Communication

Interval-regularity does not lead to interval monotonicity

Michel Mollard

LSD (IMAG) BP 53X, 38041 Grenoble Cedex, France

Communicated by C. Benzaken
Received 17 March 1993

Abstract

We give the construction of an infinite family of interval-regular graphs which are not interval monotone, thus disproving a conjecture of H.M. Mulder.

0. Introduction

A connected graph G is said to be interval-regular if, for any two vertices u and v of G, the number of neighbours of u that lie on a shortest (u,v)-path is precisely the distance between u and v. Foldes [1] proved that an equivalent property is the following.

Theorem. Let G be a connected graph then G is interval-regular if and only if for any two vertices u and v of G there is exactly $d(u,v)!$ shortest (u,v)-path in G.

The hypercube Q_n is an example of such a graph and in the same paper Foldes proved that the bipartite interval-regular graphs are the hypercubes. For any two vertices u and v of $G=(V,E)$ the interval between u and v is the set:

$I(u,v)=\{w \in V/ w$ lies on a shortest (u,v)-path$.}$

Correspondence to: Michel Mollard, LSD (IMAG) BP 53X, 38041 Grenoble Cedex, France.

0012-365X/93/$06.00 © 1993—Elsevier Science Publishers B.V. All rights reserved
A natural idea is to study the convexity of intervals and to introduce the notion of interval monotone graph [2, 3]: A graph $G=(V, E)$ is interval monotone if and only if for any u and v,

$$x, y \in I[u, v] \Rightarrow I(x, y) \subseteq I(u, v).$$

Mulder proposed the following conjecture [2, 3] based on the observation of all known interval-regular graphs.

Conjecture. An interval-regular graph is interval monotone.

1. A family of interval-regular graphs

Let $n = 2m$ be an even integer and V_n be the set of words of length n over $\{0, 1\}$. For $i=1, \ldots, n$ let f_i be the mapping

$$x_1 \cdots x_{i-1} x_i x_{i+1} \cdots x_{2m} \xrightarrow{f_i} x_1 \cdots x_{i-1} \tilde{x}_i x_{i+1} \cdots x_{2m}.$$

Let θ be a permutation of $\{1 \cdots n\}$ such that $\theta^2 = \text{Id}$ and let T_θ be the induced mapping from V_n to V_n defined by

$$x_1 \cdots x_i \cdots x_n \xrightarrow{T_\theta} x_{\theta(1)} \cdots x_{\theta(i)} \cdots x_{\theta(n)}.$$

We have $T_\theta^2 = \text{Id}$, $f_i^2 = \text{Id}$, $f_i \circ f_j = f_j \circ f_i$.

Definition. $G_{m, \theta}$ is the graph with vertex-set V_n and where two vertices x and y are joined by an edge if and only if

$$\exists i \text{ with } f_i(x) = y \text{ (blue edge) or } x \neq y \text{ and } T_\theta(x) = y \text{ (red edge)}. $$

Let w be the Hamming weight function (number of 1 in the word). If $f_i(u)=v$ then $|w(u) - w(v)| = 1$ and if $T_\theta(u)=v$ then $w(u)=w(v)$ thus an edge cannot be red and blue.

The spanning subgraph of the blue edges of $G_{m, \theta}$ is the hypercube Q_n.

Theorem 1. $G_{m, \theta}$ is interval-regular.

Proposition 1. $T_\theta \circ f_i = f_{\theta(i)} \circ T_\theta$.

This is obvious: on the first hand we have

$$x_1 \cdots x_i \cdots x_n \xrightarrow{f_i} x_1 \cdots \tilde{x}_i \cdots x_n \xrightarrow{T_\theta} x_{\theta(1)} \cdots \tilde{x}_i \cdots x_{\theta(n)}.$$
where \bar{x}_i is in the position $\theta^{-1}(i) = \theta(i)$ and in the second hand

$$
x_1 \cdots x_i \cdots x_n \overset{T_{\theta}}{\longrightarrow} x_{\theta(1)} \cdots x_{\theta(\theta(i))} \cdots x_{\theta(n)} \overset{f_{\theta(i)}}{\longrightarrow} x_{\theta(1)} \cdots \bar{x}_i \cdots x_{\theta(n)}
$$

where \bar{x}_i is also in the position $\theta(i)$.

Proposition 2. A shortest path in $G_{m, \theta}$ uses at most one red edge.

Assume

$$(\cdots \circ T_{\theta} \circ f_{i_1} \circ \cdots \circ f_{i_k} \circ T_{\theta} \circ \cdots)(x) = y$$

then by Proposition 1

$$(\cdots \circ f_{\theta(i_1)} \circ \cdots \circ f_{\theta(i_k)} \circ T_{\theta} \circ \cdots)(x) = y$$

and there is a shorter path because $T_{\theta}^{2} = \text{Id}$.

Proposition 3. If there is a shortest path in $G_{m, \theta}$ between x and y using a red edge then every geodesic between x and y uses a red edge.

We know that the Hamming weight function verifies: if $f_{i}(u) = v$ then $|w(u) - w(v)| = 1$ and if $T_{\theta}(u) = v$ then $w(u) = w(v)$. Then if there exists a path using a red edge between x and y with length L, then the parity of $w(x) - w(y)$ is the parity of $L - 1$ and if there is a path between x and y of length L using only blue edges then $w(x) - w(y)$ and L have the same parity.

Proposition 4. If there is a shortest path in $G_{m, \theta}$ between x and y using only blue edges then x and y are joined by exactly $d(x, y)!$ geodesics.

This is an immediate consequence of Proposition 3 because the shortest paths between x and y use only the edges of Q_n and there is exactly $d(x, y)!$ geodesics in Q_n.

Definition. Assume that x and y are joined by a geodesic using a red edge then we have

$$f_{i_1} \cdots f_{i_k} \circ T_{\theta} \circ f_{\theta(i_k+1)} \cdots f_{\theta(i_p)}(x) = y$$

and thus

$$f_{i_1} \cdots f_{i_k} \circ f_{\theta(i_k+1)} \cdots f_{\theta(i_p)} \circ T_{\theta}(x) = y.$$

Notice that $i_1, \ldots, i_k, \theta(i_{k+1}), \ldots, \theta(i_p)$ are all distinct otherwise x and y will be joined by a shorter path. We say that the set $\{i_1, \ldots, i_k, \theta(i_{k+1}), \ldots, \theta(i_p)\}$ is the standard set of the geodesic. Clearly if $\{i_1, \ldots, i_p\}$ is the standard set of some geodesic then for all partition of $\{i_1, \ldots, i_p\}$ in A and B we have $A \cap \theta(B) = \emptyset$.

Proposition 5. All geodesics between x and y have the same standard set.

If

$$f_{i_1} \cdots f_{i_k} \circ T_\theta(x) = f_{j_1} \cdots f_{j_k} \circ T_\theta(x)$$

then for $u = T_\theta(x)$ we have

$$f_{i_1} \cdots f_{i_k}(u) = f_{j_1} \cdots f_{j_k}(u)$$

which implies $\{i_1 \cdots i_k\} = \{j_1 \cdots j_k\}$.

Proposition 6. If there is a shortest path in G_m between x and y using a red edge then x and y are joined by exactly $d(x, y)!$ geodesics.

All geodesics between x and y have the same standard set $\{i_1, \ldots, i_{d(x, y)}\}$ but such a standard set is common to at most $d(x, y)!$ geodesics. Reciprocally for every k in $\{1, \ldots, d(x, y)\}$ and every permutation σ of $\{i_1, \ldots, i_{d(x, y)}\}$ we have

$$f_{\sigma(i_1)} \cdots f_{\sigma(i_{d(x, y)})} \circ T_\theta \circ f_{\sigma^{-1}(i_1)}(\sigma(i_k)) \cdots f_{\sigma^{-1}(\sigma(i_{d(x, y)})} = y$$

and all the induced geodesics are distinct.

2. A family of counterexample

Let θ be the permutation defined by $\theta(i) = i + 1$ if i is odd $i - 1$ if i is even. We have $\theta^2 = 1$ and T_θ is the mapping

$$x_1 x_2 \cdots x_{i-1} x_i x_{i+1} x_{i+2} \cdots x_n \xrightarrow{T} x_2 x_1 \cdots x_{i-2} x_i x_{i+1} x_{i+3} \cdots x_{n-1}.$$

For every integer m by the above construction we obtain an interval-regular graph G_m of order 2^{2m}. The first examples are $K4-e$ and the graph G_2 shown in Fig. 1.

Theorem 2. G_m is not interval monotone for $m > 1$.

Let $x = (0 \cdots 0)^y = (111 \cdots 0)$. T does not change the Hamming weight thus every geodesic starting from x uses only the edges of Q_n thus the vertices x and y are at distance 3 in G_m and $I(x, y) = \{(abc0 \cdots 0)\}$.

Let $u = (1000 \cdots 0)$ and $v = (0110 \cdots 0)$. We have u and v in $I(x, y)$. u and v are not adjacent and thus are at distance 2 by the geodesics:

$$\begin{align*}
(10000 \cdots 0) & \xrightarrow{T} (01000 \cdots 0) \\ & \xrightarrow{f_3} (01100 \cdots 0)
\end{align*}$$

and

$$\begin{align*}
(10000 \cdots 0) & \xrightarrow{f_4} (10010 \cdots 0) \\ & \xrightarrow{T} (01100 \cdots 0)
\end{align*}$$

But $(10010 \cdots 0)$ is not in $I(x, y)$.

Fig. 1.

References