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University Hospital Umeå, Sweden, 3Department of Epidemiology, M.D. Anderson Cancer Center, Houston, Texas and
4Department of Pathology-Oncology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden

Abstract
Background. Patients with glioma exhibit a great variability in clinical symptoms apart from variations in response to therapy
and survival. Many patients present with epileptic seizures at disease onset, especially in case of low-grade gliomas, but not
all have seizures. A large proportion of patients develop refractory seizures. It is likely that the variability in epileptic
symptoms cannot exclusively be explained by tumor-related factors, but rather reflects complex interaction between tumor-
related, environmental and hereditary factors. Material and methods. No data exist on susceptibility genes associated with
epileptic symptoms in patients with glioma. However, an increasing number of candidate genes have been proposed for
other focal epilepsies such as temporal lobe epilepsy. Some of the susceptibility candidate genes associated with focal
epilepsy may contribute to epileptic symptoms also in patients with glioma. Results. This review presents an update on
studies on genetic polymorphisms and focal epilepsy and brings forward putative candidate genes for tumor-associated
epilepsy, based on the assumption that common etiological pathways may exist for glioma development and glioma-
associated seizures. Conclusion. Genes involved in the immune response, in synaptic transmission and in cell cycle control
are discussed that may play a role in the pathogenesis of tumor growth as well as epileptic symptoms in patients with
gliomas.

Gliomas

Gliomas of astrocytic, oligodendrocytic and epen-

dymal origin comprise about 40% of all adult

primary brain tumors [1,2]. The most frequent

and most malignant histological subtype is the

glioblastoma, with an annual incidence of 4�5 per

100 000 and a median age at diagnosis of around 60

years [3]. The annual incidence of low-grade

gliomas is estimated to 1�2 per 100 000 inhabitants

[3]. Despite multimodal treatment approaches con-

sisting of surgery, radiotherapy and chemotherapy,

the prognosis of patients with glioblastoma is still

poor [4]. The median survival of adults with low-

grade gliomas is around 5�10 years, but for most if

not all patients the disease has a fatal outcome.

Gliomas account for as many as 26 000 USA and

European deaths each year.

Apart from high-dose ionizing radiation as an

established risk factor and a consistent inverse

relationship of glioma with allergies and asthma,

the etiology of gliomas is largely unknown [2]. Only

5% of all glioma cases constitute familiar forms,

leaving the vast majority of patients with sporadic

gliomas. Evidence strongly suggests that inherited

susceptibility plays a role with two-fold increased

risk of glioma among first-degree relatives of glioma

cases [5]. Apart from rare Mendelian cancer pre-

disposition syndromes, the genetic basis of glioma

susceptibility has not been fully elucidated.

Genetic susceptibility and glioma

A recent report on the genetic basis of susceptibility

to gliomas showed several candidate genes asso-

ciated with increased overall risk of glioma, although
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presently few associations have been confirmed in

several independent data sets [6]. The most com-

monly studied candidate genes for glioma risk are

genes involved in cell cycle control, DNA repair and

immune response. Table I shows examples of genes

and their specific polymorphisms that have shown to

be associated with an altered risk for glioma devel-

opment [7�17]. CHAF1A and P53 have been

associated in single studies for glioma and glioblas-

toma respectively [18]. In addition, a recent pooled

analysis of four US data sets showed associations

with DNA repair genes and glioblastoma in 1 000

glioblastoma cases and 2 000 controls [19]. Several

studies have associated infection and immune func-

tion with a decreased risk of glioma [7]. Allergies

have shown to be inversely correlated to gliomas and

consistent associations were reported for an IL13

polymorphism and an IL4R haplotype, although it

remains unclear whether allergies protect against

tumors or whether immunosuppressive gliomas in-

hibit allergies [20,21].

Epilepsy and gliomas

Focal epileptic seizures are among the most com-

mon symptoms at disease onset in patients with

gliomas. Seizures can frequently predate other

symptoms or diagnosis by many years [22]. There

is an inverse relationship between tumor growth

rate and seizure risk, and symptomatic seizures are

significantly more common in low-grade than high-

grade gliomas [23]. Up to 80�90% of all patients

with low-grade gliomas experience seizures or

epilepsy, but not all have seizures in spite of similar

tumor localization and histology (Figure 1). Epi-

lepsy may be the only symptom for months or years

in the non-progressive phase of the disease. In a

recent study, approximately half of the patients with

low-grade gliomas who presented with seizures were

pharmacoresistant before surgery [24].

Other important factors underlying the develop-

ment of epilepsy in patients with glioma besides the

growth rate of the tumor are the localization in the

brain and the proximity with the cortical gray matter

Table I. Some examples of case-control studies of gene polymorphisms showing associations with altered glioma risk.

First Author Gene and specific polymorphism Tumor type Number of cases and controls

Brenner [7] Cytokines

IL-4 (rs224348)

IL-6 (rs1800795)

Glioma 756 cases,

1190 controls

Rajaraman [8] Cell cycle

CCND1 (rs603965)

CCNH (rs2266690)

MDM2 (rs769412)

Glioma 388 cases,

533 controls

Liu [9] DNA repair

ERCC1 (3’UTR)

XRCC1 (R399Q)

APEX1 (E148D)

PARP1 (A762V)

MGMT (F84L)

LIG1 (5ÚTR)

Glioma 373 cases,

365 controls

Carpentier [10] Telomerase

hTERT (MNS16A)

Glioblastoma (GB)

& Anaplastic astrocytoma (AA)

205 GB, 147 AA, 305 controls

Costa [11] EGF (EGF�61) Glioma 197 cases,

570 controls

Lu [12] Promoter Matrix metalloproteinase

MMP-1-1607 1G/1G

MMP-1 1G-MMP-3 6A

Astrocytoma 236 cases,

366 controls

Parhar [13] P53 codon 72

P53 Arg72Pro

Glioma (including pediatric cases) 92 adult cases,

43 pediatric cases,

71 controls

Bhowmick [14] EGF-receptor

(EGFR 5ÚTR, G/A & G/G

genotype)

Glioblastoma (GB) 31 primary GB,

11 secondary GB

78 controls

Wrensch [15] Glutathione-S-transferase

GSTP I105V

GB, astrocytoma (A), oligodendro-glioma

(OD), oli-goastrocytoma (OA)

179 GB, 62A, 94 OD or OA,

32 others,

428 controls

Wang [16] DNA repair

XRCC/ G6721T (G/T

& T/T genotype)

Glioma 309 cases,

342 controls

Frigerio [17] Tumour necrosis factor

TNFb4

Glioblastoma 58 patients,

95 controls
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[23]. Tumors localized in the vicinity of the primary

motor cortex and tumors with limbic and perilimbic

cortical localization are highly epileptogenic,

whereas occipital tumors are less likely to manifest

with seizures. Epileptic seizures in high-grade glio-

mas are less frequent but may be more difficult to

control. The pathogenesis of seizure development is

likely to occur by different mechanisms for high- and

low-grade gliomas [22,25]. In fast growing high-

grade gliomas the focal peri-tumoral ischaemia and

deafferentiation of cortical areas due to mass effect

may be causative factors, whereas gliosis and chronic

inflammatory changes in peri-tumoral regions of

slowly growing gliomas may predispose for epileptic

seizures (Figure 2). Increased levels of Fe3� ions in

intra- or peri-tumoral areas, due to small bleedings

from pathological blood vessels, may also contribute

to the development of tumor-associated seizures and

are more likely to occur in high-grade gliomas [22].

Our knowledge of tumor-associated epileptogenicity,

however, is limited and current therapy is far from

perfect [26].

Epileptic seizures and survival in patients with

glioma

A deeper understanding of the correlation between

symptoms and course of disease for patients with

gliomas is of importance in clinical neuro-oncology.

The recurrence of epileptic seizures after a long

seizure-free period, for example, may be the first sign

of progressive disease before radiological progression

is visible, but this is not always the case. Little is

known on the impact of seizures on survival for

patients with high-grade glioma, but for low-grade

gliomas a number of studies have established an

association between a more favourable prognosis

and epileptic seizures at disease onset [27]. As stated

previously, epileptic seizures as initial symptoms in

low-grade gliomas are also strongly correlated to a

more cortical tumor localization, in contrast to

patient with centrally localized tumors who do not

frequently present with seizures and have a poor

prognosis [27]. We have recently found that patients

with low-grade glioma who presented with seizures

as initial symptoms but became seizure-free during

the early stage of disease had a longer survival than

those with recurrent seizures [28]. These findings

suggest that the specific symptoms of disease may

reflect not only the localization of the tumor in the

brain but also the biological behavior of the tumor,

and warrant further studies of putative common

pathogenetic pathways for course and symptoms of

disease.

Genetic variability and focal epilepsy

The genetic background for tumor-associated epi-

lepsy is unknown and no data are available on the

genetic variability associated with the presence of

epileptic seizures and the outcome in terms of

response to antiepileptic drugs in patients with

gliomas. More is known though on the genetics of

other non tumor-associated focal epilepsies. A few

Figure 2. Immunohistochemical stainings with antibodies for the astrocytic marker GFAP (glial fibrillary acidic protein) of the peri-

tumoural cortices of two different samples of diffuse astrocytomas (WHO grade II).

a) A significant increase of reactive astrocytes is demonstrated in the peri-tumoural cortex of this patient with chronic epileptic seizures,

compared to. b) the peri-tumoural cortex of a patient who did not have any epileptic seizures.

Figure 1. MRI (T1-weighted images) of two patients with an

oligodendroglioma (grade II) in the right frontal lobe, both

presenting with focal epileptic seizures as the first symptoms.

a) This patient became seizure-free on antiepileptic drugs after an

initial seizure.

b) This patient developed pharmacoresistent seizures in spite of

multiple antiepileptic drugs.

Epilepsy and glioma 957
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inherited syndromes for focal epilepsies have been

described [29�31], and an increasing number of

candidate genes have been proposed for focal

epilepsies during recent years [32]. Since the focus

of this review is on genetic association studies, we

performed a literature search on susceptibility genes

for all types of focal epilepsies. We searched for

studies published in PubMed in the English lan-

guage during the last ten years, with a final search

performed in September 2008. Tables II�IV present

a systematic overview of these studies, demonstrat-

ing positive as well as negative associations for the

different candidate genes [33�48].

A number of single studies have reported positive

associations between polymorphisms and adult focal

epilepsies that have not yet been confirmed by others

and therefore have not been included in the tables.

One such example is functional polymorphisms of

the prodynorphin gene promoter (PDYN) that were

found in familial cases of idiopathic generalized

epilepsy. Endogenous dynorphin is an opioid with

several physiological effects including a role in the

regulation of hippocampal excitability, indicating a

probable anticonvulsant effect [49]. Patients with

temporal lobe epilepsy carrying the low frequency

PDYN allele showed a higher risk of developing

secondary generalized seizures and status epilepticus

[50]. PDYN may therefore be a general risk factor

for epilepsy, but further studies are needed to

confirm this hypothesis. In another single study, an

allele variant of the cellular prion protein gene was

identified at codon 171 (Asn171Ser) in a Brazilian

cohort of patients with refractory temporal lobe

epilepsy [51].

Putative common pathways for glioma and

tumor-associated epilepsy

Based on the assumptions that 1) some of the

susceptibility genes associated with focal epilepsy

may be involved in tumor-associated seizures, and

2) the biological activity of the tumor may to some

extent be related to the epileptic symptoms of the

patient, we discuss here some putative common

pathways for glioma development and tumor-

associated epilepsy.

Immune response

Several studies have associated infection and im-

mune function with a decreased risk of glioma

[7,20,21]. Immunological factors are likely to play

a role also in tumor-associated epilepsy, and proin-

flammatory cytokines and their receptors have been

suggested to be involved in the pathogenesis of

epilepsy. Cytokines have modulating effects on

neurotoxic neurotransmitters that are discharged

during excitation or inflammation in the central

nervous system. For many patients with gliomas

the epileptic focus is not contiguous with the tumor,

and seizure etiology involves peri-tumoral brain

regions in which immune mediated neurochemical

changes by microglial components are known to

occur [22,52,53]. An immune-mediated neuronal

damage of the peri-tumoral brain area, coupled to

Table II. Case-control studies on polymorphisms of interleukins (IL) and focal epilepsy.

First Author Specific polymorphism Epilepsy type Nr of patients

and controls

Outcome statistics

and p-value

Kanemoto [33] IL- 1b- 511 TLE-HS� 50 cases and 112

controls

x2�9.55

pB0.017

Kanemoto [34] IL- 1b- 511 TLE-HS� and PFC 66 cases,

133 controls

TLE-HS�:

x2�9.38

p�0.0022

PFC:

x2�9.90

P�0.0016

Ozkara [35] IL-1b-511; IL-1b�3953;

IL-1a�889

TLE-HS� 47 cases,

99 controls

NS

Heils [36] IL-1b-511 TLE-HS� 86 cases,

133 controls

x2�0.436

p�0.804

Buono [37] IL-1b �511 TLE-HS� 61 cases,

119 controls

x2�5.22

p�0.09

Jin [38] IL-1b- 511 TLE-HS� and TLE-HS- 112 cases,

115 controls

NS

TLE: temporal lobe epilepsy.

TLE-HS�: temporal lobe epilepsy with hippocampal sclerosis.

TLE-HS-: temporal lobe epilepsy without hippocampal sclerosis.

PFC: prolonged febrile convulsions.
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the balance between stimulatory and inhibitory

cytokines, may contribute to the development of

tumor-related epilepsy [53].

Synaptic transmission by GABA

Gamma-aminobutyric acid (GABA) is the major

inhibitory neurotransmitter of the central nervous

system. GABA acts mainly on two receptor types,

type A and type B, which control neurotransmitter

release and postsynaptic silencing of excitatory

neurotransmission. Although the exact role of

GABA in the development of epilepsy is not clear,

there is evidence that dysfunction of both pre- and

postsynaptic GABA-B receptor mediated processes

contributes to temporal lobe epilepsy [54�56]. No

association studies so far have coupled polymorph-

isms of GABAR subunits to an altered glioma risk,

but several reports support a possible role of GABA

in glioma development. Both astrocytes and

microglia in the brain express the peripheral-type

benzodiazepine receptor (PBR), which are multi-

protein complexes located mainly at the outer

mitochondrial membrane with GABAergic proper-

ties. PBR are widely expressed on different types of

tumor cells [57]. The binding density of PBR is

thought to correlate with the proliferative activity of

the tumor, and high levels of PBR ligands were

correlated with the tumorigenicity of glioma cells in

vitro [58]. Consistently, PBR protein expression in

astrocytoma samples strongly correlated with the

histological malignancy grade of the tumor and with

patient survival, with highest levels found in glio-

blastoma [59]. Interestingly, GABA may also play a

direct immunomodulatory role in the brain, shown

by the formation of functional extrasynaptic-like

GABA channels on pathogenic T lymphocytes

entering the brain [60]. Such immunomodulation

by GABA may cause neurochemical changes in

intra- and peri-tumoral regions, thereby affecting

tumor growth as well as tumor-associated seizures.

Table IV. Studies on polymorphisms of apolipoprotein E (ApoE) and brain-derived neurotrophic factor (BDNF) and focal epilepsy.

First Author Gene, specific

polymorphism

Epilepsy type Type of study Number of patients and

control group

Statistics and P-value

Blumcke [43] Apo E TLE with or without

Ammons horn sclerosis

(AHS)

Genetic linkage

study

125 patients

(65 TLE-AHS�, 53

TLE-AHS-)

NS

Gambardella [44] Apo E

�491 A/T

Non-lesional TLE Case- control 63 patients,

220 controls

NS

Yeni [45] Apo E4 Mesial TLE�HS Case- control 47 cases,

62 controls

OR�1.06

CI�0.38-2.95

p�0.05

Briellmann [46] ApoE4 Chronic TLE No controls 43 patients,

31 HS�
ApoE4 may have impact

on earlier onset of

seizures

p�0.004

Kanemoto [47] ProBDNF

240T

Focal epilepsy Case- control 219 cases,

311 controls

X2�8.59

p�0.0034

Lohoff [48] BDNF

C240T

Val66Met

TLE Case- control 151 cases,

189 controls

NS

Table III. Case-control studies on polymorphisms of GABA receptors and serotonin transporters and focal epilepsy.

First Author Gene, specific poly-morphisms Epilepsy type Number of patients

and controls

P-value, odds ratio and

confidence interval

Gambardella

[39]

GABA (B) receptor

G1465A

Non-lesional TLE 141 cases and 372

controls

OR�6.47;

CI�2.02-20.75

p�0.003

Ma [40] G1465A TLE preceded by febrile

seizures (FS)

120 cases,

218 controls

NS

Ma [41] GABRA1,

GABRA5, GABRG2, GABRD

Familial focal epilepsy

preceded by FS

74 cases,

118 controls

NS

Manna [42] Serotonin transporter

(5-HTT)

5-HTTLPR 5-HTTVNTR

TLE 276 cases,

309 controls

5-HTTLPR:

p�0.0086;

5-HTTVNTR: NS

Epilepsy and glioma 959
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Synaptic transmission by serotonin

Serotonin is released by presynaptic neurons and its

action is terminated by re-uptake via the serotonin

transporter protein. Variations in serotonergic activ-

ity are linked to both the development of epileptic

foci and the severity of seizures [61]. A number of

association studies have shown functional poly-

morphisms of the serotonin transporter promoter

region in various psychiatric disorders, but so far

only one study confirmed two previously identified

polymorphisms of the serotonin transporter gene in

patients with focal epilepsy [42]. The role of

serotonin in gliomas is unclear, and no polymorph-

isms of serotonin-related genes have been associated

with the disease. However, glioblastoma cells express

the serotonin receptor 5-HT7, and stimulation of

this receptor couples to multiple second messenger

systems that amongst others can induce the expres-

sion of neurotrophic factors [62]. Upregulation of

glial cell line-derived neurotrophic factor (GDNF)

through serotonin receptors is one of the gene-gene

interactions that has been demonstrated in patients

with depression treated by antidepressants, but may

occur in a wider variety of brain disorders including

gliomas [63].

Synaptic transmission by glutamate

Although not confirmed by any association studies, a

role for glutamate in both tumor-associated seizures

and in glioma is widely accepted [64]. Glioma cells

release glutamate, which causes excitotoxic death of

surrounding neurons as one of the mechanisms for

their destructive and invasive growth in the brain

[65]. The release of glutamate occurs primarily via a

Na�-independent cystine-glutamate exchanger,

and may also contribute to seizures that start in the

peri-tumoral regions. Animal studies in which hu-

man gliomas were xenographed into mice showed

that chronic inhibition of glutamate release leads to

smaller and less invasive tumors compared to con-

trols [66]. Thus, future studies of genetic variability

of genes involved in glutamate release, including

GluR1, the most abundant AMPA (a-amino-3-

hydroxy-5-methylisoxazole-4-propionic acid) recep-

tor subunit in gliomas, and the Na�-independent

cystine-glutamate exchanger, are of great interest in

patients with glioma-associated seizures.

Neurotrophic factors

Brain-derived neurotrophic factor (BDNF) regu-

lates neuronal morphology and synaptogenesis and

is known to exhibit neuroprotective effects in diverse

areas of the central nervous system during develop-

ment [67]. BDNF promotes neuronal survival and

differentiation, and modulates synaptic transmission

by increasing NMDA (N-methyl-D-aspartic) recep-

tor activity [68]. Expression of BDNF was shown in

the neuronal component of gangliogliomas and co-

localized with NMDA receptors in these tumors

[68]. Thus, BDNF and other neurotrophic factors

in the brain may be involved in the growth regula-

tion and epileptogenesis of tumors of glioneuronal

origin.

Cell cycle control and DNA repair

Polymorphisms in a number of cell cycle control and

DNA repair genes have been associated with glioma

risk [19]. It is not known whether these genes may

have a role also in the development of focal epilepsy.

Interestingly, a recent gene expression profile analy-

sis of epilepsy-associated gangliogliomas revealed

altered expression levels of genes involved in the

immune system and synaptic transmission, as well as

in cell cycle control [69]. Increased expression levels

of cyclin D1 and cyclin-dependent kinases (CDK)

were found compared to normal control tissues,

suggesting a role for these genes in the pathogenesis

and possibly also the epileptogenesis of these lesions.

Apolipoprotein E

The apolipoprotein E (ApoE) o4 allele is by far the

most important genetic determinant of susceptibility

to Alzheimer disease. ApoE promotes the deposition

of b-amyloid (Ab) in the brain parenchyma [70].

Mackenzie and Miller showed the occurrence of

senile plaques in temporal lobe epilepsy [71], an

observation which was later confirmed by the finding

of increased levels of Ab precursor protein in

surgically resected human temporal lobe tissue

[72]. In accordance, ApoE was shown a suscept-

ibility gene for temporal lobe epilepsy by several

studies, although negative findings have also been

reported [43�46]. A role for apoE in glioma through

delivery of lipids to tumor cells has been proposed

[73]. Tau-associated neurodegenerative changes

were found in gangliogliomas in an age-dependent

quantity, but the distribution of ApoE genotypes was

similar among those with tumors that contained tau-

associated neuropathology and those that did not

[74].

Conclusions

Studies of genetic variants as a causal factor to focal

epilepsy have brought forward an increasing number

of candidate genes. In this review, we describe several

examples of association studies on this issue and

hypothesize that some of the identified candidate
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A
ct

a 
O

nc
ol

 D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
ah

ea
lth

ca
re

.c
om

 b
y 

58
.5

8.
36

.3
4 

on
 0

5/
20

/1
4

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



genes, such as genes involved in the immune response,

cell cycle control and synaptic transmission, may be of

importance also for tumor-associated epilepsy. We

also bring forward some highly interesting candidates,

such as genes involved in the glutamate system, for

which no association studies have been reported yet.

Unfortunately many studies have used inadequate

sample size with limited statistical power to detect

the low odds ratios that low-penetrance alleles are

likely to confer. In addition, we found many

examples of follow-up studies that have not been

able to confirm initial positive association studies.

This could be due to several reasons such as lack of

statistical power, non-associations, chance findings,

differences in study design and studies of different

populations.

Large multi centre studies including well charac-

terized cases of low- and high-grade gliomas with

and without symptomatic seizures are required to

identify the underlying genetic variability and to

increase our insight into the pathogenesis of tumor-

related epilepsy and the possible overlapping path-

ways with glioma development. This is best studied

by a first agnostic genome wide approach to identify

candidate genes, subsequently needing independent

confirmation in separate data sets. Such an approach

may provide an important tool for the clinical

management of patients with glioma suffering from

epileptic seizures in the future.
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