Automated Checks on UML Diagrams

Michael Striewe, Michael Goedicke
University of Duisburg-Essen
Motivation

- Modeling with UML is topic in introductory courses
 - Mass validation of exercises is tedious task
 - Benefits for mass validation known from e.g. programming exercises
- Known approach:
 - Check conformance to a sample solution
 - Drawbacks: Ambigious, correctness vs. quality
- Our approach:
 - Rule based checks
 - Inspired by teacher’s way of working
Example

- Small exercise: Customers of phone companies and their invoices
- Things to check:
 - Structure with respect to the exercise
 - Names with respect to the exercise
 - General style issues
Technical Background

• Handling solutions
 • Using XMI 2 as exchange data format
 • Parsing XML to syntax graph

• Handling rules
 • Using graph query language
 • Adding different interpretations for desired / undesired elements
 • „matching query“ vs. „matching rule“
 • Adding points / grades
 • Adding feedback messages
Exercise Specific Rules

• Designed individually for each exercise
• Checking special requirements for this exercise
 • Names taken from the exercise description
 • Structures specific for this exercise
• May handle tolerance for marginal flaws by user defined functions (e.g. for Levenshtein distance on strings)
 • Accept different spellings
 • Ignore whitespaces

<rule type="absence" points="10">
 <query>from x : V{Class}

 with stringLevenshteinDistance(x.name, "Pink Panther")<3
 report x.name as "name" end</query>

 <feedback>The diagram contains a class named "{name}" which seems to represent the phone company "Pink Panther". An entity with this name is supposed to be an instance and thus misplaced in a class diagram.</feedback>

</rule>
Generic Rules

- Independant from actual exercise
- Checking typical flaws
 - Missing directions, roles, cardinalities, ... on associations
- Checking style
 - Mixing of upper case and lower case letters
- Do not necessarily contribute to the grade, but only to the list of feedback messages

```
<rule type="absence" points="3">
  <query>
    from x : V{Association}, y : V{Property}
    with x --> y and isNull(y.lower) and isNull(y.upper)
    report x.name, y.name end</query>
  <feedback>The diagram contains associations without cardinalities.</feedback>
</rule>
```
Results

• Benefits
 • Good conformance between automated results and manual results
 • No complete sample solution needed
 • Flexible weighting of rules
 • Feedback messages for individual elements
 • Rules can be reused and shared

• Drawbacks
 • XMI 2 is a mess
 • Writing rules needs experience
 • General limitations in understanding natural language
Future Work

• More studies on conformance between automated results and manual results
• More diagram types
• Graphical feedback
• Other artefact types
 • Already used approach for static tests on Java syntax graphs with good results
• Answering your questions!