2 3 2 3

1 1 2 1 3 2 3

1 1

2 2 3 1 2 1 3

2 2

L x s

x

x s

x s

z s

z s

f pˆ ˆ ˆx k x z x z x T G
J J

ˆq x x

ˆ ˆ ˆx z x x x u u G

ˆ ˆ ˆx z x x x u u G
ˆ ˆẑ z x x x z u

u G
ˆ ˆẑ z x x x z u

u G

α

α

ε α β β ε

ε α β β ε

⎧ = − − − + Γ +⎪
⎪

+ −⎪
⎪

= − + + + + Γ⎪
⎪ = − − − + + Γ⎨
⎪ = − + + + + +⎪
⎪ + + Γ
⎪

= − + + − − +⎪
⎪ + + Γ⎩

 (31) 
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where ix̂  and jẑ  are the estimation of ix  and jz  for 

{ }1 2 3i , ,∈  and { }1 2j ,∈ . 1xG , 2xG , 3xG , 1zG , 2zG  
and 1xq  are the observer gains. The switching vector sΓ  
is: 

 
( )
( )

1

2
s

sign s

sign s

⎡ ⎤
Γ = ⎢ ⎥

⎢ ⎥⎣ ⎦
 (32) 

with: 

 1 1 11

2 2 2

ˆs z z
S

ˆs z z
− −⎡ ⎤ ⎡ ⎤

= = Λ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
 (33) 

 

and: 

 1

1

x
x
β

β
⎡ ⎤

Λ = ⎢ ⎥−⎣ ⎦
 (34) 

 
The choice of the discontinuous function sΓ  is made 

to get a simple observer gain synthesis as we will see 
after. Setting 

ix i iˆe x x= −  and 
jz j jˆe z z= −  for 

{ }1 2 3i , ,∈  and { }1 2j ,∈ , the estimation error dynamics 
are: 

 

( )

( )

( )

1

2 3 1

2

2

3

3

1

2 3

2

3 2

2 1 1 1

1 3 2

1 3 3

1 1

1 2

x
x x x s x x

x
x x s

x
x x s

z
x x z s

z
x x z s

de
k z e z e G q e

dt
de

x u e G
dt

de
x u e G

dt
de

e x e G
dt

de
e x e G

dt

ε β

ε β

⎧
= − − Γ −⎪

⎪
⎪

= + − Γ⎪
⎪
⎪⎪ = − + − Γ⎨
⎪
⎪

= + − Γ⎪
⎪
⎪

= − − Γ⎪
⎪⎩

 (35) 

 
Exploiting the time properties of multi time scales 

systems of (35), ( )1 2z ze ,e  are fast variables and 

( )1 2 3x x xe ,e ,e  are slow variables. So, the stability analysis 

of the above system consists of determining 1zG  and 

2zG  to ensure the attractiveness of the sliding surface 
0S =  in the fast time scale. 

Thereafter 1xG , 2xG  and 3xG  are determined, such 

that the reduced order system obtained when 0S S= =  
is locally stable. 

V.2. Fast Reduced Order Error Dynamics 

From singular perturbation theory, the fast reduced 
order system of the observation errors can be obtained by 
introducing the fast time scale τ : 

 
( )0t t /τ ε= −  

 

System of Eqs. (35) gives: 
 

 

( )( )
( )( )

( )( )

1

2 3 1

2

2

3

3

1

2 3

2

3 2

2 1 1 1

1 3 2

1 3 3

1 1

1 2

x
x x x s x x

x
x x s

x
x x s

z
x x z s

z
x x z s

de
k z e z e G q e

d
de

x u e G
d

de
x u e G

d
de

e x e G
d

de
e x e G

d

ε
τ

ε
τ

ε
τ

β
τ

β
τ

⎧
= − − Γ −⎪

⎪
⎪

= + − Γ⎪
⎪
⎪⎪ = − + − Γ⎨
⎪
⎪

= + − Γ⎪
⎪
⎪

= − − Γ⎪
⎪⎩

 (36) 

 
Making 0ε =  in the above system, it yields: 
 

 

1

2 3

2

3 2

1 1

1 2

z
x x z s

z
x x z s

de
e x e G

d
de

e x e G
d

β
τ

β
τ

⎧
= + − Γ⎪⎪

⎨
⎪ = − − Γ⎪⎩

 (37) 

 
or: 
 

 [ ] [ ]2

3

1x
z z s

x

ed e G
edτ

−
⎧ ⎫⎡ ⎤⎪ ⎪= Λ −Λ Γ⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 (38) 

 
By appropriate choice of the observer gain terms 1zG  

and 2zG , sliding mode occurs in (37) along the manifold 
0zS e= = . 

Proposition (1): Assume that 
2xe  and 

3xe  are bounded 
in this time, and consider system (37) with the following 
observer gain matrices: 

 

 1

2

z

z

G
G
⎡ ⎤

= ΛΦ⎢ ⎥
⎣ ⎦

 (39) 

 
where: 

1

2

0
0
ϕ

ϕ
⎡ ⎤

Φ = ⎢ ⎥
⎣ ⎦

 and 1 2 0,ϕ ϕ >  

 
The attractivity condition of sliding surface ( ) 0S τ =  

is given by: 

 0T dSS
dτ

⎛ ⎞ <⎜ ⎟
⎝ ⎠

 (40) 

 

In this time scale 0idx
dτ

=  for 1 2 3i , ,=  so: 

 

 2

3

xT T
s

x

edSS S
edτ

⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞ = −ΦΓ⎢ ⎥⎨ ⎬⎜ ⎟
⎝ ⎠ ⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 (41) 
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Thus, (40) is verified with the set defined by the 
following inequalities: 

 

 
2

3

1

2

x max

x max

e

e

ϕ

ϕ

⎧ >⎪
⎨

>⎪⎩

 (42) 

 
According to the equivalent control method, the 

system in sliding mode behaves as if z sG Γ  is replaced 
by its equivalent values ( )z s eqG Γ , which can be 

calculated from the subsystem (37) assuming 0ze = , 
0ze = . If ( ) 0S τ =  the equivalent switching vector sΓ  

is obtained as: 
 

 2

3

1 x
s

x

e

e
− ⎡ ⎤

Γ = Φ ⎢ ⎥
⎢ ⎥⎣ ⎦

 (43) 

V.3. Slow Reduced Order Error Dynamics 

For slow error dynamics, we use the system (36) and 
setting 0ε = . 

So, we can write: 
 

 

( )
( )

1 1

2 2

3 3

1 2 1

1 3

1 3

1

2

3

0 0
0 0

x x

x x

x x

x

x s

x

e eq kz kz
e x u e

x ue e

G
G
G

⎡ ⎤ ⎡ ⎤⎡ ⎤− −
⎢ ⎥ ⎢ ⎥⎢ ⎥= + +⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥− +⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥− Γ⎢ ⎥
⎢ ⎥⎣ ⎦

 (44) 

 
with: 

 2

3

11

1 2
0

x z
s

x z

e Gx
x e G
β

β
⎡ ⎤ ⎡ ⎤⎡ ⎤

− Γ =⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
 (45) 

 
From Eq. (45), we can get the equivalent switching 

vector sΓ  as: 

 2

3

1 x
s

x

e

e
− ⎡ ⎤

Γ = Φ ⎢ ⎥
⎢ ⎥⎣ ⎦

 (46) 

 
In this time scale and according to the equivalent 

control method, we can replace sΓ  by sΓ , and with: 
 

 [ ]1 2 1xG k z z= − Φ  (47) 
 
and: 
 

 
( )

( )
2 1 1 3

3 1 3 2

x

x

G q x u
G x u q

⎡ ⎤+⎡ ⎤
= Φ⎢ ⎥⎢ ⎥ − +⎣ ⎦ ⎣ ⎦

 (48) 

System (44) can be written as the following system: 
 

 
1 1

2 2

3 3

1

2

3

0 0
0 0
0 0

x x

x x

x x

e eq
e q e

qe e

⎡ ⎤ ⎡ ⎤−⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥= −⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (49) 

 
which is stable for 1 2 3 0q ,q ,q > . 

VI. Simulations Results 
The performances of the proposed control observer 

scheme for the induction motor model in closed loop 
system developed in the previous sections were studied 
through simulations. 

Some simulations were carried out when the motor is 
started without torque load. The controller should 
smoothly regulate the angular speed at 300 rad/s, keep 
the stator d-component flux sdφ  at its rated value 1.0 Wb 
and align the stator flux with the d-axis (i.e. constrain 

qsφ  to 0). The control law gains were chosen as 1 fk = 

2 fk  = 1sk  = 2sk  = 3sk  =1. 
Following the design considerations of section (V), 

the observer gains are 1 2 500ϕ ϕ= =  and 

1 2 3 10q q q= = = . 
The problem of chattering is remedied by replacing 

the switching function by a continuous one in the sliding 
surface neighborhood. Fig. 1 shows the rotor speed 
response of the motor; a very good speed regulation is 
obtained. In Fig. 2 is shown the slip frequency. The 
corresponding composite controls are shown in Fig. 3. 
Fig. 4 shows the stator fluxes responses; after a short 
initial time, they converge to their desired values. 

Stator currents are shown in Fig. 5. These results 
show that the composite sliding mode control with the 
proposed observer can track the reference command 
accurately and quickly. 
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Fig. 1. Angular speed 
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Fig. 2. Composite slip frequency input 
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Fig. 3. Composite control voltage inputs 
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Fig. 4. d-q stator fluxes 

 



 
A. Mezouar, T. Terras, M. K. Fellah, S. Hadjeri 

Copyright © 2012 Praise Worthy Prize S.r.l. - All rights reserved                                                International Review of Automatic Control, Vol. 5, N. 6 

909 

0.0 0.2 0.4 0.6 0.8 1.0
-8.00

-4.00

0.00

4.00

8.00
(A) sdi  

0.0 0.2 0.4 0.6 0.8 1.0
0.00

4.00

8.00

12.00

16.00
(A) sqi

t(s) t(s)

 
 

Fig. 5. d-q stator currents 
 

VII. Conclusion 
In this paper, we have shown singular perturbation 

theory to be an effective tool in the analysis of induction 
motors control-observer problems. Using the assumption 
of separate time scales, a full order observer has been 
easily designed in order to estimate the slow variables 
(stator fluxes) under the assumption that only the fast 
variables (stator currents) and rotor speed are available 
for measurement. 

It has been shown by the simulation results that this 
controller-observer scheme is may be useful in 
controlling induction motors with rotor speed and motor 
fluxes in order to obtain high dynamic performance. 

Sensitivity of the control-observer structure to torque 
disturbances and uncertainties in the electrical and 
mechanical parameters are under investigation. 

Appendix 
TABLE A1 

INDUCTION MOTOR NOMINAL PARAMETERS 
1.5 kW  220/380 V  3 68 6 31 A. / .  

1420 rpmN =  4 85 sR .= Ω  4 805 rR .= Ω  
0 258M .=  0 274 HsL .=  0 274 HrL .=  

2p =  20 031 kg mJ .= ⋅  0 00114 N×m×s/rdf .=  
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