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Abstract

We analyze the time series properties of the S&P500 dividend-price ratio in the

light of long memory, structural breaks and rational bubbles. We find an increase

in the long memory parameter in the early 1990s by applying a recently proposed

test by Sibbertsen and Kruse (2009). An application of the unit root test against

long memory by Demetrescu et al. (2008) suggests that the pre-break data can be

characterized by long memory, while the post-break sample contains a unit root.

These results reconcile two empirical findings which were seen as contradictory

so far: on the one hand they confirm the existence of fractional integration in the

S&P500 log dividend-price ratio and on the other hand they are consistent with

the existence of a rational bubble. The result of a changing memory parameter in

the dividend-price ratio has an important implication for the literature on return

predictability: the shift from a stationary dividend-price ratio to a unit root process

in 1991 is likely to have caused the well-documented failure of conventional return

prediction models since the 1990s.
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1 Introduction

The existence of bubbles in stock market prices is both, highly important and contro-

versial. A natural starting point for any paper on bubbles is the question what exactly

a bubble is. This question seems to be intuitively easy to answer, it turns out to be dif-

ficult to give an exact definition. Garber (2000, p. 7) calls bubble a “fuzzy word filled

with import but lacking any solid operational definition” What is common in most def-

initions is that a bubble is a long-lasting deviation from a fundamentally justified level.

Thus share prices rise to “unrealistically high levels” (Kindleberger 1989) and are "un-

explained based on what we call fundamentals" (Garber 2000). A reasonable definition

is given by Rosser (2000), who argues that a speculative bubble exists “when the price of

something does not equal its market fundamentals for some period of time for reasons

other than random shocks; [Fundamental] is often argued to be a long-run equilibrium

consistent with a general equilibrium.”

Testing for a bubble is challenging (for a survey see Gurkaynak 2008). Early tests based

on variance bounds (Shiller 1981, LeRoy and Porter 1981) and West’s two step test (West

1987) have been followed by cointegration-based tests. These tests are derived from the

relation between share prices and dividends (Campbell and Shiller 1987) and basically

test for cointegration between prices and dividends, or similarly, test the dividend-price

ratio or dividend yield for stationarity. Since cointegration means that two series move

together in the sense that deviations from the equilibrium lead to an adjustment, cointe-

gration of prices and dividends or stationarity of the dividend-price ratio is inconsistent

with a rational bubble. Rational bubbles require that prices are continuously moving

away from the equilibrium. Otherwise they will immediately collapse: No rational in-

vestor who knows that the price exceeds the fundamental value is ready to buy a stock,

if the share price is expected to adjust to the equilibrium over the investment horizon.

On the other hand, the presence of a unit root in the dividend-price ratio is consistent

with the presence of a rational bubble.

Empirical evidence, however, is ambiguous. While some studies conclude that the

S&P500 stock market index (Diba and Grossmann 1987, Taylor and Peel 1998) does

not contain a bubble, others find evidence for its existence (Campbell and Shiller 1987,
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Froot and Obstfeld 1991, Craine 1993, Lamont 1998). Whereas early research relied on

integer degrees of integration, recently a class of long-memory models known in the lit-

erature as autoregressive fractionally integrated moving average (ARFIMA) processes

has been utilized. They allow for persistence and mean reversion. The long memory in-

herent in ARFIMA processes may therefore explain the lack of clear empirical evidence

on rational bubbles.

Applying the fractional integration technique, Koustas and Serletis (2005) find strong

evidence for the existence of long memory in the S&P 500 log dividend-price ratio and

their results support the hypothesis of no rational bubble. However, the authors do not

take a potential change in the fractional degree of integration into account. A similar

approach is used by Cuñado et al. (2005) to detect a bubble in the Nasdaq index during

the late 1990s, who find evidence for the existence of a rational bubble in this market.

Philipps et al. (2011) propose sequential unit root tests for detecting switches from non-

stationarity to explosive behaviour in the Nasdaq. Breitung and Homm (2011) further

investigate different tests for the unit root hypothesis against an explosive alternative

and find evidence for a bubble in the Nasdaq index at the end of the 1990s. Moreover,

they suggest real-time monitoring procedures for the detection of bubbles. Another

strand of the literature extending previous research, tests for a change from an I(0) to

an I(1) process. Sollis (2006) applies tests for a change in persistence in the I(0)/I(1)

framework. Beside the limitation to integer integration that rules out long memory dy-

namics, the tests used by Sollis (2006) have the undesirable property that they tend to

reject the null hypothesis of a constant I(0) (or constant I(1)) process with probability

one if the true data generating process is indeed constant I(1) (or constant I(0)), see

Leybourne et al. (2007).

We contribute to the literature by merging the approaches described above and apply-

ing a test for changing persistence under fractional integration that has been recently

proposed by Sibbertsen and Kruse (2009). As a result we find a significant break in the

memory of the S&P 500 log dividend-price ratio in July 1991. By applying the unit root

test against long memory proposed by Demetrescu et al. (2008) we find strong evidence

for long memory before the break in 1991 and a unit root afterwards. These results con-
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firm on the one hand the previous result of fractional integration in this time series and

on the other hand they are in line with other empirical studies that find evidence for

a unit root which is consistent with existence of a rational bubble in the S&P500 stock

market.

The paper proceeds as follows: Section 2 introduces the notation of rational bubbles in

stock prices. Section 3 outlines the econometric methodology and the test for changing

persistence. Section 4 describes the empirical results and section 5 summarizes and

concludes.

2 Rational bubbles

Following the fundamental equation of asset pricing, see Blanchard and Watson (1982)

and Campbell et al. (1997), the present price Pt of a share is the future cash flow, con-

sisting of the next period’s price Pt+1 and dividend payments Dt+1, discounted with

the rate Rt+1, the expected return that a marginal rational trader requires in order to

hold the asset under consideration:

Pt = Et [(Dt+1 + Pt+1)/(1 + Rt+1)] . (1)

For tractability the expected discount rate is assumed to be constant. While few peo-

ple would agree that this assumption is realistic, the basic idea also holds in the case

of a time-varying discount rate, see the huge literature on stochastic discount factors,

particularly Cochrane (2005). Furthermore Craine’s (1993) derivation of cointegration-

based testing for rational bubbles does not require a constant discount factor. Under

the assumption that Rt = R = constant, equation (1) evolves to:

Pt = Et [Dt+1 + Pt+1] /(1 + R) . (2)

Since equation (2) also applies to Pt+1, we may solve equation (2) k periods forward

which yields

Pt =
k

∑
i=1

Et [Dt+i] /(1 + R)i + Et [Pt+k] /(1 + R)k . (3)

A unique solution is only obtained if limk→∞ Et [Pt+k] /(1 + R)k = 0. In this case, we

obtain the fundamental value of the stock (Ft) which is given by the infinite sum of the
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expected present value of future dividends

Ft =
∞
∑
i=1

Et [Dt+i] /(1 + R)i . (4)

If the transversality condition limk→∞ Et [Pt+k] /(1 + R)k = 0 does not hold, an infinite

number of solutions exists. Any of these can be written as

Pt = Ft + Bt , (5)

where Bt = Et [Bt+1] /(1+ R) and Bt is the rational bubble. The bubble component cap-

tures the part of the share price that is due to expected future price changes. Thus, the

price contains a rational bubble, if investors are ready to pay more for the share, than

they know is justified by the discounted stream of future dividends. Since they expect

to be able to sell the share even at a higher price, the current price, although exceeding

the fundamental value, is an equilibrium price. The model therefore allows the devel-

opment of a rational bubble, in the sense that a bubble is fully consistent with rational

expectations. In the rational bubble model, investors are fully cognizant of the funda-

mental value, but nevertheless they may be willing to pay more than this amount.1 This

is the case if expectations of future price appreciation are large enough to satisfy the ra-

tional investor’s required rate of return. To sustain a rational bubble, the stock price

must grow faster than dividends (or cash flows) in perpetuity and therefore a rational

bubble implies a lack of cointegration between the stock price and fundamentals, i.e.

dividends, see Craine (1993).

Under the more realistic assumption of a time-varying discount rate, Campbell and

Shiller (1988) suggest a loglinear approximation of returns Rt+1 = (Pt+1 −Pt +Dt+1)/Pt.

It is given by

rt+1 = pt+1 − pt + ln(1 + exp(dt+1 − pt+1)) , (6)

where r, p and d are the natural logarithm of 1 + R, P and D, respectively. This non-

linear relationship can be linearized by applying a first-order Taylor approximation:

rt+1 ≈ α + λpt+1 + (1 − λ)dt+1 − pt . (7)

1If they are not aware of this fact, the bubble is irrational, see O’Hara (2008) for a brief discussion on

rationality.
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Solving this equation forward and imposing the no-bubble condition limk→∞ λk(dt+k −

pt+k) = 0 yields

pt = α/(1 − λ) +
∞
∑
k=0
λk [(1 − λ)dt+1+k − rt+1+k] . (8)

Finally, by taking the expectation of equation (8) based on information available at time

t, this leads to an expression for the log dividend-price ratio:

dt − pt = −α/(1 − λ) +
∞
∑
k=0
λk [−Et(∆dt+1+k + rt+1+k)] . (9)

Following Craine (1993), the log dividend yield is stationary under the no-bubble re-

striction if dividend growth and logarithmic stock returns are stationary. Importantly,

the presence of a unit root in dt − pt is consistent with a rational bubble in the stock

price.

As some economists find the idea of a permanent rational bubble unrealistic, such as

Froot and Obstfeld (1991, p. 1190), who state that "it is difficult to believe that the mar-

ket is literally stuck for all time on a path along with price-dividend ratios eventually

explode", in a more elaborated model Blanchard and Watson (1982) describe a bubble

that collapses with probability one in the long-run, but continues in the next period

with probability π and bursts with probability (1 − π). However, if it grows in expec-

tation at a rate (1 + R)/π , which is sufficient to compensate for the risk, the net present

value of the bubble is positive and holding the bubble is rational. The idea of emerging

and collapsing bubbles is closely related to the empirical literature testing for changes

in the degree of integration in the dividend yield.

3 Testing for changing memory

This section describes the testing procedure for a structural change in the long mem-

ory parameter. We apply a CUSUM of squares-based test proposed by Sibbertsen

and Kruse (2009). The authors assume that the data generating process follows an

ARFIMA(p, d, q) process as proposed by Granger and Joyeux (1980):

Φ(L)(1 − L)d yt = Ψ(L)εt ,

6



where εt are iid random variables with mean zero and varianceσ2. The autoregressive-

and moving average- polynomials Φ(L) and Ψ(L) are assumed to have all roots out-

side the unit circle. The degree of integration of yt is therefore solely determined by

the memory parameter d. This process is said to be fractionally integrated of order

d. The test proposed by Sibbertsen and Kruse (2009) considers the following pair of

hypotheses,

H0 : d = d0 for all t (10)

H1 :

 d = d1 for t = 1, . . . , [τT]

d = d2 for t = [τT] + 1, . . . , T
(11)

where [x] denotes the biggest integer smaller than x. The differencing parameter is

restricted to 1/2 < d0 < 3/2 under H0, while 0 ≤ d1 < 1/2 and 1/2 < d2 < 3/2. Please

note that d1 and d2 can be interchanged. We test the null hypothesis of constant memory

(1/2 < d0 < 3/2) against a change from stationary (0 ≤ d1 < 1/2) to non-stationary

(1/2 < d2 < 3/2) long memory at [τT] or vice versa. In case that 0 ≤ d0 < 1/2, the

time series yt is integrated once, i.e., zt ≡ ∑t
i=1 yi. The fractional degree of integration

of zt is then given by d0 + 1 ∈ [1, 3/2). The test is then carried out for zt instead of

yt. Sibbertsen and Kruse (2009) show that this simple approach works well in practice.

The test statistic, originally proposed by Leybourne et al. (2007), is given by

RCS =
infτ∈Λ K f (τ)

infτ∈Λ Kr(τ)
, (12)

where K f (τ) and Kr(τ) are CUSUM of squares-based statistics based on the forward

and reversed residuals of the data generating process as given below. The relative

breakpoint τ ∈ [τ , τ̄ ] ≡ Λ is assumed to be unknown and a simple estimator is given

at the end of this section. In detail, K f (τ) and Kr(τ) are given by

K f (τ) =
1

[τT]2

[τT]

∑
t=1

v̂2
t,τ

and

Kr(τ) =
1

(T − [τT])2

T−[τT]

∑
t=1

ṽ2
t,τ .

Here, v̂t,τ are the residuals from the OLS regression of yt on a constant based on the

observations up to [τT]. This is

v̂t,τ = yt − ȳ(τ)
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with ȳ(τ) = [τT]−1 ∑[τT]
t=1 yt. Similarly ṽt,τ is defined for the reversed time series. Sib-

bertsen and Kruse (2009) show that the limiting distribution (T → ∞) of R is given

by

T−2d0 RCS ⇒
inf
τ∈Λ

L f
d0
(τ)

inf
τ∈Λ

Lr
d0
(τ)

(13)

with

L f
d0
(τ) =

τ∫
0

W∗
d0
(r, τ)2dr

Lr
d0
(τ) =

1−τ∫
0

V∗
d0
(r, τ)2dr

W∗
d0
(r, τ)2 =

Wd0(r)− τ
−1

τ∫
0

Wd0(r)dr

2

V∗
d0
(r, τ)2 =

Wd0(1 − r)− (1 − τ)−1
1∫
τ

Wd0(r)dr

2

.

The fractional Brownian motion Wd0 (type II, see Marinucci and Robinson 1999) is given

by

Wd0(r) =
1

Γ(d0 + 1)

∫ r

0
(r − s)d0 dW(s) , r > 0 ,

where Γ denotes the Gamma function and W is the regular Brownian motion. It is

worthwhile to note that it depends on the fractional degree of integration under the

null hypothesis, d0. Sibbertsen and Kruse (2009) provide response curves to compute

critical values which works well in practice. The simulation results therein show that

the size properties of the test are satisfying even though the unknown parameter d0 is

estimated. The estimation of d0 has little impact on the empirical size properties of the

test. It introduces a small size distortion which gets smaller with an increasing sample

size. Their results are obtained for samples sizes which are much smaller than in our

application. Therefore, it is expected that the estimation uncertainty of d0 has a negligi-

ble impact, if any, on our results. However, as explained in Section 4 in detail, we treat

this issue carefully by considering different estimators for d0. It is important to note

that the CUSUM of squares-based test maintains satisfactory size properties when the

data generating process exhibits GARCH effects.2

2Unreported simulation results for T = 1500, three different settings for GARCH parameters and six

different values for d0, confirm this claim. Full results are available upon request from the authors. See
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The null hypothesis H0 : d = d0 is rejected for small values of R in favor of the alter-

native H1 stated in (8). Theorem 2 in Sibbertsen and Kruse (2009) shows that the test

is consistent if a change from 0 ≤ d1 < 1/2 to 1/2 < d2 < 3/2, or vice versa, occurs.

In addition, the simulation results reported in Sibbertsen and Kruse (2009) suggest that

the test has substantial power against changes of the long memory parameter within

the (non-)stationary region. This means in particular that the test is powerful in detect-

ing changes in the non-stationary region, say from d = 0.6 to d = 1.

Finally, we note that the unknown breakpoint τ is estimated by minimizing the objec-

tive function S(τ) over τ ∈ Λ:

τ̂ = arg inf
τ∈Λ

1
[τT]2

[τT]

∑
t=1

v̂2
t,τ ≡ arg inf

τ∈Λ
S(τ) . (14)

This estimator is consistent as shown in Sibbertsen and Kruse (2009), Theorem 3. The

simulation results therein show that the estimator performs well in finite samples. The

later the breakpoint is located in the sample, the more accurate is the breakpoint esti-

mator in terms of small-sample bias and variance. In addition, we note that the perfor-

mance of the breakpoint estimator is also not substantially affected by GARCH distur-

bances, see Heinen et al. (2009).

4 Empirical evidence

The monthly data set can be downloaded from Robert Shiller’s web site3. The sample

spans from January 1871 to March 2009 which results in 1659 monthly observations.

We consider the log dividend-price ratio yt = ln(Dt/Pt). This time series is depicted

in Figure 1. The graph shows a clear change in the behaviour in the last part of the

sample. The vertical line illustrates the estimated breakpoint of changing persistence in

July 1991. A detailed description of the application is given below.

also Heinen et al. (2009) for further results.
3http://www.econ.yale.edu/ shiller/data.htm
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Figure 1: S&P 500 log dividend-price ratio (January 1871 to March 2009).

The set of potential breakpoints is specified as Λ = [0.1T, 0.9T] which is a common

choice in the breakpoint literature, see Perron (2006). This setting corresponds to po-

tential break dates between September 1884 and May 1995. When carrying out the

CUSUM of squares-based test for a change in the fractional degree of integration we

obtain a test statistic which equals 0.424, see Table 1. Recall that the critical values

depend on d0 which is an unknown parameter and hence estimated. We consider (i)

semi-parametric log-periodogram estimation and (ii) full parametric maximum likeli-

hood estimation of properly specified ARFIMA-GARCH models. Results in Koustas

and Serletis (2005) suggest that conditional heteroscedasticity plays an important role

for the S&P500 log dividend-price ratio. Regarding log-periodogram estimation of d0

we apply the method proposed by Geweke and Porter-Hudak [GPH] (1983). While this

estimator is to some extent robust against GARCH effects, see Hauser (1997), the sec-

ond approach takes GARCH effects directly into account by specifying a full model for

yt.
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Table 1: CUSUM of squares-based test for changing memory

Full sample Pre-break sample Post-break sample

Test statistics

RCS 0.424 0.891 0.827

Critical values: Log-periodogram regression

cv1% 0.221 0.476 0.058

cv5% 0.354 0.612 0.131

cv10% 0.452 0.695 0.204

cv90% 2.242 1.466 4.863

cv95% 2.869 1.698 7.626

cv99% 4.570 2.049 17.333

Critical values: ARFIMA-GARCH model

cv1% 0.289 0.569 0.077

cv5% 0.430 0.701 0.160

cv10% 0.529 0.776 0.242

cv90% 1.874 1.258 4.127

cv95% 2.271 1.347 6.179

cv99% 3.550 2.016 13.342
Notes: RCS is the CUSUM of squares-based test statistic for constant memory. The

limiting distribution of RCS depends on d which is estimated, see Table 2 and 3. cvα%

is the critical value at the α% level of significance based on these point estimates. If

RCS is lower than a certain critical value, the null of constant memory is rejected in

favor of increasing memory and vice versa.

The GPH estimator is based on an approximation of the spectral density of yt near the

origin. In more detail, the following regression is considered

log(I j) = log c f − 2dX j + logξ j , j = 1, 2, . . . , m (15)

where I j =
1

2πn

∣∣∣∑T−1
t=0 yt exp

(
i2π jt

T

)∣∣∣2
is the j-th periodogram ordinate, c f is the spec-

tral density of the short-run component at frequency zero, X j denotes the j-th Fourier

frequency andξ j are assumed to be i.i.d. with −E(logξ j) = 0.577216... which is known

as the Euler constant. The GPH estimator for d equals the -1/2 times the OLS estima-

tor of the slope parameter in the log-peridogram regression (12). Further details can

be found in Geweke and Porter-Hudak (1983). As the choice of number of frequencies
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Table 2: Log-periodogram regression

Full sample Pre-break sample Post-break sample

Test of Bias 5.094 (0.000) 3.507 (0.000) 1.113 (0.133)

GPH 0.848 (0.000) 0.614 (0.000) 1.170 (0.000)

[m] T1/2 = 40 T1/2
1 = 38 T4/5

2 = 72
Notes: Test of Bias is the test statistic for the null hypothesis that no bias occurs in the log-

periodogram regression (12). GPH is the semi-parametric estimator for the long memory pa-

rameter d with bandwidth [m]. T1 = 1447 and T2 = T − T1 = 212 are the number of observations

in the first and the second sub-sample, respectively. P-values are reported in brackets beside the

corresponding estimate or test statistic.

m that are used in (12) is a crucial issue, we apply the bias test proposed by David-

son and Sibbertsen (2009) to choose between the MSE-optimal rate m = [T4/5] and the

one suggested by GPH, i.e., m = [T1/2]. This test checks the null hypothesis of no

bias in the log-periodogram regression by using a Hausman-testing principle. An ap-

plication of this test leads to a rejection of the null hypothesis at conventional levels

of significance (p-value = 0.000), see Table 2. Therefore, we proceed with the smaller

bandwidth choice m = [T1/2]. The corresponding GPH estimate of d0 is 0.848 which

indicates non-stationary long memory. This estimate is significantly different from zero

as the corresponding p-value equals 0.000, see Table 2. The critical values for R based on

this estimate are reported in Table 1 below the values of the CUSUM of squares-based

test statistics. They lead to a rejection of the null hypothesis at the ten percent level of

significance.

Second, we build an ARFIMA(p, d0, 0)–GARCH(1, 1) model where all parameters are

estimated jointly by maximum likelihood. As a first step, we select the autoregres-

sive lag length p according to usual information criteria with a maximal lag length of

p4 = [4(T/100)1/4] = 7, cf. Schwert (1989). We start by considering the pure ARFIMA

process, i.e., excluding the GARCH process,

Φ(L)(1 − L)d0 yt = µ +εt (16)

Φ(L) = 1 −ϕ1L −ϕ2L2 − . . . −ϕpLp . (17)

The lag polynomialΦ(L) is assumed to have all roots outside the unit circle. The results

for different criteria are Schwarz (p̂ = 1), Hannan-Quinn (p̂ = 4) and Akaike (p̂ = 4).
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Table 3: Estimation results for ARFIMA(p,d,0) models

Full sample Pre-break sample Post-break sample

ARFIMA

d 0.769 (0.000) 0.552 (0.000) 1.113 (0.000)

µ -2.840 (0.000) -2.839 (0.000) 16.556 (0.767)

ϕ1 0.529 (0.000) 0.767 (0.000) – –

ϕ2 -0.050 (0.083) -0.093 (0.034) – –

ϕ3 0.052 (0.092) 0.055 (0.103) – –

ϕ4 0.066 (0.015) 0.101 (0.000) – –

ϕ5 0.065 (0.006) – – – –

LAR 0.816 – 0.881 – – –

GARCH

ω 0.001 – 0.001 – >0.000 –

α 0.103 (0.000) 0.100 (0.001) 0.148 (0.008)

β 0.839 (0.000) 0.832 (0.000) 0.839 (0.000)

Distribution

df 5.840 – 5.855 – 5.936 –

ln(θ) 0.172 (0.000) 0.170 (0.000) 0.214 (0.054)

Diagnostics

Q(15) 18.220 (0.251) 18.652 (0.230) 13.304 (0.579)

LM(15) 16.520 (0.348) 18.218 (0.251) 13.800 (0.541)

Q2(15) 8.643 (0.895) 7.191 (0.952) 9.824 (0.831)

ARCH(5) 2.835 (0.725) 1.627 (0.898) 1.764 (0.881)
Notes: The estimated model is given by equations (18)–(20). P-values are reported in brackets

beside the corresponding estimate or test statistic if available. LAR denotes the largest autore-

gressive root of the AR polynomial Φ(L). df is the degree of freedom of the skewed Student-t

distribution, while θ is the asymmetry parameter. Q(15) (Q2(15)) is the Ljung-Box statistic ap-

plied to the (squared) residuals with 15 lags, LM(15) is a serial correlation LM test statistic with

15 lags and ARCH(5) is Engle’s ARCH-LM test with 5 lags.

Unfortunately, none of these choices lead to satisfying results of diagnostic tests regard-

ing remaining autocorrelation in the residuals ε̂t.4 Therefore, we increase the lag length

chosen via Akaike and Hannan-Quinn Information Criterion by one and obtain better

4These results are not reported but available from the authors upon request.
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results. Table 3 shows that the null hypothesis of no remaining serial correlation in the

residuals up to lag 15 cannot be rejected at conventional significance levels when using

a Ljung-Box statistic Q and an LM test for serial correlation. The selection of 15 lags is

of course arbitrary, but the conclusions do not change when 10 or 20 lags are used.

In the next step of our model building procedure, we add a GARCH(1, 1) variance

equation to the ARFIMA(5, d0, 0) model. Hence, the specified model is given by

Φ(L)(1 − L)d0 yt = µ +εt (18)

εt ∼ (0, ht) (19)

ht = ω+αε2
t−1 +βht−1 . (20)

Diagnostic tests (Q2 and ARCH-LM) confirm the ad-hoc choice of the lag length (1, 1)

for the GARCH process. We consider four different possible distributions for the in-

novations εt: Normal, Student-t, skewed Student-t and Generalized Error Distribution

(GED). The skewed Student-t distribution provides the best fit to the data when the

same information criteria are questioned as before. Moreover, estimation results for d0

are quite stable across different specifications for the innovation distribution. In Table

1 we only report results for the model with a skewed Student-t distribution.5 The es-

timate for the main parameter of interest, i.e., d0, is 0.769 and therefore slightly lower

than the GPH estimate. Koustas and Serletis (2005) find a similar value based on a

shorter sample. It should be noted that this estimate is also significantly different from

zero. All of the diagnostic tests (Ljung-Box for the level and squared residuals, LM au-

tocorrelation test and the test for neglected ARCH effects) indicate that the estimated

model is correctly specified. The critical values for the CUSUM of squares-based test

statistic R = 0.424 based on the ARFIMA-GARCH model are reported in the lower

panel of Table 1. These critical values imply a rejection of the null hypothesis at the five

percent level of significance.

In sum, we find a rejection of the null hypothesis that the long memory parameter is

constant in favor of the alterative that the memory parameter is larger during the post-

break sample than before. The estimated breakpoint is July 1991. The empirical objec-

5All other results are available from the authors upon request.
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Figure 2: Empirical objective function S(τ).

tive function S(τ), which has to be minimized for breakpoint estimation is depicted in

Figure 2, see also equation (14). It can be seen that the function has a minima close to

the end but not at the border. There is, however, another region with very low values of

S. If the interval of potential breakpoints would be tighter than specified here, the rela-

tively late break date in 1991 would be excluded and hence undetectable. Interestingly,

within this area the minimum is located in August 1958 which is close to the breakpoint

estimations reported in Sollis (2006).

While most empirical studies do not include the 1990s and are therefore not compara-

ble, the evidence of a structural change towards a bubble in the 1990s is confirmed by

several recent studies. For instance, Bohl (2003) finds evidence for a bubble in the US

stock market only for the sample period 1871 to 2001, but not if the sample ends in 1995.

Similarly, Nasseh and Strauss (2004) find a structural change in the relation between

prices and dividends in the mid 1990s. Cunado et al. (2005) focus on the comparatively

short sample period from 1994 to 2003 and the Nasdaq index. They find evidence for
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the existence of a bubble, but cannot determine when the bubble has started.

Finally, our results strongly corroborate the results by Lettau and and Van Nieuwer-

burgh (2008), who also identify a structural break in the dividend-price ratio in 1991.

The timing of our break is also in line with recent empirical work on other financial

time series (see for instance Pastor and Stambaugh 2001 for the equity risk premium).

The estimated break date coincides with the recovery of the stock market that followed

the recession of 1991 and led to the stable increase of share prices and the subsequent

explosive behaviour from the mid-1990s on, that ended with the collapse at the turn

of the century. The structural break found in our analysis reflects the change in val-

uation ratios that could be observed in the bull markets of the 1990s, which marked

the transition to a non-stationary process.6 At this time the forecasting power of tradi-

tional models broke down (Lettau and Van Nieuwerburgh 2008). While some analysts

saw the rapid rise in US stock markets justified by low inflation, a decline of the equity

risk premium and increased productivity growth (Nasseh and Strauss 2004) and in the

1990s the business press coined the notation of the "new economy", benefitting from

globalization and the revolution in information and communication technology, some

economists suggested the existence of a stock market bubble (see inter alia Shiller 2001,

Stiglitz 2003). In a recent contribution, Park (2010) provides international evidence for

the importance of changes of persistence in the dividend yield for its predictive power

for stock returns.

The next steps of our analysis include an analysis of the two sub-samples which are

generated according to the breakpoint estimate. That is, we consider the pre- and the

post-break sample separately from each other. We repeat all steps of the testing and es-

timation exercise. This is done in order to test whether the break in July 1991 is the only

one which occurred in our sample. The outcome of the sub-sample analysis reveals

clearly that no additional breaks in the long memory parameter are present. Detailed

results on estimation and inference can be found in the middle and the last column of
6“The extraordinary valuation ratios in the late 1990s represent a significant challenge for the bench-

mark model. Given the historical record of returns, fundamentals, and prices, it is exceedingly unlikely

that persistent stationary shocks to expected returns are capable of explaining price multiples like those

seen in 1999 or 2000.” (Lettau and Van Nieuwerburgh 2008, p. 1608).
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Tables 1, 2 and 3.

In the light of testing for rational bubbles it is necessary to compare pre- and post-break

degrees of integration. From a first sight, the estimates suggest that the pre-break de-

gree of integration d1 is significantly different from zero and close to the limiting value

of 0.5 for stationarity processes. It is, however, unclear whether d1 is significantly dif-

ferent from unity. The post-break estimate d2 is in contrast to d1 quite close to unity. In

order to carry out a formal and suitable test of the unit root hypothesis H0 : d1,2 = 1

against long memory H1 : d1,2 < 1, we apply the lag augmented Lagrange multiplier

test proposed by Demetrescu et al. (2008). Their procedure builds upon the test regres-

sion (xt = ∆yt)

xt = ϕx∗t−1 +
k

∑
i=1
ψixt−i +εt (21)

with x∗t = ∑t−1
j=1

xt− j
j . The unit root hypothesis can be expressed as H0 : ϕ = 0, while

the alternative of long memory is given by H1 : ϕ < 0. Demetrescu et al. (2008)

suggest to use a t-statistic for H0 versus H1 which has a standard normal limiting dis-

tribution. Furthermore, they recommend to specify the lag length k deterministically,

i.e., k4 = [4(T/100)1/4] or k12 = [12(T/100)1/4]. When computing the t-statistics for

H0, we choose OLS based and White’s heteroscedasticity-robust standard errors. The

corresponding t-statistics are denoted as t and t∗, respectively. Regarding determinis-

tic terms, Demetrescu et al. (2008) suggest to regress xt on the first difference of the

deterministic terms in a first step prior to estimation of equation (21). In the case of a

linear trend, xt is de-meaned, while it is not modified if a constant is specified as the

first difference of a constant simply disappears.
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Results are reported in Table 4. It can be seen that the unit root hypothesis has to

be clearly rejected for the full sample and the pre-break period but not for the post-

break period. The p-values are either zero or very close to unity. The inclusion of

heteroscedasticity-robust standard errors does not have an impact on the outcomes al-

though the test statistics are generally somewhat higher. The specification of determin-

istic terms has only little impact on the test results. Moreover, the test decision is not

influenced by the choice of the lag length k via k4 or k12.

As a robustness check we consider two standard unit root tests with good size and

power properties. We apply the MZt test proposed by Ng and Perron (2001) and the

Dickey-Fuller GLS test by Elliott et al. (1996). Empirical results can be found in Table

5. We report test statistics for two types of deterministic terms as before: constant and

a linear trend. The lag length is selected by applying the modified AIC, HQIC and SIC.

Since the results for the modified HQIC and SIC are the same, we only report the latter

ones. It can be seen that the results are in line with the outcomes of the test against long

memory, see Table 4. The null hypothesis of a unit root cannot be rejected in the sec-

ond sub-sample. This result holds true regardless of the specification of deterministic

terms and the choice of the information criterion.7 Therefore, the evidence for non-

stationarity of the dividend-price ratio in the post-break period is particularly strong.

On the contrary, the results suggest the opposite for the pre-break sample.

We conclude that the log dividend-price ratio of the S&P500 exhibits significant long

memory before the break takes places and that it contains a unit root afterwards. The

non-stationarity in the second sub-sample invalidates the no-bubble condition. Hence,

we find statistical evidence which is consistent with the existence of a rational asset

price bubble. The bubble starts in July 1991 and it does not seem to collapse during our

sample since we do not find any evidence for a significant decline in persistence in the

post-break period. A reduction in persistence would have indicated the collapse of the

bubble.

7The application of the KPSS test (Kwiatkowski et al. 1992) with both types of deterministic terms

and different kernels for the spectrum estimation at frequency zero suggests strong evidence for non-

stationarity as well. Full results are available from the authors upon request.
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Finally, we consider the earnings-price ratio as a further robustness check.8 The earnings-

price ratio may share dynamic properties similar to the dividend-price ratio. In the

following, we provide a brief summary of results.9 Indeed, our results suggest a high

degree of similarity: The CUSUM of squares-based test statistic RCS equals 0.709. Full

sample estimates for d0 are 0.548 (based on GPH estimator with m = [T1/2]) and 0.515

(ARFIMA (4, d, 0)-GARCH(1,1)). The corresponding critical values at the five percent

level are given by 0.707 and 0.760. In the latter case, the test for constancy of the memory

parameter rejects the null of no structural break, while the decision based on the GPH

estimate is borderline. The breakpoint estimate corresponds to June 1991 which is very

similar to the one for the dividend-price ratio (July 1991). Another similarity is found

in the estimated fractional degree of integration: for the earnings-price ratio we obtain

d̂1 = 0.477 (GPH estimate with m = [T1/2]) and d̂1 = 0.503 (ARFIMA-GARCH). For the

post-break sample, we also find estimates of d2 slightly above one for the earnings-price

ratio. The results for the Demetrescu et al. (2008) test and the two standard unit root

tests indicate that the earnings-price ratio is non-stationary during the post-break sam-

ple. This conclusion does not change with respect to the specification of deterministic

terms and the choice of the lag length. In sum, these findings underline the robustness

of our previous findings.

5 Conclusions

Previous research on the time series properties of the S&P500 dividend price-ratio led

to conflicting results. Especially, the existence of rational bubbles is highly controver-

sial and at the same time of great importance. In a recent study, Koustas and Serletis

(2005) apply fractionally integrated time series models, thereby finding evidence for

long memory, but at the same time providing evidence against a rational bubble. How-

ever, the authors do not account for the possibility of structural breaks in the memory

parameter and therefore, their study is potentially flawed. Furthermore, Sollis (2006)

considers tests for changing persistence in the I(0)/I(1) framework which rules out

long memory dynamics. This author finds a break from stationarity to non-stationary

8We are thankful to an anonymous referee for the suggestion to consider another valuation ratio as

well.
9Full results are available from the authors upon request.
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which means that the no-bubbles condition is not fulfilled for a sub-sample of the data

hinting at a rational bubble. Both approaches to test for rational bubbles have their lim-

itations. In this paper, we consider a generalization of a test for changing persistence

under long memory proposed by Sibbertsen and Kruse (2009). This testing procedure

has the advantage that it permits both, long memory and changing persistence. In

addition to the structural break test, we apply a unit root test against long memory pro-

posed by Demetrescu et al. (2008). Our findings can be summarized as follows: the log

dividend-price ratio exhibits significant long memory until the early 1990s and has a

unit root afterwards. Therefore, the results are consistent with the existence of a ratio-

nal bubble in the S&P500 stock market.

Moreover, our result of a changing memory parameter of the dividend-price ratio has

an important implication for the literature on return predictability. While standard fore-

casting models for (expected) stock returns use the dividend-price ratio as a predictor

(see for instance Stambaugh 1999, Lewellen 2004), they assume that both, the return

series and the forecasting variable, are stationary. The latter is not the case when a bub-

ble occurs, which implies that the forecasting regression is unbalanced. Thus, the shift

from a stationary dividend-price ratio to a unit root process in 1991 is likely to have

caused the well-documented failure of conventional return prediction models since the

1990s (Lettau and Van Nieuwerburgh 2008).
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