Vehicle Detection and Tracking in Car Video Based on Motion Model

A. Jazayeri, H. Cai, J. Y. Zheng, Senior Member, IEEE, and M. Tuceryan, Senior Member, IEEE

Indiana University Purdue University Indianapolis (IUPUI), IN 46202 USA

This work aims at real-time in-car video analysis to detect and track vehicles ahead for safety, auto-driving, and target tracing. This paper describes a comprehensive approach to localize target vehicles in video under various environmental conditions. The extracted geometry features from the video are projected onto a 1D profile continuously and are tracked constantly. We rely on temporal information of features and their motion behaviors for vehicle identification, which compensates for the complexity in recognizing vehicle shapes, colors, and types. We model the motion in the field of view probabilistically according to the scene characteristic and vehicle motion model. The Hidden Markov Model is used for separating target vehicles from background, and tracking them probabilistically. We have investigated videos of day and night on different types of roads, showing that our approach is robust and effective in dealing with changes in environment and illumination, and that real time processing becomes possible for vehicle borne cameras.

Index Terms— In-car Video, feature detection, 1D profiling, tracking, vehicle motion, dynamic target identification, probability, HMM.

I. INTRODUCTION

SENSING VEHICLES ahead and traffic situations during driving are important aspects in safe driving, accident avoidance, and automatic driving and pursuit. We designed a system that is capable of identifying vehicles ahead moving in the same direction as our car by tracking them continuously with an in-car video camera. The fundamental problem here is to identify vehicles in changing environment and illumination. Although there have been numerous publications on general object recognition and tracking, or combination of them, not many of these techniques could be successfully applied in real-time for the in-car video, which has to process the input on-the-fly during the vehicle movement. This paper introduces an effort to design and implement such real-time oriented algorithms and systems highly adaptive to the road and traffic scenes based on domain-specific knowledge on road, vehicle, and control.

In-car video is from a camera facing forward (Fig. 1), which is the simplest and most widely deployed system on police cars. It records various traffic and road situations ahead and is particularly important to safe driving, traffic recording, and vehicle pursuit. Our objective is to detect vehicles ahead or those being pursued, and track them continuously in the video. It is not easy for a single moving camera to yield the information quickly from dynamic scenes without stereo or other sensors’ assistance [1]. The main difficulties are, first, the numerous variations of vehicles in color, shape, and type. The vast amount of vehicle samples is difficult to model or learn [2]. Second, the vehicle detection must be done automatically along with the video tracking. Many tracking algorithm only assume easily detectable targets or known initial positions [3]. Third, the in-car video may confront drastic variation of environment and illumination [4]. Transition through shadow and sunny locations in urban areas, dim lighting at night, loss of color on a cloudy day, highlights on vehicles, occlusions between vehicles, and so on make the feature extraction, recognition, and tracking unstable.

Our novel method first selects and detects the most common low-level features on vehicles that are robust to changes of illumination, shape, and occlusion. This avoids high-level vehicle and scene modeling and learning that are mostly unstable, time consuming, and non-general. Second, we focus on the horizontal scene movement for fast processing based on the configuration of camera and vehicle driving mechanism. One dimensional (1D) profiles are accumulated from video frames to show the horizontal motion directly in traces. We track feature trajectories in such temporal profiles so that the real time vehicle and background classification can be done in a reduced dimension. Third, we put more weight on the understanding of motion behavior of the vehicles than object shape analysis in identifying targets. We use the Hidden Markov Model (HMM), which has been widely used in

Fig. 1. A typical frame of in-car video and the processing diagram. The video resolution is 640×480 pixels

Manuscript received Dec. 1, 2009. Corresponding author: Jiang Yu Zheng (e-mail: jzheng@cs.iupui.edu).

Digital Object Identifier inserted by IEEE
describing sequential data [5, 6], to model the continuous movement of the features so that the results will be less influenced by thresholding during low level preprocessing. Identification of target vehicles will be given in terms of probabilities.

Many related works of in-car video or images to identify cars are shape based methods [7, 8] that usually suffer from brittleness due to variety of vehicles and backgrounds. For example, the symmetric property is employed in [7, 9, 10, 11]. Deformable frame models are used in [12,13,14,27]. Because of the lack of robustness in feature extraction from complex scenes, subsequent decisions can rarely be applied to video in real time. Several works have employed probability in their formulation but they are mainly applied to the occurrence and appearance (intensity distribution) of vehicles [2,11,15,16,17,26] or some of them are from static camera [18, 19].

The significance of this work lies in its temporal processing in target identification. We focus on the time domain that displays the vehicle generated motion. The motion is general for all types of vehicles. The motion behavior of scenes in videos is modeled with the HMM and this makes the vehicle identification with certainty measure. Also, the profiled 1D arrays reduce dimensionality of data, thus achieving real-time processing to identify and track vehicles simultaneously.

In the following, we will give an overview and describe general assumptions in Sec. II. We introduce feature detection and tracking in Sec. III. We investigate the motion properties of scenes in terms of likelihoods in Sec. IV. We address the identification of feature trajectory as a vehicle or background of scenes in the video in Sec. V. Experimental results and discussion are given in Sec. VI.

II. MOTION INFORMATION IN CAR VIDEO

A. Overview of the Work

By showing the continuous motion of extracted points in car video without color and shape information to human subjects, we have confirmed that humans are capable of separating vehicles from background after knowing where the source is from. As the observer vehicle moves on the road, the relative background motion is determined. The motion projected to the camera frame is further determined from object distances. Such motion shows unique properties coherent to the vehicle ego-motion. On the other hand, the target vehicles moving in the same direction as the camera have different motion against the background, and thus show different optical flow from that of the background in the video. We look into the motion characteristics of tracked objects and separate them as static background or moving cars in the process shown in Fig. 1.

Different from many other works that put more effort into vehicle shape analysis in individual video frames, this work only extract low level features such as corners, intensity peaks, and horizontal line segments, as will be described in Sec. III. These features are profiled to the temporal domain to ensure the compactness of data and the robustness of processing against the camera/vehicle shaking, noises, and irrelevant features. The motion of scenes appears as traces in the temporal profiles. The horizontal image velocities of features are obtained through trace tracking.

To identify tracked traces as cars and background, we model the motion properties of scenes in the video in Sec. IV. Because the background flow is ego-motion orientated and position dependent in the image frame, we examine the image flow with respect to the position during ego-motion and describe them by their joint probability. We estimate likelihood probability distributions for cars and background respectively, given the PDFs of scenes, ego-motion, and the pursuit vehicles. With such initially calculated likelihood PDFs, we can obtain high responses to the expected motion events.

In Sec. V, we estimate the posterior probabilities of motion traces as target vehicles or background based on observations, i.e., the detected image position and velocity at each moment. To achieve a stable classification of vehicles, we evaluate their motion process by means of the HMM when traces are tracked continuously. The pre-calculated likelihood PDFs and the transition probabilities are used in the HMM for the state estimation of traces. The continuous vehicle motion provides more robust identification than shape features that are affected by occlusion, illumination and background changes.

B. Dynamic Environment of In-Car Video

General assumptions we make are (a) the observer car should not turn away completely or leave too far from target vehicles on the road; (b) a translation of the observer vehicle is required. For the vehicle-borne camera, a pure rotation without significant translation, e.g., turning at a street corner, does not provide sufficient information to separate the targets and background motion, because such a rotation generates almost the same optical flow in entire frame. Another reasonable assumption is the continuity of the vehicle and camera motion, which is guaranteed in general according to the driving mechanism of four-wheeled vehicles.

Assume the camera centered coordinate system is O-XYZ (or O-xyz) with the X axis toward right, Y axis facing down and Z axis in the vehicle’s direction of motion. Denote the 3D coordinates of a point P as $P=(x,y,z)$.
position of a scene point by \((X, Y, Z)\) in O-XYZ and its projected image coordinates by \((x, y)\). A typical view of the in-car video is depicted in Figure 2, where the Focus of Expansion (FOE) is located in the center part of the image \(I(x, y)\). On a curved road, a steering adds a rotation to the ego-motion (Fig. 2b).

A target car that is moving on the road may change its horizontal position and scale when it changes lane and speed, but may still retain its position within the road even when its instantaneous image velocity \(u(x, y)\) changes dramatically. The background, however, has a sort of motion coherence, with the background and vehicle separation. We will model this motion coherence for automatic object detection.

According to perspective projection of the camera, the image position of a moving scene point \(P(X, Y, Z)\) is

\[
x(t) = \frac{fX(t)}{Z(t)} \quad y(t) = \frac{fY(t)}{Z(t)}
\]

where \(f\) is the camera focal length. Denote the relative translation of scene point \(P(X, Y, Z)\) to the camera by \((T_x(t), T_y(t), T_z(t))\) in the system O-XYZ, and denote the rotation velocities of the observer vehicle/camera in pitch, yaw, and roll by \((R_x(t), R_y(t), R_z(t))\) in radian per second, where the pitch and roll of the observer vehicle have \(R_x(t)=0\) and \(R_z(t)=0\) on a flat road. The relative speed of the scene point \(P\) to the camera is

\[
(V_x(t), V_y(t), V_z(t)) = (T_x(t), T_y(t), T_z(t)) + (X, Y, Z) \times (R_x(t), R_y(t), R_z(t))
\]

according to [20]. By differentiating Eq. 1 with respect to \(t\), and replacing related terms in the result using Eq. 1 again, the horizontal component of image velocity of \(P\) becomes

\[
v_x(t) = \frac{\partial x(t)}{\partial t} = \frac{\partial y(t)}{\partial t} \frac{\partial y(t)}{\partial t}
\]

Replacing \(V_x(t)\) and \(V_y(t)\) with Eq. 2, and setting \(R_x(t)=0\) and \(R_z(t)=0\), we obtain

\[
v_x(t) = \frac{fT_x(t) - x(t)T_y(t)}{Z(t)} - \frac{x^2(t) + f^2}{f} \quad R_x(t) = v^{(x)}(t) + v^{(y)}(t)
\]

if we denote

\[
v^{(x)}(t) = \frac{fT_x(t) - x(t)T_y(t)}{Z(t)} \quad v^{(y)}(t) = -\frac{x^2(t) + f^2}{f} \quad R_x(t)
\]

to be the components of horizontal image velocity from translation and rotation respectively. If the observer vehicle moves on a straight road, i.e., \(R_x(t)=0\), we simply have \(V_x(t)=T_x(t)\) and \(V_y(t)=T_y(t)\).

III. FEATURES EXTRACTION AND TEMPORAL TRACKING

A. Real-time Feature Extraction in Video Frames

The segmentation of vehicles from background is difficult due to the complex nature of the scenes, including occlusion by other moving vehicles, complicated shapes and textures, coupled with the ever changing background. The presence of specular reflection on the metallic surfaces and back windows, and shadows on most cars (deformed and spread) make the color and shape information unreliable. To cope with these variations, we select three types of low-level features for reliable vehicle detection: horizontal line segments, corner points, and intensity peaks.

1) Corner Detection

Important features in the video are corners appearing on high contrast and high curvature points (excluding edges). In daytime videos, corner points on a vehicle surface or background scenes keep their positions stable over time on surfaces so that they provide coherent motion information of regions. At occluding contours of vehicles (usually on two sides of the vehicles), however, the corner points detected are formed by vehicle and background, which do not physically exist and are extremely unstable during the relative motion of vehicles and background scenes. We use Harris feature for detecting corners in the video frames [21] (results in Fig. 3).

![Figure 3. Corner detection in video sequence. Corners marked in green circles.](image)

Fig. 3. Corner detection in video sequence. Corners marked in green circles.

2) Line Segment Detection

We have noticed that the backs of vehicles typically contain many horizontal edges formed by vehicle tops, windows, bumpers, and shadows. Most of them are visible during daylight, which indicates the existence of a vehicle. For vehicles with partially occluded backs, the detection of horizontal line segments is still stable. The vertical line segments, however, are not guaranteed to be visible due to a curved vehicle body, frequent occlusion by other cars, and occlusion over a changing background.

We convolve each video frame with a vertical differential operator \(\partial I(x, y)/\partial y\), which results in the image \(I'(x, y)\). Then, an edge following algorithm searches peaks with contrasts higher than threshold \(\delta_1\) in \(I'(x, y)\) to produce horizontal line segments. The horizontal search has a vertical tolerance of \(\pm 2\).
pixels, and it selects point candidates with the same edge sign. It also uses another threshold $\delta_2<\delta_1$ to bridge line segments at weak-contrast points by allowing a 3-pixel trial after reaching the end by using δ_1. The tracked edge points form a line segment if it satisfies constraints on the minimum and maximum lengths, and near horizontal orientation. These thresholds are determined loosely to yield more segments. We pass more information to the later probabilistic processing rather than cutting it off abruptly at this stage.

Line tracking may break down at highlights, insufficient resolution on distant cars, and scale changes when the depth changes. The results may also contain segments in static background such as long wires, painted marks on road, and other building structures. Figure 4 shows a frame of line extraction overlapped with intensity image.

3) Intensity Peak Detection for Night Scenes

The intensity peaks from tail and head lights of moving vehicles and street lamps are used as features when the lighting conditions are poor. We detect intensity peaks from vehicle lights in order to obtain more evidence of the vehicle presence. We use a large Gaussian filter to smooth the image and find the local maxima beyond a threshold determined adaptively. These peaks will be further tracked across frames for the direction and speed of moving targets. Figure 5 show examples of the intensity peak detection and tracking in video. After preprocessing and feature extraction, it is noted that a single data source alone cannot guarantee reliable results.

For Conference-Related Papers, Replace This Line with Your Session Number, E.G., AB-02 (Double-Click Here) <

\[T(x,t) = \sum_{y=-h/2}^{h/2} w(x,y) L(x,y,t) \]

where $L(x,y,t)$ takes value 1 on a horizontal line segment and 0 otherwise in frame t. Such a result can be found in Figure 6b, where the bright stripes accumulated from many line segments show the motion of vehicles. Long and horizontal lines such as road paints and wires in the scene add equally to all the positions in the profile without influencing the traces of vehicles. Due to the existence of multiple horizontal lines on a vehicle, the vehicle position generally appears brighter than other positions of background.

Instantaneous illumination changes happen in many cases when entering and exiting a tunnel, penetrating shady and sunny locations, and being illuminated by other vehicles. Such changes alter the intensity of the entire frame. In the spatio-temporal profiles, such illumination changes noticeably appear as horizontal lines over the entire image width. Its influence on the vehicle position is filtered out by taking horizontal derivative of the profiles.

Compared to the intensity profiles with smooth traces from

Fig. 5 Intensity Peaks (marked in squares) extracted on traffic lights, tail lights and front lights of vehicles.

B. Vertical Profiling of Features to Realize Data Reduction

To speed up the processing for real time target tracking, and to obtain robust results against shaking of a vehicle on changeable road slope, we project the intensity/color $I(x,y)$ in each video frame vertically to form a 1D profile, $T(x)$.

Consecutive profiles along the time axis generate a condensed spatio-temporal image, $T(x,t)$, used for analyzing the scene movement. The vertical projection of intensities through a weight mask $w(x,y)$ is implemented as

\[T(x,t) = \sum_{y=-h/2}^{h/2} w(x,y) I(x,y,t) \]

where h is the image height. The weight distribution, which will be described in Sec. IV.C, is high at regions with high probability of containing vehicles in the image. The traces in the condensed spatio-temporal image show movements of long or strong vertical lines in the video. Slanted lines and short edges in individual video frames will not be distinct in it. Figure 6a shows such an image, which is a compact and robust representation for recording and estimating vehicle motion.

Fig. 6. Examples of different profiles. (a) An intensity profile from tree background and a red car, (b) a profile from horizontal line segments, (c) a profile of intensity peaks in a night scene before a car stops (tail break light in red).
vertical lines, the profiling of horizontal line segments yields noisy traces due to instability of line detection. Because the lighting conditions, background, and camera noise vary frame by frame, the line segments found in the images do not always appear at consistent locations and in the same length, which has to be post-processed according to their temporal coherence. Also, as is evident in Fig. 6b, many traces may not belong to a vehicle but to the background, which is left for the trace classification.

C. Tracking Features in Temporal Profiles for Motion

The intensity profile shows the horizontal positions of vertical features and ignores the horizontal features. This produces a compact image for understanding the horizontal motions in the video. The effects of the image changes caused by jitter in camera roll and tilt on uneven roads are significantly reduced in the profiles.

Tracking intensity profiles is done by horizontal differentiation of \(T(x,t) \). The edges are marked in another image \(E(x,t) \) and a maximum span is set in searching consecutive trace points. At the same time, \(\partial T(x,t)/\partial t \) is computed for finding horizontal edges, because a fast moving trace is very slanted in \(T(x,t) \). We thus can link horizontal edges in \(E(x,t) \) for traces with a high image velocity. The very long horizontal segments in \(E(x,t) \), mainly from the instantaneous illumination changes, are ignored in the result. This processing results in the image position \(x(t) \) and image velocity \(v(t) = x(t) - x(t-1) \) for a trace.

To preserve the continuity of motion, we compare the image velocities \(v(t-1) \) from tracked points and \(v(t) \) from new candidates, and select a successive point such that \(|v(t-1) - v(t)| \) is kept minimum. Besides the requirement of high contrast, the sign of trace at \(E(x,t) \) is used as reference in tracking. The approach to examine the motion continuity is also applied in tracking intensity peaks and corners in the profiles.

![Fig. 7 Tracing centers of line segment clusters. (left) Profiled distribution of line segments and its smoothed distribution, (right) an example of trace center (in purple) overlapped with traces.](image)

Among all types of traces, the horizontal line segment piles provide the most salient clue of vehicle presence. Tracking traces of line segments in \(T(x,t) \) is done by locating the center of each trace, because the endpoints of line segments are unreliable especially for distant vehicles. We first smooth \(T(x,t) \) horizontally to obtain major traces as shown in Fig. 7. These traces are marked at their peaks \(x(t) \) above a threshold for the centers. The threshold is decided adaptively at each \(t \) according to the average and standard deviation of \(T(x,t) \).

Random line segments on background and instantaneous light changes over the entire frame (tail braking lights) will cause a long horizontal line in \(T(x,t) \). However, these will be ignored in the processes of finding peaks (they have no distinct peak) and tracking over long periods of time. In daytime, we use line traces in the car identification, and refine the car width by the intensity profile. In the night and under low visibility conditions such as snow and fog, the profiles from intensity peaks of tail lights can be used. The profile from corner points is used to enhance the identification in any case. In addition, the horizontal line may not detect small targets such as motorbikes. Intensity and corner profiles have to be used then.

IV. MODELING MOTION OF SCENES IN LIKELIHOODS

Let us model the motion with probability in order to determine the state of a tracked object with the HMM. We assign two hidden states to a trace at any time instance \(t \): car and background denoted by \(C \) and \(B \). The observations are image position \(x(t) \) and the horizontal image velocity component \(v(t) \) of \(u(x,y) \), both are continuous distributions rather than discrete events in the conventional HMM [5]. Array \((x(t),v(t)) \) is obtained from each trajectory tracked in the condensed profiles. The two parameters are not independent; neither one will determine the identity of object feature alone. We first calculate their joint likelihood PDFs, \(P(x,v|B) \) and \(P(x,v|C) \), for background and vehicles in this section in order to estimate posterior probability \(P(C|x(t),v(t)) \) and \(P(B|x(t),v(t)) \) later in the next section based on observations.

A. Likelihood function of Background in Video

1) Traveling along Straight Roads

In the camera coordinate system \(O-XYZ \), \(X \) is the horizontal distance of an object point from the camera axis (from road if the camera is on a straight lane). For background, we have \(|X| > D \) where \(2D \) is the average road width. We can assume its probability distribution in \(O-XYZ \) as shown in Fig. 8a. The heights of background features are homogeneously distributed to include high buildings and trees. Assuming a pure translation of the vehicle first (i.e., \(R_y = 0 \)), the absolute speed \(V \) of the camera (in \(Z \) direction) follows a normal distribution, \(p(V) \sim G(S, \sigma) \), where its average value \(S \) can be set properly such as 50km/h for pursuing and the standard deviation \(\sigma \) can be 10km/h.

For a background point, its \(V = 0 \) and \(V = -V \) approaching to the camera, and its \(X \) is fixed. Then, the image velocity in Eq. 3 becomes

\[
\frac{dx}{dz} = \frac{F \cdot v(t)}{Z_0^2} \quad \text{for} \quad V > 0
\]

(8)

This draws dense function curves in \((x(t),v(t))\) space for various \(X \), as shown in Fig. 9a. If the vehicle has roughly a constant speed, the trajectory is a hyperbola \(x(t) = \pm F/(Z_0 - V \cdot t) \) in profile \(T(x,t) \) from an initial depth \(Z_0 \) according to Eq. 1. As to
the distribution of background features along the X direction, we can assume that it follows a flipped Gaussian distribution, i.e., $p(X) \sim \text{exp}(-X^2/2D^2)$ as Fig. 8a depicts.

Fig. 8 Probability distribution of background aside the road and its detectability displayed in dark intensity. (a) Background feature distribution on road sides, (b) Detectability of features reduced because of occlusion in urban areas as the distance to the road increases.

In general, if the PDF of a random variable X is $p_x(X)$, and β is a monotonic function of X, i.e., $\beta = f(X)$, then the PDF of β can be calculated as

$$p_\beta(\beta) = p_x(f^{-1}(\beta)) \left| \frac{df^{-1}(\beta)}{d\beta} \right|$$

or

$$p_\beta(\beta) = p_x(f(\beta)) \left| \frac{df(\beta)}{d\beta} \right|$$

according to [24]. The meaning behind these formulas is as follows. First, for discrete random events, a value of β is mapped from X. Therefore, the occurrence probability of β is exactly the same as that of X, i.e., $p_\beta(\beta) = p_x(\beta)$. Inversely mapping β to X in the domain can obtain $p_x(\beta)$ from corresponding $p_\beta(\beta)$. Second, for a continuous function f, derivatives $|f|$ in (9) adjusts the local range of the PDF between domain X and function β in representing the same random event. Further, for a multivariate function f, i.e., β and X are vectors of the same length, the PDF of the function can also be derived similarly with $|f|$ in it changed to a Jacobian format.

Now, we compute the likelihood $p(x,v|B)$ of image motion behavior for background point (X,Z,v). Here, the original variables are X, Z, and V in the 3D space and their PDFs are preset. The image parameters x and v are their dependent functions described by Eq. 1 and 8. Because the inverse mapping from x, v to X, Z, V is not a unique transformation between the same number of variables, we have to use Bayes theorem and conditional probability to include all the possible cases of X, Z, V in producing joint probability of (x,v). We map pair (x,v) to variables Z and V in the 3D space but loop X over its whole scope, which is detailed as

$$p(x,v|B) = p(x,v|X,Z)$$

$$= \int p(X)p(x,v|X,X,Z) dX$$

$$= \int p(X)p(Z(x,v), V(x,v) | X) \frac{|X|}{x^2} dX$$

Eqs. 9,1,8

Replace $p(x,v)$ with $p(Z,V)$ and compute Jacobian

$$= \int p(X)p(Z(x,v) | V(x,v)) p(V(x,v)|X) \frac{|X|}{x^2} dX$$

$$= \int p(X)p(Z | X) p(V|X) \frac{|X|}{x^2} dX$$

Eqs. 1,8

Because $p(Z)$ is invariant in the Z direction as depicted in Fig. 8a, $p(Z)$ can be moved out of the integral above as a constant. Input original probability distributions of X and V, the likelihood PDF for background becomes

$$p(x,v|B) = C_b \int p(X) p \left(V = \frac{\sqrt{X^2} - S}{x^2} \right) \frac{|X|}{x^2} dX \tag{10}$$

$$= C_b \int (1-e^{-2D^2}) e^{-\frac{x^2}{2\sigma^2}} \frac{|X|}{x^2} dX$$

where C_b is a constant and a Jacobian $|.|$ is included.

In real situations, we further consider the detectability of background scenes as a function $p^{(d)}(X) \propto 1/(|X|+1)$. The objects at roadside have the highest visibility. The further the object is away from the road ($|X|$ increases), the greater the chance of it to be occluded by front objects. $p(X)$ modified by $p^{(d)}(X)$ is

$$p(X) = \frac{1-\exp(-X^2/2D^2)}{1+|X|} \tag{12}$$

The likelihood PDF of background is then

$$p(x,v|B) = C_l \int e^{-\frac{x^2}{2\sigma^2}} \frac{|X|}{x^2} dX$$

where C_l is a constant for normalization, i.e., $\int p(x,v|B) dx dv = 1$. After $p(x,v|B)$ is established, we normalize it in the entire scope to determine C_l and create a PDF as shown in Fig. 10. The values form a look-up table for use in real time tracking and computation using the HMM.

Fig. 10 Probability distribution $p(x,v)$ of background in motion.
2) Traveling on Curved Roads

During smoothly driving of the observer-vehicle along a straight and mildly curved road, its steering change should be small. We can describe the vehicle rotation, $R_0(t)$, in normal distribution with a small variance. According to Eqs. 4 and 5, we estimate a general distribution $p(x,v)$ including rotation by adding component $v^{(0)}$ to the image velocity that was from translation $v^{(t)}$ so far. As illustrated in Fig. 11, this is a vertical shift of $p(x,v)$ from $v^{(t)}$ by term $v^{(0)}(t)$ in a quadratic form. The updated scope of feature trajectories is intuitively drawn in Fig. 11 for a certain steering angle R_0. If the rotation parameter $R_0(t)$ is not provided from the encoder of the observer vehicle, we have to include all the possible values of $R_0(t)$ in normal distribution for computing $p(x,v|B)$ as

$$p(x,v|B) = \int p(R_0)p(x,v|R_0) dR_0$$

$$= \int p(R_0)p(x,v | v = (y^{2}v - x^{2} + f^{2}R_0) dR_0$$

$$= \int p(R_0)p^{(0)}(X)p(X) \int Z = (x^2 + f^2 R_0) dX dR_0$$

$$\times \left\{ v = (y^{2}v - x^{2} + f^{2}R_0) \int X dR_0 \right\}$$

$$= C_{v} \int \frac{-R_0^2}{2\alpha^2} \frac{x^2}{X^2} dX dR_0$$

where C_{v} is a constant to be determined in normalization of $p(x,v|B)$. Figure 12a shows such a result that is basically a Gaussian blur of the PDF of vehicle translation (Fig. 10) in the velocity direction.

$$\text{Road curved to left, } R_0 < 0$$

$$\text{Road curved to right, } R_0 > 0$$

Fig. 11 Adding a rotation component to translation to cope with curved road. (left) $p(x,v)$ from translation of camera, middle) motion component caused by rotation from vehicle steering, (right) Shifting distribution $p(x,v)$ from translation yields a new distribution (between two curves) including rotation.

A. Probability of Target Vehicle Motion in Video

Assuming a pure translation of the observer vehicle as shown in Fig. 13a, we can assume the 3D position of a target vehicle on the road, $(X(t), Z(t))$, following 2D normal distribution $G((0,0), (\sigma^2_x, \sigma^2_z))$, where F is its average distance from the camera. Here, $X(t)$ and $Z(t)$ are independent and D and $2F$ are used as the standard deviation. The projection of the normal distribution onto the image frame is depicted in Fig. 13b, which is distributed vertically in a cylinder according to a height probability distribution $H(Y)$ of vehicle features as shown in Fig. 13c. In the Y direction, the features are guaranteed to be detected near the ground due to the uniformity and high contrast of the vehicle shadow, tire, and bumper against the homogeneous ground. However, features may not be found reliably at higher Y positions due to a low height of target vehicle, highlights on its metal top, and changing reflections on the back window. A gray car may have its top color mixed with sky. Here we design a feature distribution function in Y position as $p(Y) = (Y+3)/(Y+4)$ in system $O-XYZ$, where $Y \in [-3m, 1m]$ assuming the Y axis is facing down and the camera position $(Y=0)$ on the vehicle is $1m$ above the ground $(Y=1m)$. Moreover, we assume that the relative speed of the target vehicle to the camera, denoted by (T_0, T_2), also follows a normal distribution $G((0,0), (\sigma^2_x, \sigma^2_z))$ in a stable pursing period, where T_0 and T_2 are independent.

$$\text{Observer car}$$

$$\text{Top of truck}$$

$$\text{Camera}$$

$$\text{Ground}$$

$$\text{Road}$$

$$\text{FOE}$$

$$\text{Image frame}$$

Figure 13 Probability density of target vehicle position relative to the camera shown in the intensity. The darker the intensity, the higher the probability is. (a) Target distribution in top view, (b) Projection of the distribution onto image frame, (c) Vehicle feature distribution in height, which is from the ground to the top of highest vehicle in about 4m. The Y axis is downward to fit with the Z axis in the forward direction.

For a tracked car, we can thus compute its image behavior $p(x,v|C)$ according to Eqs. 1,3. For a point on the target vehicle,

$$p(x,v|C) = p(x,v|X(Z,T_x,T_z) \in C) = p \left(x \frac{fX}{Z}, v = \frac{T_x - xT_z}{Z} \right)$$

$$= \int p(x,v) \left| \begin{array}{l} x = \frac{fX}{Z}, \ v = \frac{T_x - xT_z}{Z} \end{array} \right| dZ$$

Bayesian

$$= \int p(Z)p(X = \frac{xZ}{f}, T_x, T_z = \frac{Z + xT_z}{f}, Z = \frac{Z^2}{f}) dZ$$

Eq 9

$$= \int p(Z)p \left(\begin{array}{l} X = \frac{xZ}{f}, T_x, T_z = \frac{Z + xT_z}{f} \end{array} \right| Z \frac{Z^2}{f} dZ$$
where C_2 is a constant for normalization, i.e., $\int_{Z} p(x, v|C) dx dv = 1$. Figure 12b shows this likelihood PDF for target vehicles. Moreover, the likelihood PDF containing the observer vehicle rotation can be derived similarly as Eq. 14, as

$$p(x, v|C) = C_2 \int_{Z} e^{-\frac{(Z-E_y)^2}{2\sigma^2}} \left[\frac{Z^2 - x^2 \sigma^2}{\sigma^2} + \frac{Z v + x T_y}{T_y} \right] Z^2 dT_y dZ$$

$$= C_2 \int_{Z} e^{-\frac{(Z-E_y)^2}{2\sigma^2}} \left[\frac{Z^2 - x^2 \sigma^2}{\sigma^2} + \frac{Z v + x T_y}{T_y} \right] Z^2 dT_y dZ$$

V. MOTION BASED IDENTIFICATION OF TARGET

A. Motion Behaviors of Scenes in Different Traces

The motion properties in the spatio-temporal image are the key evidence in our vehicle identification. The background motion is determined by the camera ego-motion and its distance. As the forward-looking camera undergoes a translation in the Z direction, we can obtain the condensed temporal image composed of 1D profiles. In such a spatio-temporal representations illustrated in Fig. 15, (1) backgrounds pursue hyperbolic trajectories expanding from the projection of FOE. Features move sideways in the view with increasing image velocities; (2) the curvature of a trajectory is high for objects close to the road and is low (flat trace) for objects far from the road; (3) the image velocity is proportional to the image position $x(t)$. The image velocity is high at scenes passing by, and is low at scenes ahead. On the other hand, vehicles tracked within the road may stay in the image frame even if they drive irregularly in a zigzag way.

How to classify traces to vehicles and background? By tracking the trajectories for a short while, our method will be able to identify the traces with certain probabilities. This is done by computing the probability at each moment using the Hidden Markov Model (HMM) based on (x, v) sequences. Continuous tracking of traces further enhances the confidence of the decision. By formulating the classification problem in a probabilistic framework, we can avoid the accumulation of nonlinear decisions from multiple thresholds in segmentation and tracking, and thus improve the quality of vehicle identification.

B. Computing Posterior Probability Using HMM

After obtaining the likelihoods $p(x, v|B)$ and $p(x, v|C)$ initially in two tables, we can now estimate the identities of features based on their motion behaviors. The posterior probabilities of states under observation $(x(t), v(t))$ are denoted by $P(C|t)$.
noise; we assume that a target vehicle will not vanish from the
duration of time. Otherwise, such a short trace is removed as
new HMM. The calculated trace identity may be uncertain at
field of view rapidly. If a new trace is found, it assembles a
background otherwise. The identity of a trace is formally

\[
P(B_t | C_{t-1}) = 0.5 \quad P(B_t | C_{t-1}) = 0.5
\]

The transition from car to car, i.e., \(P(C_t | C_{t-1})=0.8\), emphasizes the
continuity of car motion. Once a car is detected, it will not
be missed easily. A background may be identified as a car
later, i.e., \(P(C_t | B_{t-1})=0.5\), because there may not be a strong
cue to determine a car in the image region near the FOE
where both background and vehicle have small image
velocity. When a trajectory is initially detected \((t=0)\), its
probabilities as a car and background are set empirically as
\(P(C_0)=0.7\) and \(P(B_0)=0.3\) according to our detectability of
vehicle features in the weighted image area.

Using Viterbi algorithm \([5]\) in the HMM, the probability of
a trace to be assigned as car at time \(t\) is optimized as

\[
P(C_t) = \max \{ P(B_{t-1})P(C_t | B_{t-1})p(x(t),v(t) | C_t),\]
\[P(C_t)p(C_t | C_{t-1})p(x(t),v(t) | C_t) \}
\]

And the probability as background is

\[
P(B_t) = \max \{ P(B_{t-1})P(B_t | B_{t-1})p(x(t),v(t) | B_t),\]
\[P(C_t)p(B_t | C_{t-1})p(x(t),v(t) | B_t) \}
\]

If \(P(C_t)>P(B_t)\), the trace is considered as a car at time \(t\), and as
background otherwise. The identity of a trace is formally
output or displayed after the trace is tracked over a minimum
duration of time. Otherwise, such a short trace is removed as
noise; we assume that a target vehicle will not vanish from the
field of view rapidly. If a new trace is found, it assembles a
new HMM. The calculated trace identity may be uncertain at
the beginning due to lack of evidence. The probability will
increase as the trace is constantly tracked and updated.

As we track all the traces in the profiles during the vehicle
motion, we apply the HMM on each trace to update its state,
i.e., car or background. At every moment, the obtained
posterior probabilities of a trace, \(P(B(x,v))\) and \(P(C(x,v))\), are
normalized by

\[
P(C_t) \leftarrow \frac{P(C_t)}{P(C_t)+P(B_t)} \quad P(B_t) \leftarrow \frac{P(B_t)}{P(C_t)+P(B_t)}
\]

in order to avoid a quick decreasing of \(P(C_t)\) and \(P(B_t)\) values
to zero in Eq. 21 and 22, caused by multiplying a series of
probability values less than 1.

VI. EXPERIMENTS AND DISCUSSION

Because the introduced probability distributions of scenes
tolerate variations of targets, the precision of feature locations
becomes less critical to the results. We therefore omit serious
camera calibration by indicating the image position of forward
direction, horizon, and the visible portion of self-car in video
frame in advance. These parameters are invariant to the
dynamic scenes during vehicle motion.

We have examined our method on eight video shots lasting
1 hour and 20 minutes collected from rural and urban roads
with various illumination conditions. The videos consist of
both night-time and day-time clips. We implemented our
method in C++ using the OpenCV on AVI video format. The
likelihood maps were computed offline using MatLab.

The thresholds used in this work are usually low to allow
more candidates to be picked up in the processing; we avoid
abrupt cutting off of features and traces in feature detection
and tracking. Their classification and identification as real
targets and noises is handled later probabilistically in the
HMM. This solves the problem of threshold selection that
affects the results drastically.

In the feature detection, the length of a horizontal line
segment is not very important, since we are counting numbers
of line segments at each image location \(x\) and then finding
peaks after smoothing: a long line may contribute to
everywhere horizontally and will not influence the peak
locally. As one can observe, the traces in the profiles of line
segments provide strong evidence of vehicle presence. On the
other hand, the traces from intensity and corner profiles are
much more precise and smooth. Hence, our strategy is to
combine these features for a correct decision on vehicle width.
By referencing to left and right traces in \(T(x,t)\) that bound a
vehicle trace in \(T(x,t)\), the width search of vehicles is
narrowed in the video frame. Hence a box can be located on
a vehicle for display in every video frame.

In feature tracking using vertically condensed profiles, we
need target vehicles to be present in a certain number of
frames before we can conduct a successful identification. This
number is calculated empirically depending on the targeted
objects. In our tests we defined the minimum tracking duration
for a targeted vehicle as 50 frames (roughly 1 second of
video). We remove tracking history after a trace is lost for at
least 20 frames. The minimum strength of the trace for
thresholding purposes is set to the top 67 percentile; this will
remove the noise and weak traces.

![Fig. 16 Traces and motion of opposite vehicles bounded by blue curves.](image)
disambiguated after a period of time as their motion demonstrate sufficient differences.

The oncoming vehicles traveling on the opposite lanes are treated as background. In addition to their positions $|X|$ that are beyond the boundaries of the lanes of the observer vehicle, their relative velocities, denoted as V_{opp}, are faster than that of the background ($-V$). The traces of opposite vehicles will be even more slanted than background traces in the condensed profile. As in Fig. 9, these traces will be located close to the v axis in a strongly curved way as illustrated in Fig. 16. Their likelihood of motion is not overlapped with that of forward moving vehicles, except at the area where $|x|$ is small. This means that the oncoming vehicle is far away and thus small in the image; it has little influence on safety tracking of vehicles. On the other hand, a stationary vehicle at roadside has the same behavior as the background and is treated as a static obstacle.

![Fig. 17 Probabilities of traces displayed in gray level. Car: white, Background: black, No feature and uncertain traces: gray. A Feature may be uncertain at the beginning of its trace and turn to be confident as it is tracked for a long time.](image)

![Figure 18 Vehicle detection and tracking results](image)

The PDF and parameters defined in this work are wide to include all possible cases. If the ego-motion could be read from its mechanical/electric system, the PDFs of many parameters would be narrowed down dynamically to proper ranges and the likelihood maps will be precise for target tracking and identifying. Figure 17 shows examples of trace identification. Figure 18 gives vehicle detection and tracking results. The program can successfully track the targets and is invariant to lighting condition. In Fig. 18f, the tracking program locates two overlapping boxes on a single car as the scaling up of the car increases detailed line segments and then traces. Figure 18b is the presence of multiple distant cars moving together. The line segmenting algorithm recognizes them as a single group. As the vehicles separate their movements, the mixture of horizontal line segments has dispatched and thus the algorithm separates them. Moreover, the shadow with a vehicle body also creates edges in the video and we just consider it to be a part of vehicle.

We have obtained the confusion matrix shown in Table II. The classified result of each trace is compared to the truth in the video by humans and is verified according to the trace points after the initial uncertain period determined by the minimum number of frames for identification. In most cases of correct detection, the duration of the tracking lasts as long as the vehicle remains in the scene. If a detected vehicle moves too far from the observer car, the tracking is stopped.

The limitations of this work are as follows. (1) Although the method functions well in mild driving conditions, more complex PDFs for unsteady motion should be investigated under drastic driving conditions. (2) Distant vehicles are difficult to be detected because of their small sizes in the vertical profiling, though they have no influence on safety driving. The loss of target tracking due to a far distance can still be picked up if the target gets close again. (3) The necessity in collecting motion evidence for a period of time.
when the observer vehicle has a reasonably high speed. The longer we track an object, the higher the probability of a correct identification is by the HMM. Although the HMM provides probability from the very beginning as a trace is detected, it will be uncertain if the time for displaying motion tendency is insufficient. This time depends on the vehicle speed and how wide the environment is. Distant background in the forward direction requires a long time to be classified. Fortunately, they are far away and are mostly ignored due to their small sizes in images or are not urgent obstacles to avoid. An examination of their scale changes can help the decision making. Even if the observer vehicle moves fast, wide scenes (large |X|) may still be uncertain for a while due to their low image velocities according to Eq. 8. Such a case will not affect the safety either. In contrast, close by objects and narrow environments usually show fast image velocities during the ego-motion, which can be identified quickly.

Table II

<table>
<thead>
<tr>
<th>Prediction</th>
<th>Car True Positive 86.6%</th>
<th>False Positive 13.2%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td>False Negative 14.1%</td>
<td>True Negative 85.9%</td>
</tr>
</tbody>
</table>

VII. CONCLUSION

This paper focuses on an important task to detect and track vehicles ahead with an in-car video camera. Our approach is mainly based on motion information. Several general features that characterize the vehicles ahead are extracted robustly in the video. Their positions are profiled vertically to yield condensed profiles to speed up vehicle tracking and identification. Feature motions are displayed as observable traces. We introduced the HMM to the vehicle identification during tracking such that the decision follows a probability framework that is less influenced by ad-hoc thresholds. The joint probability of image positions and velocities of traces are calculated for the HMM to separate target vehicles from background dynamically. The use of temporal motion coherence of features enhanced the identification and tracking of vehicles. Experimental results show the effectiveness of the system design and implementation. The computation is implemented in real time and is easy to be embedded into a hardware for real vehicle-borne video.

ACKNOWLEDGEMENT

This Intelligent In-car Video System project is supported by National Institute of Justice, USA, grant #2007-DE-BX-K007. The authors would like to thank Mr. Herb Blitzer for his contribution in managing the project.

REFERENCES

Amirali Jazayeri received BS from University of Indianapolis, MS degree from the Department of Computer Science, IUPUI in 2010. He has been working on video processing and human motion understanding in the project.

Hongyuan Cai (M’10) received his BS degree in computer science from Beijing Forestry University, China in 2007, and MS degree in computer science from IUPUI in 2010. He is currently a PhD student in Department of Computer Science, IUPUI, working on image and video processing.

Jiang Yu Zheng (M’90-SM’05) obtains BS degree from Fudan University, China 1983, and PhD from Osaka University, Japan, 1990. He is currently a Professor in the Dept. of Computer Science, IUPUI. His research interests include image and video processing, computer vision, multimedia, virtual reality, robotics, and digital forensics. He received best paper awards from the Information Processing Society of Japan in 1991 and ACM VRST04 for creating the first digital panorama and scene tunnel images, respectively.

Mihran Tuceryan (M’86–SM’05) received his BS degree from MIT in 1978 and PhD degree from University of Illinois Urbana-Champaign in 1986. He is currently an Associate Professor in the Department of Computer Science at Indiana Univ. Purdue Uni. Indianapolis (IUPUI). His research interests include computer vision and visualization, augmented reality, pattern recognition.