ComprehEnRank: Estimating Comprehension in Classroom by Absorbing Random Walks on a Cognitive Graph

Nimit Pattanasri, Masayuki Mukunoki, and Michihiko Minoh
Academic Center for Computing and Media Studies, Kyoto University

Abstract. We develop a graph-theoretic framework for estimating comprehension in classroom. To deal with imprecise data gathered in classroom, we propose multi-step comprehension propagation over a semantic graph. Random walks on the graph measure students’ comprehension with probabilities absorbed at student nodes.

Motivation

- Why not let us directly report our comprehension to you in an identified or anonymous manner?
- Why?
 - To adapt teaching strategies in real-time
 - To improve lecture materials

Empirical Characteristics

Prerequisite Effect
- When \(d = 1 \), we trust \(w_i \) as much as \(w_j \) (consistency validation).
- When \(d = \infty \), we completely trust students’ rating data (our model subsumes the baseline approach, and is adaptive depending on \(d \)).

Limitation
- Our model is predictive, not deductive.
- Concepts \(c_1 \) and \(c_2 \) are closely related. Chances are that this student understands \(c_2 \) after \(c_1 \) or both at the same time.

Datasets

- We collected slides from two lectures of a digital image processing course taught in Japanese at Kyoto University.
- The ideal cognitive graph has 43 slide nodes, 9 concept nodes, 12 links of referTo, and 20 links of explainably (top 5 relevant slides).
- Students’ rating data were acquired by questionnaires in the classroom.

Preliminary Evaluation

- Concept comprehension is usually evaluated by test scores.
- We measure correlation between test scores and the measures:
 - % Understood: How many concepts a student understands (concept comprehension \(\geq 0.8 \))
 - % Not Understood: How many concepts a student does not understand (concept comprehension \(< 0.4 \))
 - Avg. Comprehension: Concept comprehension averaged over all concepts in the cognitive graph
 - % Lowest/Low/Highest: How many slides with a particular rating

Contact: nimit@mm.media.kyoto-u.ac.jp