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Abstract
Recent progress in massively parallel sequencing platforms has allowed for genome-wide
measurements of DNA-associated proteins using a combination of chromatin immunoprecipitation
and sequencing (ChIP-seq). While a variety of methods exist for analysis of the established
microarray alternative (ChIP-chip), few approaches have been described for processing ChIP-seq
data. To fill this gap, we propose an analysis pipeline specifically designed to detect protein
binding positions with high accuracy. Using three separate datasets, we illustrate new methods for
improving tag alignment and correcting for background signals. We also compare sensitivity and
spatial precision of several novel and previously described binding detection algorithms. Finally,
we analyze the relationship between the depth of sequencing and characteristics of the detected
binding positions, and provide a method for estimating the sequencing depth necessary for a
desired coverage of protein binding sites.

A combination of chromatin immunoprecipitation and microarray hybridization (ChIP-chip)
has been used extensively to determine chromosome binding patterns of DNA-associated
proteins1. Several recent studies have demonstrated that newly developed high-throughput
sequencing methods can be used to provide marked improvements over the microarray
measurements2. While sequencing techniques have been previously used in combination
with both chromatin immunoprecipitation (ChIP-seq) and sequence tagging methods3–6, the
new generation of sequencing platforms provides orders of magnitude increase in the
number of generated sequences7, allowing cost-effective genome-wide mapping for many
proteins of interest.

Processing of ChIP-chip has focused on compensating for array limitations, such as probe-
specific behavior, dye bias and tiling resolution8–10. The ChIP-seq approach avoids such
biases and can provide greater sensitivity and specificity while requiring a much smaller
amount of starting material2, 11. The ChIP-seq data, however, poses a number of different
challenges. Given that the rate of sequencing errors varies between and within the sequenced
reads, what range of sequence tag quality should be tolerated when aligning tags to the
reference genome?12. What background tag distribution is appropriate for assessing the
significance of observed binding positions? What is the required depth of sequencing?
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Finally, how can this information be utilized to accurately determine protein binding
positions?

Here we describe a data processing pipeline optimized for detection of localized protein
binding positions from unpaired sequence reads (Figure 1a). We illustrate the proposed
pipeline on datasets for genome-wide binding of NRSF2, CTCF13 and STAT111, produced
using the Solexa platform. The alignment procedure is enhanced to maximize the number of
informative tags, based on the strand-specific pattern of tag distribution expected around a
binding position. Filtering and background corrections steps are used to lower false-positive
rates. We compare performance of several novel and previously described computational
methods for calling specific binding positions, and show that some methods provide higher
specificity and position accuracy. The final step of the proposed pipeline examines the
saturation level of detected binding positions to determine the amount of additional
sequencing that may be necessary.

Results
Tag distribution around protein binding positions

In general, immunoprecipitation selects a set of overlapping DNA fragments around bound
positions. High-throughput sequencing identifies short (~35bp for Solexa or SOLiD) tags on
the 5’ ends of fragments from either DNA strand. The positions of the tags are then
determined by aligning them to the genome assembly, with ambiguous alignments typically
being discarded. The resulting spatial distribution of tag occurrences around a stable binding
position will therefore show separate peaks of tag density on positive and negative strands
(Figure 1b,c). The distance between the peaks should reflect the size of the protected region,
although it may also be influenced by the size distribution of the DNA fragments. This
distance does not exhibit strong dependency on the number of tags within the peaks
(Supplementary Table 1).

A genome-wide signature of such tag pattern can be assessed by calculating cross-
correlation of positive and negative strand tag densities, shifting the strand coordinates
relative to each other by increasing distance (see Methods). All of the examined datasets
exhibit a clear peak in the strand cross-correlation profile, corresponding to the predominant
size of the protected region (Figure 1c, Supplementary Figure 1). The magnitude of the peak
reflects the fraction of tags in the dataset that appear in accordance with the expected
binding tag pattern (Figure 1c). In an ideal case, when all of the sequenced tags participate
in such binding patterns, the correlation magnitude would reach a maximum value.
Conversely, the magnitude decreases as tag positions are randomized (Supplementary Figure
2).

Using variable-quality tag alignments
While some tags align perfectly to the reference genome, others align only partially, with
gaps or mismatches. Poorly aligned tags may result from experimental problems such as
sample contamination, correspond to polymorphic or unassembled regions of the genome, or
reflect sequencing errors. For the Solexa platform, the sequencing errors are more abundant
towards the 3' ends of the sequenced fragments, frequently resulting in partial alignments
that include only the beginning portion of the tag. From the growth of mismatch frequencies
with nucleotide position, we estimate that such sequencing errors account for 41–75% of
observed mismatches in the examined datasets (Supplementary Figure 3). Since it is not
unusual to have more than 50% of the total tags result only in partial alignment, inclusion of
tags that are partially aligned but still informative is important for making optimal use of the
dataset11, 12. We therefore chose to classify the quality of tag alignment using the length of
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the match and the number of nucleotides covered by mismatches and gaps (Table 1,
Supplementary Table 2).

Given a classification of tags by quality of alignment, we propose to use strand cross-
correlation profile to determine if a particular class of tags should be included in further
analysis. A set of tags that is informative about the binding positions would increase cross-
correlation magnitude, whereas a randomly mapped set of tags would decrease it
(Supplementary Figure 2). Using this approach for the NRSF dataset (Figure 2), we find that
alignments with matches greater than 18bp and zero mismatches improve cross-correlation
profile. However, only full-length (25bp) matches should be considered for tags with two
mismatches. Accepting tags using such a criterion increases their number over the set of
perfectly aligned tags by 27% for NRSF dataset, 30% for CTCF and 36% for STAT1
(Supplementary Figure 4). The incorporation of these tags improves sensitivity and accuracy
of the identified binding positions (Supplementary Figure 5).

Controlling for background tag distribution
The statistical significance of the tag clustering observed for a putative protein binding
position depends on the expected background pattern. A simplest model would assume that
the background tag density is distributed uniformly along the genome and independent
between the strands11. In addition to the NRSF ChIP sample, Johnson et al14 have
sequenced a control input sample, providing an experimental assessment of the background
tag distribution. We find that the background tag distribution exhibits a degree of clustering
that is significantly greater than expected from a homogeneous Poisson process suggested
by the aforementioned simple model (P<10−6, Supplementary Figure 6).

Examining the input tag density, we find three major types of background anomalies. The
first type results in singular peaks of tag density at a single chromosome position many
orders of magnitude higher than the surrounding density (Figure 3a). Such peaks commonly
occur at the same position on both chromosome strands. The second type of anomaly results
in non-uniform, wide (>1000bp) clusters of increased tag density appearing on one or both
strands (Figure 3b). The third type exhibits small clusters of strand-specific tag density
resembling the pattern expected from a stable protein binding position, although it typically
shows smaller separation between strand peaks (Figure 3c). A similar set of anomalies can
be observed in the input sequencing of other organisms (data not shown).

The first type of anomaly can be easily detected and eliminated due to its extreme deviation
from the surrounding tag density (see Methods). However, the other types of anomalies, in
particular the third one, are hard to distinguish within the ChIP data. This indicates that
sequencing of input material is essential to properly account for the background tag
distribution. Sequencing of a mock control experiment (non-specific antibody or no
antibody) may also be necessary.

To control for the uneven background distribution, the binding methods proposed below
subtract rescaled background tag density prior to determining binding positions, if such data
are available (see Methods). In addition, only binding positions within regions of acceptable
ChIP to input tag ratio are accepted2. The effect of such background corrections will be
characterized in the subsequent sections.

Binding detection methods and relative coverage of binding sites
We have examined five different methods of calling binding positions, including two
previously published algorithms (CSP2, XSET11), and three novel ones. Briefly, the
ChIPSeq Peak locator (CSP) method identifies regions of significant enrichment compared
to the input profile and determines binding positions as those with the highest number of
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tags within such regions. The extended set (XSET) method extends positive- and negative-
strand tags by the expected length of the DNA fragment, and determines binding positions
as those with the highest number of overlapping fragments.

The newly proposed methods take advantage of the strand-specific tag pattern observed at
binding positions (Figure 1c). The first such method, Window Tag Density (WTD), is
similar to XSET but scores positions based on the strand-specific tag counts upstream and
downstream of the examined position (Figure 4a). The second method, Matching Strand
Peaks (MSP), determines local peaks of strand-specific tag density and identifies positions
surrounded by positive- and negative-strand peaks of a comparable magnitude at the
expected distance (Figure 4b). Finally, the third method, Mirror Tag Correlation (MTC),
scans the genome to identify positions exhibiting pronounced positive and negative-strand
tag patterns that mirror each other (Figure 4c). See Methods for details.

A complete list of true binding sites is not known for any of the examined datasets, however
all three proteins exhibit known binding sequence specificities. While the binding detection
methods described in this work do not rely on sequence information, we will utilize high-
scoring sequence motif instances to assess relative performance of different binding
detection methods. In doing so we only assume that the high-scoring motif instances contain
a representative subset of true binding positions, and do not require for all high-scoring
motifs to be bound, or all true binding sites to exhibit a motif signature. We evaluated
performance using canonical sequence motifs for the NRSF and CTCF binding15, 16, and
using GAS motif as a predictor of STAT1 binding5, 11 (see Methods). The binding
detection methods provide peak magnitude scores associated with the identified binding
positions, thus allowing prioritization of binding positions determined by each method.

To compare sensitivity of different methods, we selected increasing numbers of top binding
positions returned by each method, and examined the fraction of motif occurrences for
which a binding position was identified (Figure 4d). We find that 89% of the selected
highest-scoring NRSF motif matches coincide with the detected binding positions. The
motif coverage rate is clearly above the random expectation, allowing for comparison of
relative performance of different binding detection methods. All of the methods except for
the MSP and CSP achieve similarly high motif coverage. The CSP method performs worse
for the more prominent binding positions (top 500), while the MSP method exhibits poor
performance throughout the entire range. Analyses of the STAT1 and CTCF binding show
analogous results in terms of relative performance of different methods (Supplementary
Figure 7). These results are also confirmed by analysis of PCR-validated binding loci from
the literature2,16,11 (Supplementary Figures 8,9). We note that the motif and PCR-validated
test sets represent only a fraction of true binding sites. As this fraction is smaller for CTCF
and STAT1 larger sets of top binding positions are used to illustrate test set coverage by
different methods.

The background subtraction methods outlined in the previous section improve the NRSF
motif coverage, reaching the same level of coverage at up to 11% fewer top binding
positions (Supplementary Figure 10). The corrections have little effect on the top 1500
binding positions, which are associated with higher tag counts than any false positive peaks
arising from uneven background. The background-driven false positive positions are
generally smaller in magnitude and begin to influence predictions as more binding positions
are considered.

Precision of binding positions
To evaluate the spatial precision with which protein binding positions are identified by
different methods, we have analyzed the distances between predicted positions and locations
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of high-scoring motif hits (Figure 5a). For the NRSF dataset, the WTD method predicts
most precise binding positions, with over 60% of predicted peaks located within 10bp of the
motif center (Figure 5b, Supplementary Figure 11a). It is followed by XSET and MTC and
MSP methods, with CSP calling approximately 40% of peaks within 10bp of the motifs.
Background corrections have limited effect on the precision of the predicted positions, with
only WTD method showing 3% improvement for strong binding positions (data not shown).

For the CTCF and STAT1 predictions, however, the MTC method achieves better precision
than WTD (Figure 5c,d, Supplementary Figure 11b,c). The difference can be explained by
the properties of the tag distribution immediately near the center of the protected region.
Unlike WTD and XSET, the MTC method does not take into account tags within the central
region (30bp) when scoring binding positions. Altering the MTC method to take such
positions into account reduces the precision of the determined binding positions to the level
similar to the WTD predictions. Examining the overall distribution of tag positions relative
to high-scoring motif hits, we find that CTCF and STAT1 show unexpected peaks of tag
density immediately adjacent (10–15bp) to the motif position (Supplementary Figure 12).
Such pattern, in which small sets of negative strand tags appear immediately upstream of the
protected region and are mirrored by the positive strand tags immediately downstream, may
result from cross-linking interactions occurring beyond the central protected region (Figure
1b, dashed line). As a result, peak detection methods that take into account the tags near the
central region tend to call positions 15–20bp upstream or downstream of the true binding
site.

Statistically significant positions
The binding detection methods should limit the resulting binding positions to those that are
not likely to have occurred by chance. The desired level of statistical significance is
commonly given in terms of a false discovery rate (FDR) or the number of expected false
positive positions (E-value). The detection methods can then use background tag distribution
to determine the minimal binding position score satisfying the specified level of
significance. Many false positive calls originate from large anomalous regions described
earlier. Such systematic errors can be filtered prior to determination of significance
thresholds (see Methods). Based on the input sample data for the NRSF, we find a total of
2755 binding positions for the FDR threshold of 0.01 using WTD method. We note that this
closely corresponds to the number of top peaks that was required to achieve maximal
coverage of high-scoring motif positions that were utilized in the previous sections (Figure
4d).

In the absence of an empirical estimate of the background tag distribution, it may be
possible to rely on an analytical model. The simplest such model is a spatial Poisson process
where the tags are uniformly distributed across the accessible regions of the genome11.
However, because the true background tag distributions exhibit significant degree of tag
clustering, such Poisson-based threshold is significantly lower than the one obtained from
empirical background measurement, resulting in overestimation of the number of significant
binding positions (9206 vs. 2755 for FDR 0.01). Comparing with the input-based FDR
calculations, we find that the Poisson-based model underestimates FDR by 8–20 times
depending on the target FDR (see Supplementary Table 3).

A closer estimate of statistical thresholds may be obtained by accounting for the degree of
clustering present in the background tag distribution. A simple approach is to utilize a
randomization that maintains tags occurring at the same or nearby positions together, instead
of assigning them independent positions as it is done under Poisson model. The number of
significant positions determined using such randomization models with different bin sizes
are shown in Supplementary Table 3. For the FDR of 0.01 a randomization model that
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maintains together tags occurring at the exactly the same position in the genome results in a
comparable number of NRSF binding positions (2985). We used such randomization to
determine the number of statistically significant binding positions for the CTCF (23981
positions at FDR of 0.01) and STAT1 (44921 positions) datasets. Matching the number of
binding positions for more stringent FDR values requires larger tag randomization blocks
(Supplementary Table 3), indicating that simple randomization strategies cannot properly
account for the background clustering properties.

Testing for sufficient sequencing depth
To assess whether the sequencing depth has reached a saturation point beyond which no
additional binding sites are detected, we have analyzed how the set of the predicted binding
sites changes when only a subset of tag data is utilized for prediction. Sampling increasing
fractions of the tag data, we determined binding positions and compared these predictions
with the set of reference binding sites identified from the complete data (Figure 6a,
Supplementary Figure 13).

If the sequencing depth has moved beyond the saturation point, it would be possible to
arrive at the reference set using only a subset of the tag data. We find, however, that none of
the three datasets have reached such a saturation point (horizontal asymptote), and that the
fraction of the concordant binding positions decreases when even a small fraction of tag data
is omitted. This indicates that additional binding sites are being continuously identified with
increasing sequencing depth. The observed trend holds for a range of FDR thresholds
(Supplementary Figure 13): although the slope of the saturation curve can be reduced by
setting a considerably more stringent FDR threshold that results in a significantly smaller
number of binding sites.

To understand the properties of the binding site coverage, we have examined tag counts
associated with high-scoring sequence motifs (Figure 6b, Supplementary Figure 14). In all
three datasets, the distribution of tag counts shows a very wide dynamic range. While some
positions have hundreds of tags, others barely rise above the expected background counts.
Moreover, these distributions appear to be continuous in that they do not show distinct sub-
populations of binding positions. This suggests that increasing sequencing depth may allow
distinguishing an increasing number of weakly pronounced binding positions without a
qualitative threshold that would define a complete set of binding sites.

Since more pronounced binding positions are identified using smaller sequencing depth, an
experiment of given depth may saturate detection of the binding positions that exceed a
certain tag enrichment ratio relative to the background. We will refer to such enrichment
ratio as Minimal Saturated Enrichment Ratio (MSER). The saturation criteria that define the
maximal acceptable slope of the saturation curve (Figure 6a) can be formulated as a
requirement for stability of the set of predicted binding sites. For instance, we will require
99% agreement in the set of binding positions when dataset is reduced by 105 tags. Using
NRSF input tag data to determine the confidence intervals for the enrichment ratio of each
binding position, we find that current sequencing depth is sufficient to saturate detection of
binding positions with tag enrichment ratios significantly above 7.5 (P-value <0.05, see
Methods, Fig. 6a, Supplementary Figure 17). Of the 2755 NRSF binding positions detected
at FDR 0.01, 1879 (68%) are above MSER 7.5 (Supplementary Figure 13). We note that a
particular MSER value does not imply that all of the true binding positions of that
enrichment fold have been discovered; instead, it attests that new binding positions with
enrichment significantly higher than the MSER value are being detected at a sufficiently
slow rate. A potential range of true enrichment ratios can be assessed from the enrichment
confidence intervals calculated for each binding position (Supplementary Figure 15). Since
estimation of the enrichment ratio confidence intervals also depends on the amount of
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information available about the background tag distribution, input datasets of similar
genomic coverage should be used when comparing different MSER values.

For practical purposes, it is important to be able to predict the number of tags required to
saturate detection of peaks above a given target enrichment ratio. The relationship between
the number of tags and the MSER settles into a dependency that can be extrapolated using a
log-log model (Figure 6c). We predict, for instance, that 1.2×106 more tags would be
required to reach saturation in detecting NRSF binding positions with enrichment over the
background significantly higher than two-fold (P-value < 0.05). The MSER values and
extrapolations depend on the saturation criteria and on methods used to calculate enrichment
confidence intervals (see Methods, Supplementary Figure 18).

Increasing the sequencing depth is also likely to lead to increased accuracy of the
determined binding positions. Using the NRSF dataset, we analyzed how the mean distance
between the detected binding positions and sequence motifs depends on the number of tags
used for predictions. Our results show that accuracy indeed improves with the increasing
number of tags (Supplementary Figure 16). The improvement, however, is minor: the
accuracy decreases by only several base-pairs even when number of tags is halved.

Discussion
Analysis of protein-DNA interactions using high-throughput short sequencing poses a
number of novel computational challenges. We show that many aspects of the processing
pipeline can be specifically tailored to improve detection of binding positions.

The protein binding positions exhibit a strand-specific pattern of tag occurrences. We
illustrate that a genome-wide signature of such a pattern can be obtained with strand cross-
correlation of tag density, providing a quick assessment of dataset quality and binding
characteristics. The proposed alignment procedure also relies on this signature to determine
the range of alignment quality that is informative about the binding positions. In our
implementation, we have used a simple classification of tag alignment quality, based on the
number of nucleotide mismatches. The same procedure can be applied to more elaborate
measures of alignment quality, such as those incorporating confidence in specific base
calls12.

The examination of the input sequencing clearly indicates that experimental assessment of
the background tag distribution is necessary for accurate evaluation of the ChIP-seq data.
The background distribution is far from uniform and, in some cases, shows tag density
patterns similar to those expected from true binding positions. We demonstrate that the
knowledge of such distribution is instrumental for accurately assessing and reducing rates of
false positive predictions. As additional datasets become available, it will be important to
analyze the degree to which tag profiles of input or no-antibody measurements differ
between independent experiments.

Comparison of different binding prediction algorithms shows that even though several
methods can reach optimal sensitivity, there is a considerable variation in the accuracy of the
identified binding positions. While the MTC method provides more accurate positions for
CTCF and STAT1 binding, the WTD method is better at identifying precise positions of
NRSF binding. The difference can be attributed to the consideration of tag patterns
immediately near the center of the binding pattern, which show qualitative differences
between NRSF and CTCF/STAT1 datasets (Supplementary Figure 12). Since the NRSF
binding tag pattern is more consistent with the basic expectations, we recommend using
WTD method in the cases when the tag pattern cannot be examined beforehand on a set of
expected binding positions. It remains to be seen, however, which tag pattern will be typical
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of other experiments and whether both patterns can be efficiently handled by a single
method.

The ability to evaluate and predict the sequencing depth requirement is an important aspect
of ChIP-seq studies. Our analyses demonstrate that none of the three examined datasets
definitively reach a point of saturation at which the set of determined binding positions
stabilizes. The binding positions exhibit very wide range of enrichment ratios so that
additional sequencing reveals increasing number of weaker binding sites. This bears some
resemblance to other genomics studies. In genome-wide association studies, for instance,
increasing the sample size allows one to find more and more loci with smaller LOD scores;
in gene expression studies, it leads one to find more and more genes with a statistically
significant but smaller fold-change. In practical terms, this lack of saturation point has
profound implications in study design. It suggests that it would be difficult to define a
“sufficient” depth of sequencing and that other criteria must be specified.

We therefore propose that the sequencing depth requirements should be evaluated with
respect to a specific target enrichment ratio of the binding positions. Towards that end, we
provide a method to determine the minimal fold enrichment ratio above which the detection
of binding positions has been saturated (i.e. stabilized) at a current sequencing depth. We
also show that the relationship between saturated fold enrichment and the number of
sequenced tags may be extrapolated to estimate the sequencing depth that would be required
to reach saturation for lower fold enrichment ratio. It will be important to examine how well
such extrapolations describe saturation properties of much larger datasets that are likely to
be come available in the near future.

The fold enrichment ratio of a particular binding position may depend on diverse factors,
such as binding affinity or efficiency of chromatin extraction. Since its relationship to the
functional importance of binding positions is uncertain, the desired fold enrichment ratio
target would clearly vary for different experiments. When some functional binding positions
are already known for a particular protein, the target enrichment ratio can be chosen based
on examination of these positions in the initial sequencing data or with quantitative PCR. If
a target enrichment ratio cannot be estimated from other sources, it can be specified relative
to the maximum or median enrichment observed in the dataset (e.g. detect binding positions
with enrichment 5-fold below the maximum observed enrichment).

As more ChIP-seq datasets are generated, it will be important to analyze additional factors,
such as sequencing biases associated with individual sequencing platforms, or stability of
ChIP and input tag distributions between replicate experiments. Such data will likely lead to
improvements in the binding prediction methods and allow better interpretation of the
functional relevance of observed variability in fold enrichment ratios of different binding
positions. Finally, it will be important to see whether the described techniques can be
adapted for analysis of histone modifications or other widely-distributed chromatin marks
that do not fit the models of point binding patterns.

Methods
Datasets

The analysis of the NRSF binding were performed using tag data from Johnson et al2. Raw
tag information necessary for the analysis was only available for experiment #2. CTCF data
was taken from Barski et al13. The STAT1 binding was analyzed using INF-γ stimulated
dataset from Robertson et al11.
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Cross-correlation profiles
For each chromosome c, the tag count vector  was calculated to give the number of
tags whose 5’ end maps to the position x on the strand s . Strand cross-correlation for a

strand shift δ was then calculated as , where P[a, b]
is the Pearson linear correlation coefficient between vectors a and b, C is the set of all
chromosomes, Nc is the number of tags mapped to a chromosome c, and N is the total
number of tags.

Tag alignment and selection of informative tags
Sequence tags were aligned to human genome assembly (NCBI build 36, hg18) using
BLAT17, with min score threshold of 16, max gap of 4 and step size of 3. Tags aligning to
multiple locations in the genome were discarded in this analysis.

Anomalous tag positions were identified as those with the number of mapped sequence tags
(5’ ends) above the significance threshold defined by Z-score of 10. All of the tags mapping
to such anomalous position (on either strand) were omitted prior to further analysis.

The resulting tag alignments were classified based on 1) the length of the alignment and 2)
the number of nucleotide differences (number of mismatches + total gap length). A given
class of tags was accepted if adding these tags to the reference set significantly (Z-score > 6)
increased the cross-correlation profile within the region ±20bp around the cross-correlation
peak. The set of perfectly aligned tags (maximum length, no mismatches) was used as a
reference set.

Detection of binding positions
WTD—A binding score was calculated for all positions i in the genome as

, where pD and pU are the number of 5’-end tag positions
mapping to a positive strand within a distance of w upstream and downstream of a position i
respectively. Similarly, nD and nU correspond to the number of upstream and downstream
tags mapping to the negative strand. Window size w = 200bp was used for CTCF and
NRSF, and w = 400bp was used for STAT1. The window sizes were chosen to encompass
the size of the average binding tag pattern (i.e. Supplementary Figure 12). We find that this
size can be estimated from the cross-correlation profiles (Figure 1d, Supplementary Figure
1) as the width of the cross-correlation peak at 1/3 of the peak height. Positions on the
chromosome corresponding to non-unique tag alignment and mirror positions with respect to
point i were excluded from score calculation. Binding peaks were determined as local
maxima of Swtd(i).

MSP—Tag density profiles along each chromosome strand were calculated using Gaussian
smoothing kernel with bandwidth corresponding to the 0.45*σscc where σscc is the width of
the strand cross-correlation peak (Figure 1d) at half height. The kernel bandwidth was
selected for optimal coverage and accuracy of the method (Supplementary Figure 20). A
binding position was accepted when local maxima (peaks) of positive and negative strand
density were found the distance of µ±20bp, where µ is the size of the protected region for
that protein (estimated from cross-correlation analysis). The peaks were required to be
comparable in magnitude (based on likelihood ratio test with a Z-score cutoff of 8).

MTC—Similar to WTD, the binding score was calculated as ,
where ρ is the Pearson linear correlation coefficient between tag vectors v+ and v−, such that
v+ (k) is the number of 5’-end tag positions mapping to positive strand in position i + k, and
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v− (k) is the number of 5’-end tag positions mapping to negative at i − k . The correlation is
evaluated for , where w0 = 15bp, and the values of w are the
same as in the WTD method.

When using the methods described above, peaks within distance w of a larger peak were
omitted ( w = 200bp for CTCF and NRSF, 400bp for STAT1). The CSP method
implementation provided by Johnson et al2 was used, and the XSET method was
implemented as described in Robertson et al11.

Background tag density corrections
To normalize for background tag density in the analysis of NRSF binding, the window tag
counts described in the WTD and MTC methods were adjusted by subtracting the weighted
number of background (input) tags occurring within that window. To account for differences
between ChIP and background dataset sizes, the background tags were multiplied by Nc /
Nb, where Nc and Nb are non-specific sizes of ChIP and background datasets. The non-
specific size of the dataset was determined as a number of dataset tags outside of highly-
enriched regions: regions of 1Kbp with the number of tags exceeding uniform (Poisson)
density with P-value < 10−5. This type of weighting allows for proper estimation of the
background density ratios when a large fraction ChIP dataset tags is concentrated within
localized bound regions (which for NRSF is 23%).

To reduce the impact of false positives from large regions of systematically high
background, subsequent calculation excluded regions of size 104bp or larger where input tag
counts are significantly larger (Z − score ≥ 5) than ChIP counts.

Statistical significance of detected positions
For a predicted binding position with score s , the false discovery rate (FDR) was estimated

as , where Nr(s) is the number of binding positions with score s or higher found in
the real dataset, and Nc (s) is the number found in a control dataset. The FDR estimates of
positions with scores above maximal score found in the control dataset (i.e. Nc(s) = 0) were
assigned minimal FDR found in the set of detected positions. Two types of control models
were used: randomized models, and a model based on the background (input) tag data.

Under a completely randomized model, control data was generated by randomly reassigning
positions of the real (ChIP) dataset tags. More restrictive randomization models maintained
together tags that occurred within a distance d in the original data. Supplementary Table 3
shows results based values of d ranging from 1 to 7. A total of 10 randomized permutations
of the complete dataset were employed for FDR calculations.

Under a background-based model, the control predictions were generated in the same way as
predictions on real data, interchanging background (input) and ChIP data.

Sequence motifs position accuracy
Motif occurrence positions within human genome were calculated using MAST18. High-
scoring NRSF motif occurrences were determined using position-specific matrix (PSSM)
from Mortazavi et al15. Positions with P value < 4×10−9 were chosen, to match the number
of motifs obtained in Johnson et al2. For STAT1, GAS motif occurrences were determined
using the PSSM from the TRANSFAC database19, with maximum P value of 10−5. High-
confidence CTCF motif positions were determined using the PSSM from Kim et al16, with
the P value threshold of 4×10−8.
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The accuracy of the predicted protein binding positions was analyzed based on the distances
between identified positions and centers of high-scoring motif hits. Only binding positions
occurring within 300bp of a sequence motif instance were included in the analysis. The sign
of the distance was adjusted according to the strand on which the motif hit occurred. Since
the center of the motif hit may not represent a true center of binding (e.g. protected region),
the distances to the motif were centered by subtracting the median distances. The centered
distances were used in Figures 5b–d, and Supplementary Figure 11.

Sequencing depth analysis
To evaluate stability of the identified set of binding positions on the set of tags, binding
positions were predicted on randomly sampled subsets of the original tag data. Sampling
was performed without replacement. WTD method with FDR of 0.01 was used to generate
the predictions. A chain of subsampled datasets was generated by 15 successive random
reduction of a dataset by 105 tags. A total of 100 such random chains were generated. The
convergence of the MSER and depth predictions with the increasing number of chains is
shown in Supplementary Figure 17.

We will use fractional agreement F(si, sj), to refer to an average fraction of binding positions
determined using randomly sampled fraction of tags of size sj that is also present (within
50bp) in a set of binding positions determined using tag subsample of size si . The basic
saturation curves (Figure 6a) show the values F(st, x), where x is the number of tags sampled
(x-axis), and st is the total size of the original dataset.

To estimate the minimal fold enrichment ratio of the identified binding positions over the
background, we calculated the number of ChIP (nc) and input (nb) tags within 100bp
surrounding the identified position. The counts were used to estimate 95% confidence
interval of the fold enrichment ratio based on a Poisson model with non-informative
Bayesian prior 20. As the background tag density is lower than the ChIP tag density, we also
tested using larger window sizes in counting background tags (see Supplementary Figure
18). While such approach should provide tighter enrichment confidence intervals, it appears
to result in over-estimation of enrichment folds relative to qPCR data.

We will use Fe(si, sj) to refer to the fractional agreement after filtering both predictions to
include only those binding positions with lower bound of enrichment ratios above e. The
minimal saturated enrichment ratio (MSER) for a dataset x was calculated as the minimal
value of e such that Fe(sx, sx − 105) ≥ 0.99. The relationship between log10(MSER − 1) and
the size of the dataset (x) was approximated using a linear model based on a least squares fit.

Availability
An implementation of the described methods is available as an R package and can be
downloaded at http://compbio.med.harvard.edu/Supplements/ChIP-seq

Supplementary information is available on the Nature Biotechnology website.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
a. Main steps of the proposed ChIP-seq processing pipeline. b. A schematic illustration of
ChIP-seq measurements. DNA is fragmented or digested, and fragments cross-linked to the
protein of interest are selected with IP. The 5’ ends (squares) of the selected fragments are
sequenced, typically forming groups of positive and negative strand tags on the two sides of
the protected region. The dashed red line illustrates a fragment generated from a long cross-
link that may account for the tag patterns observed in CTCF and STAT1 datasets. c. Tag
distribution around a stable NRSF binding position. Vertical lines show the number of tags
(right axis) whose 5’ position maps to a given location on positive (red) or negative (blue)
strands. Positive and negative values on the y-axis are used to illustrate tags mapping to
positive and negative strands respectively. The solid curves show tag density for each strand
(left axis, based on Gaussian kernel with σ =15bp). d. Strand cross-correlation for the NRSF
data. The y-axis shows Pearson linear correlation coefficient between genome-wide profiles
of tag density of positive and negative strands, shifted relative to each-other by a distance
specified on the x-axis. The peak position (red vertical line) indicates a typical distance
separating positive- and negative-strand peaks associated with the stable binding positions.

Kharchenko et al. Page 13

Nat Biotechnol. Author manuscript; available in PMC 2009 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Selecting informative tag classes based on the change in strand cross-correlation
magnitude
For each class of tag alignment quality listed in Table 1, the plots show the change in strand
mean cross-correlation profile when this class of tags is considered together with the base
class of perfectly aligned tags (25bp, no mismatches). Three plots correspond to tag classes
(a) without mismatches, (b) with a single mismatch, and (c) with two mismatches.
Informative tag classes improve cross-correlation (marked by *), and are incorporated into
the final tag set. The y-axis gives the mean change in cross-correlation profile within 40bp
around the cross-correlation peak (Figure 1d).
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Figure 3. Examples of anomalies in background tag distributions
a. Singular positions with extremely high tag count. b. Larger, non-uniform regions of
increased background tag density. c. Background tag density patterns resembling true
protein binding positions. Each plot shows density of tags from ChIP and input samples. The
tag histograms give combined tag counts.
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Figure 4. Binding position detection methods and their relative sensitivity
a. Schematic illustration of the Window Tag Density (WTD) method. To identify positions
with a tag pattern expected from a strong binding, the method calculates the difference
between geometric average of the tag counts within the regions marked by orange color (p1
and n2), and the average tag count within the regions marked by green color (n1 and p2). b.
The Matching Strand Peaks (MSP) method first identifies local maxima on positive and
negative strands (open circles) and then determines positions where such two peaks are
present in the right order, with the expected separation and comparable magnitude. c. The
Mirror Tag Correlation (MTC) method is based on the mirror correlation of positive and
negative-strand tag densities. The mirror image of negative-strand tag density is shown by
dashed blue line. The tags within 15bp of the center position are omitted. d. Coverage of
high-confidence NRSF motif matches by top peaks. The plot shows the fraction of motif
instances that coincide (with 50bp) with identified binding positions, as a function of
increasing number of top binding positions identified by different methods. Most methods,
except for MSP and CSP are able to achieve similarly high coverage.
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Figure 5. Accuracy of determined binding positions
a. Distribution of distances between high-confidence NRSF motif instances and locations of
binding positions identified by different methods. The standard deviation of the resulting
distribution (σ) is shown for each method. Only motifs containing a binding position within
100bp were considered. b–d. The fraction of the identified binding positions within the 10bp
of the motif position is shown for an increasing numbers of top binding positions identified
by different methods. Only binding positions occurring within 300bp of a sequence motif
instance are included in the analysis. Median distance to motif center was subtracted for
each method to account for non-central position of sequence motif relative to the center of
the protected binding region (see Methods). The MTC method achieves highest accuracy for
CTCF and STAT1; however, WTD gives more accurate positions for the NRSF binding.
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Figure 6. Analysis of sequencing depth
a. Given the NRSF binding positions determined using complete dataset (y-axis), the black
curve shows the fraction of positions that can be predicted (within 50bp) using smaller
portions of the tag data (x-axis). All of the binding predictions are generated using FDR of
0.01 using the WTD method. The curve does not reach a horizontal asymptote, indicating
that the set of detected NRSF binding sites has not stabilized at the current sequencing
depth. The additional curves limit the analysis to binding positions whose fold enrichment
ratio over the background is significantly (P<0.05) higher than 7.5 (MSER: Minimal
Saturated Enrichment Ratio, dashed line) and 30 (dotted line). The observed enrichment
ratios are evaluated independently for each tag subsample (x-axis). b. Distribution of tag
counts around high-confidence NRSF motif positions. Positions with zero tags were not
included. c. The relationship between MSER of the detected binding positions and
sequencing depth (expressed as a fraction of the complete dataset). The dashed gray line
shows a log-log model that can be used to estimate the sequencing depth required to saturate
detection of binding positions with lower fold-enrichment ratio. By that estimate, 1.2×106

more sequence tags would be necessary to saturate detection of binding positions that are
two-fold enriched over background (MSER=2 corresponds to y=0, at which the red line
crosses x-axis: x=2.8×106).
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