Decolourisation of Stochastic Symmetric Nets with Bags

Michal Žarnay & Manuel Silva
(University of Žilina, University of Zaragoza)
18 March 2010
Motivation

• Coloured Petri nets (CPN)
 – through “colours”, identities are modelled
 – natural description of systems with elements of various attributes
• Problem for highly populated systems: too large state space to be analyzed in reasonable time
• Continuous place/transition nets:
 – Lights: analysis of some highly populated systems
 – Shadows: Can any DES model be fluidified?
• How about transforming CPN-s to continuous P/T nets?
• Not interested in fluid-coloured nets, because identities lead to binary or small numbers

• Timed classes used
 – Coloured PN-s: Stochastic symmetric nets with bags (SSNB)
 – Non-coloured PN-s: Generalized stochastic Petri nets (GSPN)
Illustrating our desired procedure: Two steps from timed coloured to timed continuous Petri net

Preserving model performance results

Coloured PN model

Decolourisation: creating “populations” (non-distinguished elements)

Non-coloured PN model (partially…)

Fluidification

Continuous PN model
Getting the flavour: Dining philosophers (Dijkstra)

• P philosophers think (P1) and eat (P3) at one table sharing P forks.
• Philosopher x can use only forks x and x⊕1 (“!x”).
• Philosophers decide to eat after some time of thinking (T1).
• They start eating only when their relevant forks are free (P4 enables t2). Otherwise they wait for them (P2).
• They keep forks until they finish eating (T3).

• Structural and behavioural symmetries, but…
• This model cannot be decolourised due to the use of different resources
Getting the flavour: Dining philosophers – decolourisation

Now, let’s assume that **resources become common** (non-Dijkstra): any philosopher can take any couple of forks (guards on t_2 and T_3 disappeared)

This model can be decolourised because of using common resources
Getting the flavour: DinPhilCommon – fluidification

- t2 changed
- time delays:
 \[w(T1) = w(T3) = 1; \]
 \[w(t2) = 0.001 \]
 (in cont. model)

Discrete vs. continuous model: Throughput of T3 – difference and ratio
Contents

1. Decolourisation of autonomous nets
 1.1 Symmetric nets with bags (SNB)
 1.2 Decolourisation procedure of SNB
 1.3 Decolourisation of bags

2. Decolourisation of timed nets
 2.1 Stochastic symmetric nets with bags (SSNB)
 2.2 Decolourisation of SSNB
 2.2.1 Overview
 2.2.2 Transition parameters adjustment (TPA) rules
 2.3 SSNBDecolourisation examples
1. Decolourisation of autonomous nets: Basic idea

Limits of decolourisation based on net structure:

- limited use of inhibitor arcs
- limited use of synchronization functions and bag expressions on input arcs
- no more than one occurrence of \(x \) or \(!x \) in labelling functions of all input arcs
- additional constraints on variables to prohibit colour synchronization of tokens
- no occurrence of \(\text{ord}(x) \) function determining number of tokens
1. Decolourisation of autonomous nets: Previous work

- Chiola – Franceschinis, 1991
- Franceschinis – Ribaudo, 1996

- Decolourisation of symmetric nets (non-timed)
 - Based on reachability graph (behaviour)
 - Based on net structure – this is what we look for!
 - Timing issues mentioned partially in one paper

- Lumpability for stochastic symmetric net (timed)
 - Based on Symbolic Reachability Graph (SRG) is algorithmised
 - Here: we look for aggregation at net level (to keep the net structure)
 - it is computationally more efficient, but less power in reduction!
1. Decolourisation of autonomous nets: Basis for our work

Our work:
(partial) decolourisation +
(partial) unfolding +
adjusting of transition weights/rates

Limits of decolourization based on net structure:
* limited use of inhibitor arcs
* limited use of synchronization functions and bag expressions on input arcs
* no more than one occurrence of x or lx in labelling functions of all input arcs
* additional constraints on variables to prohibit colour synchronization of tokens
* no occurrence of ord(x) function determining number of tokens
1.1 SNBs: Dining philosophers with common res. (DinPhilCommon)

Symmetric Net with bags (SNB)
\(\mathcal{N} = \langle P, T, \text{Pre}, \text{Post}, \text{Inh}, \text{pri}, \text{Cl}, C, \Phi \rangle \)

Colour domains – from the set of basic colour classes \(\text{Cl} = \{cP, cR\} \)

Function defining colour domain
\(C(P3) = cP \times cR \times cR; \)
\(C(t2) = \langle \langle x, y, z \rangle \in cP \times cR \times cR \rangle \)

Arc functions

Initial marking:
\(mP = ph_1 \ldots ph_n; \)
\(mR = r_1 \ldots r_n \)

\(\Phi \) – mapping: guards on transitions

Inhibitor arcs (\text{Inh}) and priorities of transitions (\text{pri}) not used here
1.1 SNBs: DinPhilCommon with bags

- Resources are provided in a bag of 2 elements, not individually.
- Function \(Y \) represents a set – its cardinality is given in guard \(\Phi(t2) \)
1.1 Symmetric nets with bags: Relation to CPN

- Coloured Petri nets (CPN): tokens distinguished through colours
- Symmetric net
 - Has the same modelling power as CPN
 - Is subclass of CPN because it has more strict definition of colour classes (used in colour domains of places & transitions) and colour functions (in arc inscriptions & transition guards)
 - Colour classes and functions are written in more explicit (and parametric) form, using basic constructs of the formalism
- Symmetric net with bags
 - In addition to CPN: manipulation with bags of tokens
1.2 Decolourisation procedure of SNB: DinPhilCommon

- **Flow 1** (philosophers):
 - \(P1, P2, P3, T1, t2, T3 \)
 - colour domain \(cP \), variable \(x \)
- **Colour shrinking function 1**:
 \(cP \rightarrow cP' : \forall c \in cP: sh(c) = \bullet \)

- **Flow 2** (resources):
 - \(P3, P4, t2, T3 \)
 - colour domain \(cR \), variables \(y \) and \(z \)
- **Colour shrinking function 2**:
 \(cR \rightarrow cR' : \forall c \in cR: sh(c) = \bullet \)

- Intuitively: It is not necessary to distinguish philosophers, nor resources
1.2 Decol. procedure of SNB: DinPhilCommon – decolourised net

- Modified version of Dining philosophers with common resources can be completely decolourised.
- Populations are created.
1.3 Decolourisation of bags: Union

Three tokens introduced in P_3 are equal $\Rightarrow T_2$ has 3 instances in SNB

Bags X and Y have prescribed cardinalities \Rightarrow
model can be decolourised.
1.3 Decolourisation of bags: Union – RG

\[\text{card}(X) = 2 \] and \(\text{card}(Y) = 1 \)

\(\{a, b, c, d\} \)
\(\{a, b\} \)
\(\{c, d\} \)
1.3 Decolourisation of bags: Bags as wholes

Every bag stays unchanged \Rightarrow substitution, e.g.:

$k = \{a, b\}, \ l = \{a, c\}, \ m = \{c, d\}, \ cB = \{k, l, m\}$

and the model can be decolourised like SN without bags.
1.3 Decolourisation of bags: Bags as wholes – RG

cA={a,b,c,d}
M1={\{a,b\},\{a,c\}}
M2={\{c,d\}}
1.3 Decolourisation of bags: Bags and elements

Bags as wholes (<whole(X)>) and groups of elements (X) , where size of X is not determined.

Net must be bag-unfolded first (T1 to T11 , T12 , T13 , etc.) and then it can be decolourised.
1.3 Decolourisation of bags: Bags and elements – RG

c_A = \{a, b, c, d\}
M_1 = \{(a, b)\}
Contents

1. Decolourisation of autonomous nets
 1.1 Symmetric nets with bags (SNB)
 1.2 Decolourisation procedure of SNB
 1.3 Decolourisation of bags

2. Decolourisation of timed nets
 2.1 Stochastic symmetric nets with bags (SSNB)
 2.2 Decolourisation of SSNB
 2.2.1 Overview
 2.2.2 Transition parameters adjustment (TPA) rules
 2.3 SSNB Decolourisation examples
2.1 Stochastic SNBs: DinPhilCommon as an example

- adding
 - firing rates (timed t.)
 - weights (immediate t.)

- \(w(t2) = \sum w(<t2,ph_i, r_j, r_k>), j<>k \)

 - transition instance of \(t2 \) with colours of \(ph_i, r_j \) and \(r_k \)
 - For every \(i \), there are \(m(P4) \) .
 \((m(P4) - 1) \) instances – philosopher \(i \) is deciding which
couple of resources to pick up
 - since all variations of resources have equal chances, then

\[
 w(<t2,ph_i, r_j, r_k>) = \frac{w(t2)}{(m(P2) \cdot m(P4) \cdot (m(P4) - 1))}
\]
2.2.1 Decolourisation of SSNB: On used terminology

• *Extended conflict set (ECS):*
 set of transitions that are in transitive closure of conflict relation (equivalence classes)

• *Colour-safe place:*
 in all possible markings, it contains at most one instance from each colour:
 – \{A1, A2\} – allowed
 – \{A1, A1, A2\} – not allowed
2.2.1 Decolourisation of SSNB: Overview of our approach

• Net transformation rules:
 we look for patterns not at behavioural level (symbolic
 Markov chain), but only on structural level: from net to net
• Steps of decolourisation procedure of SSNB:
 1. As autonomous net:
 a) **Decolourisation** of the net as SNB
 b) Where necessary: **unfolding** of colours or bags
 – it usually brings problems: population ↓, net size ↑
 2. As timed net:
 – **Adjusting** transition firing rates / weights according to existing
 extended conflict sets (ECS) for **transition instances** in the SSNB so that rates
 of underlying CTMC (Continuous-time Markov chain) stay preserved
• By default, we assume:
 – Infinite server semantics (ISS)
 – Bounded nets
2.2.2 TPA rule 1 – New variable on output (1)

Variable y is not present on input, but on output arc only
It represents tokens from colour set c_B with 4 possible values
How does the firing rate of T change by decolourisation?
There are 8 transition instances for all combinations between 2 tokens in P_1 and 4 potential values of variable y.

$cB = \{B1, B2, B3, B4\}$
2.2.2 TPA rule 1 – New variable on output (3)

T' in non-coloured model: enabling degree by ISS is 2 $\Rightarrow 2\mu$

T in coloured model: 8 transition instances \Rightarrow firing rate by ISS: 8λ

Difference: $|cB| = 4$ … necessary multiplication: $\mu = \lambda.4$
2.2.2 TPA rule 1bis – Decolourisation of input only

Only input place and arc are decolourised
value on output arc: not determined any more, but random
T': number of transition instances changes from 1 to $|cA|$
2.2.2 TPA rule 2 – Multiple input places

\(T \): tuple \(<x,y>\) on output composed from \(x \) and \(y \) on input

No. of transition instances: \textbf{product} of current marking of input places

\(T' \): \textbf{marking-dependent} flow containing the product

Products:
- frequent in population dynamics (foxes, rabbits)
- clear non-linearity (\(\neq \) minimum operator)
2.2.2 TPA rule 3 – Addition on input arc

\[f(T') = \lambda \cdot m(P_1) \cdot (m(P_1) - 1) \]

Not ISS

\(<x_1+x_2>\): variations from current marking,
x1 = A1 and x2 = A2 is different from x1 = A2 and x2 = A1.
Result: marking-dependent firing rate of T'.

<x1,x2>: variations from current marking,
2.2.2 TPA rule 4 – Bag on input arc

<\textbf{\textit{<Y>}}>: combinations from current marking, the order of colours in the bag is not important.

Result: \textbf{marking-dependent} firing rate of T'.

\[f(T') = \lambda \cdot \binom{\text{m}(P_1)}{2} \]

Not ISS
2.2.2 TPA rule 5 – Non-colour-safe input place

Place contains several tokens of the same value.
Transition instances: one token per colour is considered for enabling.
Result: marking-dependent flow from unique tokens.
2.2.2 TPA rule 6 – Inhibitor arc

cA={A1, A2, A3}

\[f(T') = \lambda_c, (|cA| - m(P_1)), m(P_2) \]

Not ISS

<x> on inhibitor arc: number of absent colours considered.
Result: marking-dependent firing rate of \(T' \).
2.2.2 TPA rule 7 – Decolourisation of output only

Only output place and arc are decolourised in a partially decolourised net

T': number of transition instances changes from $|cA|$ to 1
2.2.2 TPA rule 8 – Free-choice conflict with new variables

Coloured model: 3 instances of t_1 and 2 instances of t_2

$\Rightarrow \pi(t_1) = 3/2. (w_1/w_2). \pi(t_2)$

Non-coloured model: 1 t. i. of each transition $\Rightarrow \pi(t_1) = (v_1/v_2). \pi(t_2)$

Result: weight (firing rate) adjusted & fixed for all markings
2.2.2 TPA rule 9 – Non-free-choice conflict

Analogous to previous case,

just the **weights/rates depend on current marking** here
2.2.2 TPA rules: Summary

- Transition parameter adjustment rules for modification of
 - Firing rates of timed transitions:
 1) New variable on output
 1bis) Decolourisation of input only
 2) Multiple input places
 3) Non-colour-safe input place
 4) Addition on input arc
 5) Bag on input arc
 6) Inhibitor arc
 7) Decolourisation of output only
 - Weights of immediate transitions or firing rates of timed transitions:
 8) Free-choice conflict with new variables
 9) Non-free-choice conflict

2.3 SSNB decolourisation examples: Concurrent Readers – Exclusive Writers (CREW)

- \(E\) entities access a shared space for reading concurrently (\textit{read}) or writing exclusively (\textit{write})
- Access is granted (\textit{srd}, \textit{swr}) by access tokens (\textit{grant}). Writing needs all of them (\textit{<S>}), reading just one (\textit{<y>}).
- If they are not available, entities wait (\textit{waitR}, \textit{waitW}).
- \(|cA| = |cE|\)
2.3 SSNB decol. examples: CREW – decolourized net

- This model can be completely decolourized - populations of entities and access tokens created
- Timing: non-free-choice conflict of immed. transitions (TPAR 9):
 - Conflict between \(srd \) and \(swr \) after firing of \(ewr \)
 - Their firing rates dependent of marking of their input places (\(waitR \), \(waitW \))
2.3 SSNB decolourisation examples:
Multi-computer programmable logic controller (MCPLC)

- C computers access memory modules of other computers over B buses
- Units compete for resources (t_3) and release them after their job (T_4)
- Cycles are synchronized (T_6)

Two kinds of synchronization:
- Use of resources (competition):
 - Buses
 - Memory modules
- Cycle (cooperation)
2.3 SSNB decolourisation examples: MCPLC

- **Flow (buses):**
 - P_4, P_5, t_3, T_4
 - colour domain cB, variable z

- **Colour shrinking function:**
 $cB \rightarrow cB'$: $\forall c \in cB: \text{sh}(c) = \bullet$

- **Intuitively:**
 Communication request does not ask for a specific bus (no condition on variable z in t_3)
 \Rightarrow no reason to distinguish buses with colours
In general, only buses can be
decolourised here
+ no timing changes necessary.

We only get a population of buses

To get a P/T net,
unfolding is needed what means
usually two kinds of problems:

– population ↓
– net size ↑
2.3 SSNB decolourisation examples: DinPhilCommon – decolourised net

- Completely decolourised model – the same for:
 - Resources assigned individually
 - Resources assigned in bag

- Timing: **no changes needed**
2.3 SSNB decolourisation examples: DinPhilCommon – net reduction

In the coloured net transitions t_2 and T_3 can be agglomerated to T_{23}.
Modified meaning: all waiting philosophers “eat at once” with the same resources and only the fastest one is fed up.
2.3 SSNB decol. examples: DinPhilCommon reduced

- Decolourisation on autonomous level: straightforward

- Decolourisation on timed level:
 - Modifying firing rate of T23
 - Using *TPAR2 Multiple input places* and *TPAR3 Addition on input arc*
 - Flow (not ISS):
 \[f(T23) = \lambda \cdot m(P2) \cdot m(P4) \cdot (m(P4) - 1) \]
 - If bags are used:
 - Using *TPAR2* and *TPAR4 Bag on input arc*
 - Flow (not ISS):
 \[f(T23) = \lambda \cdot m(P2) \cdot \left(\frac{m(P4)}{2} \right) \]
Summary and Future Work

• Decolourisation of SSNB models
 – On autonomous level, procedure enhanced to include use of bags
 – On timed level, set of 9 rules for transition parameters adjustment defined

• Decolourisation process has got limits.
 – Where not applicable, unfolding must be used – that brings usually two kinds of problems:
 • population ↓
 • net size ↑
 – Non-colour-safe places and complicated operations with bags are obstacles in successful decolourisation of timed models. More research required.

Thank you for your attention
michal.zarnay@fri.uniza.sk, silva@unizar.es