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Neuronal dysfunction in chronic spinal cord injury
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This review describes the changes of spinal neuronal function that occur after a motor complete spinal
cord injury (cSCI) in humans. In healthy subjects, polysynaptic spinal reflex (SR) evoked by non-noxious
tibial nerve stimulation consists of an early SR component and rarely a late SR component. Soon after a
cSCI, SR and locomotor activity are absent. After spinal shock; however, an early SR component
re-appears associated with the recovery of locomotor activity in response to appropriate peripheral
afferent input. Clinical signs of spasticity take place in the following months, largely as a result of non-
neuronal changes. After around 1 year, the locomotor and SR activity undergo fundamental changes,
that is, the electromyographic amplitude in the leg muscles during assisted locomotion exhaust rapidly,
accompanied by a shift from early to dominant late SR components. The exhaustion of locomotor
activity is also observed in non-ambulatory patients with an incomplete spinal cord injury (SCI). At
about 1 year after injury, in most cSCI subjects the neuronal dysfunction is fully established and remains
more or less stable in the following years. It is assumed that in chronic SCI, the patient’s immobility
resulting in a reduced input from supraspinal and peripheral sources leads to a predominance of
inhibitory drive within spinal neuronal circuitries underlying locomotor pattern and SR generation.
Training of spinal interneuronal circuits including the enhancement of an appropriate afferent input
might serve as an intervention to prevent neuronal dysfunction after an SCI.
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Introduction

There are several promising neuroregenerative and neuro-

protective treatments that are directed to limit neuronal

damage and/or induce neuronal regeneration after a spinal

cord injury (SCI)1–3 and they will enter the clinic within the

next decade.4–6 However, the auspicious results in animal

experiments often cannot be replicated in humans.

For example, the application of regeneration-facilitating

olfactory ensheathing cells led to a recovery of function

after an SCI in rodents,7–10 but had no or only a poor effect

on the neurological deficit in humans with SCI11–15 in well-

controlled14 but also rather uncontrolled studies.11–13,15

The main problem is the time of the treatment onset. It is

known that early treatment onset may help to prevent scar

formation16 and therefore, a part of regeneration could occur

before scar formation is established. Another important

aspect concerns the intrinsic capacity of central neurons to

regenerate which leads to the necessity to treat as early as

possible after an SCI. Therefore, the treatments in rat models

are usually administered soon after the injury.17–20 In

humans, treatment after the SCI is often delayed because

at a later stage the clinical condition is more stable.

A preservation of the function of spinal neuronal circuits

below the level of lesion, however, is an important

prerequisite for the success of any kind of regeneration-

inducing therapy.5

Studies with chronic complete spinal cord injury (cSCI)

subjects during the past few years provided some evidence

that the function of spinal neuronal circuits below the level

of the lesion is impaired.21,22 The purpose of this review is to

depict the behavior of spinal neuronal circuits deprived from

appropriate supraspinal and afferent input and to discuss

potential countermeasures to prevent neuronal dysfunction

below the level of lesion in the chronic stage of SCI.

Neuronal dysfunction after SCI

As spinal shock resolves after an acute SCI, the reappearance

of polysynaptic spinal reflex (SR) function is associated with

the recovery of locomotor EMG activity in rats,23 and people

with cSCI through assisted leg movements.21,24,25 In

humans, during the subsequent weeks, the amplitude of

locomotor EMG signals and SR activity increases. However,

compared with recordings made in healthy individuals, the

amplitude of leg muscle EMG activity evoked during assisted

locomotion with body-weight support is much reduced.26,27
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The neuronal activities that underlie locomotion and SR

reach a steady state some months after a human SCI.18,28 A

cSCI at this stage is characterized by the development of

spasticity with exaggerated tendon tap reflexes, increased

muscle tone and spasms. Electrophysiological recordings of

polysynaptic SR show successively smaller amplitudes of the

early SR component and increasing amplitudes of the late SR

component, while H-reflexes are unchanged.28,29 At a

chronic stage of cSCI only late SR components are observed

(see Figure 1). Secondarily occurring non-neuronal changes,

that is, alteration in muscle mechanic, rather than a

neuronal hyperactivity, are assumed to be responsible to

increased muscle tone at the subacute stage after the

SCI.30–32 In addition, the difference in the level of muscle

activity between active (movement) and passive (clinical)

conditions is lesser in spastic limbs than in unaffected

limbs.33

Both spinal and supraspinal lesions lead to both loss of

supraspinal drive and defective use of afferent input. These

changes obviously affect the behavior of short and long-

latency SR and lead to paresis and maladaptation of the

movement pattern. Changes in the mechanical properties of

muscle fibers34 result in spastic muscle tone, which partly

compensates for the paresis.35 In patients with incomplete

SCI, these non-neuronal changes allow to keep posture

during walking, as seen in the spastic movement disorder.

In humans, characteristic changes in neuronal behavior

occur approximately 1 year after a severe SCI: after some

minutes of assisted locomotion, the EMG amplitude de-

creases nearly to a noise level.22 This phenomenon called

‘EMG exhaustion’ cannot be reversed by locomotor training

and is more pronounced in the leg flexor than in the

extensor muscles. So far, no condition in animal models is

known that corresponds to the phenomenon of EMG

exhaustion in human SCI. The exhaustion of locomotor

activity is assumed to take place at a premotoneuronal (that

is, spinal interneuronal) level.36 Two observations support

this assumption: first, the muscle action potentials and

H-reflexes do not change in amplitude during repetitive

nerve stimulation22,37 and second, EMG activity of all leg

muscles became enhanced during spasms induced by

stumbling, despite of an exhaustion of locomotor activity

at the end of a training session.22

Corresponding to the EMG exhaustion phenomenon

during assisted walking, SR behavior undergoes changes

too insofar that a second late SR component can be evoked

by tibial nerve stimulation, while the amplitude of the early

component decreases.21 There obviously exists a temporal

relationship between the decrease of the early SR compo-

nent, the increase of the late SR component and the degree

of exhaustion of locomotor activity (see Figure 2).21

A partial loss of EMG activity occurs already from the

beginning of a training session and encloses a rarefaction of

EMG activity/potentials, while during EMG exhaustion the

EMG activity is present at the beginning of assisted

locomotion and fades out over 5–10 min. This partial loss

of EMG activity that is observed mainly in the leg flexors

seems to occur independently of the exhaustion of EMG

activity.21 Transsynaptic degeneration of motoneurons

might be the cause of this loss of EMG activity as suggested

by rodent studies.38 Neuronal circuits in the spinal cord

of rats strongly depend on the input that is lost after

an SCI.39,40 Also in human SCI there is indirect evidence

suggesting a transsynaptic degeneration of spinal

neurons after an SCI.41–44 For example, using the threshold

tracking technique, excitability of peroneal nerve axons

was found to drop down distal to the site of injury in SCI

subjects.43

The EMG exhaustion phenomenon is observed in the

presence of long-lasting immobility, regardless of the

completeness of the SCI. Although most SCI subjects

classified according to the American Spinal Injury Associa-

tion Impairment Scale (AIS) as AIS A and B show the

exhaustion phenomenon,21 patients with sensorimotor

incomplete SCI (AIS C and D) who regularly perform

stepping movements show no EMG exhaustion and their

early SR component remains dominant. In contrast, incom-

plete SCI subjects who are wheelchair-bound show the same

Figure 1 SR responses in healthy and chronic cSCI subjects. Representative examples of SR responses in the ipsilateral tibialis anterior muscle
evoked by tibial nerve stimulation at the medial malleolus in a healthy (age 25 years) and a chronic (4.3 years since injury) cSCI (age 23 years)
subject. At the onset of the electromyographic recordings, stimulus artifacts are present.
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Figure 2 Time course of SRs and locomotor activity. Representative examples of SR behavior and locomotor activity during assisted
locomotion at (a) early, (b) transition and (c) chronic stages after a complete SCI. SRs see Figure 1. Locomotor activity of four leg muscles is
shown at the beginning of assisted locomotion (left side) and 10 min thereafter (right side). From Dietz et al.21
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exhaustion of EMG activity as do AIS A SCI patients, and a

late SR component is dominant.21

Mechanisms of neuronal dysfunction

So far, the cause of the EMG exhaustion phenomenon

remains unclear. Our currently favored assumption is that a

loss of supraspinal and appropriate peripheral input causes a

predominance of inhibitory influences on the locomotor

pattern, leading to the decrease of EMG amplitude during

assisted locomotion.36 In vertebrates, there exists a close

interaction of excitatory and inhibitory interneuronal

activity within the pattern-generating neuronal circuits

shaping the locomotor pattern.45 After an SCI, the excitatory

neuronal circuits become deprived of appropriate afferent

input and concurrently more-centrally controlled inhibitory

neuronal circuits might become predominant, resulting in a

weakening of the function of excitatory neuronal circuits.

These changes might be reflected in the facilitation of long-

latency pathways that mediate inhibitory signals, resulting

in the inhibition of the earlyFand thereby mediating the

lateFSR component. Indeed, such basic changes in the

balance between excitatory and inhibitory inputs to spinal

neuronal circuits have been described in cats with SCI46,47 in

which walking function could markedly be improved by

blocking of inhibitory transmission.48

The two following observations support the evidence that

changes in locomotor and SR function in chronic SCI are

caused by a shift towards the predominance of inhibitory

neuronal circuits and not necessarily to a degradation of

spinal neuronal function: first, the intact locomotor net-

works observed even more than 25 years after an SCI, and

second, the modifiability of EMG exhaustion (and SR

changes) in incomplete SCI subjects by functional training.

To what extent an improvement in locomotor function by

training is associated with a shift to a dominant early SR

component is yet unclear. In addition, it would be of interest

to see whether the SR component pattern can serve as a

marker to identify preserved locomotor function, that is,

daily walking ability in patients suffering an SCI.

Potential countermeasures

The preservation of neuronal function below the level of

lesion is of crucial importance for the success of future

regeneration-inducing treatments after a severe SCI. Pre-

sently, regeneration-inducing therapies should not be per-

formed in chronic SCI subjects showing a neuronal

dysfunction until appropriate countermeasures are devel-

oped. The weak effect of a non-functional recovery described

recently for single chronic subjects after olfactory ensheath-

ing cell transplantation15 would even be compatible with the

neuronal dysfunction described here. In the future, an

appropriate timing of combined regeneration- and plasti-

city-enhancing therapies should be taken into account.49,50

Functional training seems to have an important role in the

prevention of neuronal dysfunction. However, the exhaus-

tion phenomenon could not yet be reversed by a locomotor

training in the chronic stage of a motor complete SCI.22

Preliminary observations indicate that the neuronal dysfunc-

tion is partially reversible in non-ambulatory AIS C subjects

by locomotor training combined with functional electrical

stimulation (unpublished observation). In fact, an improve-

ment of ambulatory function through intensive locomotor

training can be achieved in chronic incomplete SCI subjects.51

By such a functional training therapy inhibitory signals might

become blocked as demonstrated in the cat.48

Actually, several questions have to be answered. How soon

after an SCI should locomotor training be started in order to

prevent neuronal dysfunction? Which qualitative features

does the training require? Would the provision of some

artificial afferent input, for example, repetitive electrical

stimulation of flexor-reflex afferents and/or cutaneous

afferents, be sufficient to prevent neuronal dysfunction?

The aim has to be to induce regeneration before a neuronal

dysfunction is established.

Conclusions

A dysfunction of spinal neuronal circuits, underlying

locomotion and associated reflex, develops after a severe

SCI. The dysfunction of spinal neurons chronically deprived

of supraspinal and appropriate peripheral input is reflected

in an exhaustion of locomotor EMG activity with an

associated shift from dominant early to dominant late SR

components. These changes are suggested to be due to an

imbalance of excitatory and inhibitory neuronal circuits

resulting in the emergence of a bias to inhibitory signals

within spinal neuronal circuitries. Further research is

required to more precisely define the nature of the neuronal

dysfunction, that is, the changes of excitatory and inhibitory

activity of neuronal circuits below the level of lesion. In

addition, an animal model of chronic SCI might be able to

elucidate the neuronal mechanisms underlying the neuronal

dysfunction after an SCI and facilitates the development of

appropriate countermeasures.
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