Spectral and Geometric Properties of k-Walk-Regular Graphs

M.A. Fiol1,2 E. Garriga1,3

Dep. Matemàtica Aplicada IV
Universitat Politècnica de Catalunya
Barcelona, Catalonia (Spain)

Abstract

Let us consider a connected graph G with diameter D. For a given integer k between 0 and D, we say that G is k-walk-regular if the number of walks of length ℓ between vertices u, v only depends on the distance between u and v, provided that such a distance does not exceed k. Thus, in particular, a 0-walk-regular graph is the same as a walk-regular graph, where the number of cycles of length ℓ rooted at a given vertex is a constant through all the graph. In the other extreme, the distance-regular graphs correspond to the case $k = D$. In this talk we discuss some algebraic characterizations of k-walk-regularity, in terms of the local spectrum and pre-distance-polynomials of G. Moreover, some results on the relationship between the diameter and the spectrum, as well as some geometric properties, of walk-regular graphs are presented.

Keywords: Walk-regular graph, Pre-distance-polynomials, Spectrum.

1 Research supported by the Spanish Research Council under project MTM2005-08990-C02-01 and by the Catalan Research Council under project 2005SGR00256.
2 Email: fio1@ma4.upc.edu
3 Email: egarriga@ma4.upc.edu
1 Introduction

Throughout this paper, \(G = (V, E) \) denotes a simple, connected graph, with order \(n = |V| \) and adjacency matrix \(A \). The spectrum of \(G \) (\(A \)) is denoted by \(\text{sp} G = \{ \lambda_0^m, \lambda_1^m, \ldots, \lambda_d^m \} \), where \(\lambda_0 > \lambda_1 > \cdots > \lambda_d \) and the superindexes stand for the multiplicities \(m_i = m(\lambda_i) \). Let \(Z = \prod_{i=0}^d (x - \lambda_i) \) be the minimal polynomial of \(A \). The vector space \(\mathbb{R}_d[x] \) of real polynomials of degree at most \(d \) is isomorphic to \(\mathbb{R}[x]/(Z) \), and each polynomial \(p \in \mathbb{R}_d[x] \) operates on the vector \(w \in \mathbb{R}^n \) by \(pw = p(A)w \). For every \(0 \leq k \leq d \), the orthogonal projection of \(\mathbb{R}^n \) onto \(\text{Ker}(x - \lambda_k) \) is given for the polynomial of degree \(d P_k = \frac{1}{\phi_k} \prod_{i=0, i \neq k}^d (x - \lambda_i) = \frac{(-1)^k}{\pi_k} \prod_{i=0, i \neq k}^d (x - \lambda_i) \), where \(\phi_k = \prod_{i=0, i \neq k}^d (\lambda_k - \lambda_i) \) and \(\pi_k = |\phi_k| \). The matrices \(E_k = P_k(A) \) are called the (principal) idempotents of \(A \). Then, the orthogonal decomposition of the unitary vector \(e_u \), representing vertex \(u \), is:

\[
e_u = z_u^0 + z_u^1 + \ldots + z_u^d, \text{ where } z_u^k = P_k e_u = E_k e_u.
\]

2 Spectral regularity and walk-regularity

From the decomposition (1), we define the \(u \)-local multiplicity of eigenvalue \(\lambda_k \) as \(m_u(\lambda_k) = (E_k)_{uu} = \|z_u^k\|^2 \), satisfying \(\sum_{k=0}^d m_u(\lambda_k) = 1 \) and \(\sum_{u \in V} m_u(\lambda_k) = m_k, 0 \leq k \leq d \). (see [2]). We say that \(G \) is spectrally regular when, for any \(k = 0, 1, \ldots, d \), the \(u \)-local multiplicity of \(\lambda_k \) does not depend on \(u \in V \). Then, the above equations imply that \(m_u(\lambda_k) = m_k/n \). In particular, since \(m_u(\lambda_0) = \|z_u^0\|^2 = v_u^2/\|v\|^2 \), the spectral regularity implies the regularity of the graph.

Let \(C_u^{(r)} \) denote the number of closed walks of length \(r \) rooted at vertex \(u \). Then, as it is well known, \(C_u^{(r)} = (A^r)_{uu} \), the \(u \)-th element in the diagonal of \(A^r \). When the number \(C_u^{(r)} \) only depends on \(r \), the graph \(G \) is called walk-regular (see, for instance, [3]). Notice that, as \(C_u^{(2)} = \delta(u) \), the degree of vertex \(u \), every walk-regular graph is also regular. In our context, we also have the following result:

Proposition 2.1 A connected graph \(G \) is spectrally regular if and only if it is walk-regular.

Let us see one of the implications. If \(G \) is spectrally regular, we have, for any \(u \in V \) and \(r \geq 0 \), \(C_u^{(r)} = (A^r)_{uu} = \langle x^r e_u, e_u \rangle = \langle x^r \sum_{k=0}^d z_u^k, \sum_{k=0}^d z_u^k \rangle = \sum_{k=0}^d \|z_u^k\|^2 \lambda_k^r = \frac{1}{n} m_k \lambda_k^r \), so that \(C_u^{(r)} \) is independent of \(u \) and \(G \) is walk-regular.
From the spectrum of a given graph \(G = \{ \lambda_0^{m_0}, \lambda_1^{m_1}, \ldots, \lambda_d^{m_d} \} \), we consider the following scalar product in \(\mathbb{R}_d[x] \):

\[
\langle p, q \rangle = \frac{1}{n} \operatorname{tr}(p(A)q(A)) = \frac{1}{n} \sum_{k=0}^{d} m_k p(\lambda_k)q(\lambda_k).
\]

Then, by using the Gram-Schmidt method and normalizing appropriately, it is immediate to prove the existence and uniqueness of an orthogonal system of polynomials \(\{ p_k \}_{0 \leq k \leq d} \) called the pre-distance polynomials which, for any \(0 \leq h, k \leq d \), satisfy:

\[
dgr(p_k) = k, \quad \langle p_h, p_k \rangle = 0 \quad (h \neq k), \quad \| p_k \|^2 = p_k(\lambda_0).
\]

The pre-distance polynomials can be thought of as a generalization of the so-called “distance polynomials.” Recall that, in a distance-regular graph, such polynomials satisfy \(p_k(A) = A_k \), \(0 \leq k \leq d \), where \(A_k \) stands for the adjacency matrix of the \(k \)-distance graph \(G_k \), usually called the \(k \)-th distance matrix of \(G \) (see, for instance, [1]). More generally, the following result links the spectral regularity to the pre-distance polynomials:

Proposition 2.2 Let \(G \) be a connected graph with adjacency matrix \(A \) having \(d + 1 \) distinct eigenvalues, and with pre-distance polynomials \(\{ p_0, p_1, \ldots, p_d \} \). Then, the two following statements are equivalent:

(a) \(G \) is spectrally regular.

(b) The matrices \(p_k(A) \), \(1 \leq k \leq d \), have null diagonals.

Note that, from the above comments, property (b) is also satisfied in the case of distance regularity, as \(p_k(A) = A_k \).

The above result can be generalized if we consider the following new definition. Let \(G \) be a connected graph with diameter \(D \). For a given integer \(k \), \(0 \leq k \leq D \), we say that \(G \) is \(k \)-walk-regular if the number of walks of length \(\ell \) between vertices \(u, v \) only depends on the distance between \(u \) and \(v \), provided that \(\operatorname{dist}(u, v) \leq k \). Thus, a 0-walk-regular graph is the same thing as a walk-regular graph whereas, at the other extreme, the distance-regular graphs correspond to the case of \(D \)-walk-regular graphs. (In the following result “\(\circ \)” stands for the Schur or Hadamard—componentwise—product of matrices.)

Theorem 2.3 For a graph \(G \) as above and a given integer \(k \), \(0 \leq k \leq D \), the two following statements are equivalent:

(a) \(G \) is \(k \)-walk-regular.
(b) \(A_k = A_k \circ p_k(A) \) for any \(1 \leq k \leq d \).

3 Spectrum and Diameter

Consider the sets \(T_k = \{ z_u^k = E_k e_u : u \in V \} \) of vectors in the \(m_k \)-dimensional space \(\text{Ker}(x - \lambda_k) \). (These sets are usually called eutactic stars [4].) Then the spectral regularity of the graph is equivalent to state that, for every \(k = 0, 1, \ldots, d \), such vectors define \(n \) (not necessarily different) points on the sphere with radius \(\sqrt{m_k/n} \). Moreover, for any \(k = 1, 2, \ldots, d \), the “center of mass” of the set \(T_k \) is \(\sum_{u \in V} z_u^k = E_k \sum_{u \in V} e_u = E_k j = 0 \). Let \(\gamma_{u,v} = \gamma(z_u^k, z_v^k) \) denote the angle between the two vectors \(z_u^k, z_v^k \). Note that, since \(z_0^u = (1/n) j \), we always have \(\gamma_{u,v}^0 = 0 \).

Proposition 3.1 Let \(G = (V, E) \) be a spectrally regular graph with \(d + 1 \) eigenvalues. Then, two vertices \(u, v \in V \) are at (spectrally maximum) distance \(d \) if and only if
\[
\cos \gamma_{u,v}^k = \frac{(-1)^k \pi_0}{m_k} \frac{\pi_k}{\pi_0} \quad (0 \leq k \leq d).
\]

The above cosines were already considered by Godsil [3] when \(G \) is a distance-regular graph. As a direct consequence of the above proposition, we have the following result.

Corollary 3.2 The eigenvalue multiplicities of a (connected) spectrally regular graph with spectrally maximum diameter satisfy \(m_k \geq \frac{\pi_0}{\pi_k} \), \(0 \leq k \leq d \).

Let \(\alpha \equiv \alpha(G) \equiv \alpha_{d-1}(G) \) be the \((d - 1)\)-independence number of \(G \); that is, the maximum number of vertices which are at distance \(d \) from each other. Note that, for a graph \(G \), the property of having spectrally maximum diameter is equivalent to have \(\alpha \geq 2 \).

Proposition 3.3 The \((d - 1)\)-independence number of a spectrally regular graph \(G \) satisfies the bound
\[
\alpha \leq 1 + \min_{\begin{subarray}{c}1 \leq k \leq d \\ d \text{ odd} \end{subarray}} \left\{ m_k \frac{\pi_k}{\pi_0} \right\}.
\]

Then, from the above results we get:

Corollary 3.4 Let \(G \) be a (connected) spectrally regular graph with spectrum \(\text{sp}G = \{\lambda_0^{m_0}, \lambda_1^{m_1}, \ldots, \lambda_d^{m_d}\} \), spectrally maximum diameter \(d \), and \((d - 1)\)-independence number \(\alpha \). Then, the eigenvalue multiplicities satisfy the bounds \(m_k \geq \frac{\pi_0}{\pi_k} \) if \(k \) is even, and \(m_k \geq (\alpha - 1) \frac{\pi_0}{\pi_k} \) if \(k \) is odd.
4 The Geometry of d-Cliques

As before, we are assuming that the (connected) graph $G = (V, E)$ is spectrally regular and has spectrally maximum diameter. Let $C_r = \{u_1, u_2, \ldots, u_r\}$ be a set of $r(\leq \alpha)$ vertices which are at distance d from each other. For each $k = 0, 1, \ldots, d$, we are here interested in studying the geometry of the projection set $\{z^k_u = E_k e_u : u \in C_r\}$ onto the eigenspace $\text{Ker}(x - \lambda_k) \subset \mathbb{R}^n$ with dimension m_k. According to the parity of k and whether or not the equality in Corollary 3.4 applies, there are four cases to be considered. Here we present the results only for the two cases of even k.

Assume first that $m_k = \frac{\pi_0}{\pi_k}$. Then, by Proposition 3.1 we have that $\cos \gamma^k_{u_i, u_j} = \frac{1}{m_k} \frac{\pi_0}{\pi_k} = 1$. Because of the spectral regularity, the vector $z^k_{u_i}$ is independent of $u_i \in C_r$, and it has norm $\sqrt{m_k/n}$. Hence, the projection of C_r is a single point.

Now, suppose that $m_k > \frac{\pi_0}{\pi_k}$, and let $C_r^0 = \frac{1}{r} \sum_{i=1}^{r} z^k_{u_i} = \frac{1}{r} w^k$ be the baricenter of the projections onto $\text{Ker}(x - \lambda_k)$.

Proposition 4.1 Let G be a graph as above, and suppose that, for some even k, $m_k > \frac{\pi_0}{\pi_k}$. Then the projected points $\{P_k e_u : u \in C_r\}$ are the vertices of a regular tetrahedron with center C_r^0, radius $\sqrt{\frac{r-1}{rn} (m_k - \frac{\pi_0}{\pi_k})}$ and edge length $\sqrt{\frac{2}{n} (m_k - \frac{\pi_0}{\pi_k})}$. Moreover, the angle β formed by the vectors going from the center to each vertex $z^k_{u_i}$ satisfies $\cos \beta = -1/(r-1)$.

Note that the above value of $\cos \beta$ is a known result for regular tetrahedrons. In particular, when $r = 2$, we have $\beta = \pi$ and the tetrahedron collapses into a segment.

References

