MODELING USER PROGRESS AND VISUALIZING FEEDBACK

The Case of ProPer

Ioannis Kazanidis and Maya Satratzemi

Department of Applied Informatics, University of Macedonia, 54006, Thessaloniki, Greece

{Kazanidis, _maya}@uom.gr

Keywords: User Feedback, Progress Visualization, AEHS, Motivation.

Abstract: In traditional classroom education instructors can detect the learning difficulties of their students and take all the necessary actions in order for the problem to be overcome. In asynchronous online education, however, it is system functionality that plays a vital role in locating potential problems that may be related to either or both the students and the courses. In addition, students expect the online course to provide them with personalized instruction and useful feedback. This paper presents how ProPer, an adaptive SCORM compliant Learning Management System, monitors and visualizes user progress through instruction in order to help teachers and students alike to locate possible weaknesses. Moreover, ProPer, through immediate feedback and comparative techniques aims to motivate students to continue with their study. Evaluation findings indicate that ProPer can help both instructors and students with their work throughout the learning process.

1 INTRODUCTION

Adaptive Educational Hypermedia Systems (AEHSs) aim to individualize the learning process to meet students’ characteristics, preferences and goals. These systems through the Adaptive Navigation and Adaptive Presentation techniques provide personalized courses over the Internet so as to help distant learners improve their learning outcome.

A new research stream in adaptive systems is attempting to integrate several tools from Learning Managements Systems (LMSs) in order to provide as many teacher and learner support features as possible as well as enable teachers to easily administrate their courses and classes. The goals of this stream is on the one hand to provide the teacher with tools that will help them to easily develop and manage online courses and virtual classrooms, while on the other support students with discussion forums, quizzes etc., as well as providing adaptivity. The development of these systems, however, is not based on any common framework, as there are no fixed rules, techniques or methods acceptable to all. Consequently, although developers spend a lot of valuable time, money and effort on their applications, they pay nowhere near enough attention to instructional strategies. Moreover, due to the absence of a common framework, the courses along with the educational content produced are deficient in reusability, interoperability and durability. More specifically, it is difficult to apply the educational content from one course to another; or to distribute a course from one AEHS to another, since most times they are not compatible. A proposed solution to this problem is the adoption of recently accepted educational standards like SCORM (Sharable Content Object Reference Model) in order to provide RAID (Reusable, Accessible, Interoperable, Durable) courses.

In previous works(Kazanidis and Satratzemi, 2009a;2008) we combined the basic functions of an LMS with the adaptive features of AEHSs and the adoption of the SCORM standard and its specifications. Furthermore, for better learning outcomes, we promoted the concept that it is possible to adapt native SCORM compliant courses to user learning style (Kazanidis and Satratzemi, 2009b).

Even if the above functionality enables instructors to easily create and manage online courses, and support students by providing personalized instruction, another problem arises due to the nature of asynchronous online education. Namely, web courses can be used either as an independent integrated solution for distance learning or as supplementary material for conventional
classroom education. Therefore, while teachers in traditional classroom education can detect problems and possible student weaknesses, those studying through distant online education can depend only on the system’s ability to detect these weaknesses and to reform user instruction accordingly, whereas in the case of supplementary instruction it would be better for teachers to monitor user progress and attitudes so as to spot possible learning difficulties. Regrettably, LMSs do not adapt their instruction according to user needs and even worse they do not provide enough information to the teacher to enable them to spot student weaknesses. On the other hand, AEHSs are attempting to adapt their instruction in numerous ways (providing further explanations, more examples – activities, proposing concepts for study etc.) however; they too do not provide sufficient information to either teacher or user in order to ascertain user weaknesses and progress.

We believe that distant education systems have to observe user interaction with the system and draw conclusions about both user and course status providing instant feedback not only to teachers but also to learners. Feedback about course status will motivate students to continue with their study and at the same time inform them about any possible weaknesses they may have, while instructors will be able to monitor user progress and identify potential problems as well as detect possible course shortcomings.

This paper presents how ProPer (Kazanidis and Satratzemi, 2009a;2008) an adaptive SCORM compliant LMS visualizes user progress through instruction in order to help both teachers and students locate possible weaknesses. In addition, by providing immediate feedback and comparative techniques, ProPer aims to motivate students to continue with their study.

2 RELATED WORK

In order for AEHSs to be able to be adapted to users, they have to be aware of the user’s initial and current knowledge of the domain, as well as his/her individual characteristics. This information is stored in the User Model (UM) of adaptive systems. All this data about the user can be divided into two main categories (Kavcic, 2000). One category contains the information about user knowledge of the domain and the other all the information that is independent of the domain such, as the user’s individual characteristics, preferences, learning style etc. This data can be either static, when gathered at the initialization of the user model and does not change during the educational process (user individual characteristics, preferences, capabilities etc.) or dynamic, when it is collected throughout the learning process (user progress, current knowledge, actions, study time etc.) (Kavcic; 2000; Carmona and Cionejo, 2004). As a rule, students’ personal characteristics are static data while their knowledge is dynamic.

It is clear from the above that the UM can track a lot of useful information about user progress and attitudes. The challenge at this stage lies on three axes a) to provide appropriate adaptivity for personalized instruction; b) to provide instant feedback; and c) to allow teachers to monitor user progress and attitudes.

As this work deals with visualization of user progress, a short presentation of the visualization techniques used in adaptive systems will be made. Most of the AEHSs only give emphasis to the first of the three axes mentioned above. The visualization of user progress, most times comes with adaptive link annotation in the course structure view. More specifically, in order to present whether a concept is considered as known or not AES-CS (Triantafillou et al., 2003) applies a checkmark after the link of each course concept. A checkmark is also used in Interbook (Brusilovsky et al., 1998) where no annotation signifies that the concept is “unknown”, a small, medium or big checkmark means “known”, “learned”, “well learned” respectively. Likewise, INSPIRE (Papanikolaou et al., 2003), applies a checkmark to indicate whether a concept is considered as known. In addition, in order to visualize user progress according to course outcomes, INSPIRE uses a glass to show user knowledge. The amount of user knowledge is related to how full the glass is. Similarly, ELM-ART (Weber and Specht, 1997) employs an extension of the traffic light metaphor to annotate links visually. A yellow sphere before the link indicates that the corresponding concept is considered as being known or having been visited and in the case of it being a test or a problem that it has been solved correctly. Anes (Kavcik, 1999) is yet another system which annotates concept links using specific colors for each state.

Most of these adaptive systems, however, do not provide comprehensive feedback to the user -or instructor- about their current course status, encompassing coverage of course concepts, user goals, study time, number of visits for each concept etc. What is more, the teacher is not able to identify neither student nor course weaknesses so as to take
appropriate action. Even the majority of LMSs, such as Moodle, Claroline etc. do not provide a statistics module, which enables the instructor to obtain specific information about the performance of each student (Romero et al., 2007).

Other researches (Ortigosa and Carro, 2002) aim to support teachers in detecting the need to modify a course when it does not fully meet every student’s requirements. More specifically, an agent has been developed that, among others, identifies users with the best/worst results and the practical tasks where a significant number of users have obtained non-satisfactory results. It also detects points where a considerable number of users revisit previous sections and makes conclusions about the need for improving the content. CourseVis (Mazza and Dimitrova, 2004) is a visualization tool that tracks web log data from a Content Management System. By transforming this data, it generates graphical representations that keep instructors well-informed about what precisely is happening in distance learning classes. More specifically, it employs information visualization techniques to produce graphical representations of learners’ social, cognitive and behavioral aspects allowing instructors to identify certain tendencies that may exist in their classes, or to quickly identify individuals that need special attention. Furthermore, other tools, such as Logic-ITA (Merceron and Yacef, 2003) attempt to extend web-based tutoring systems that make instructors aware of their class progress as well as any problems that may be encountered.

These systems, however useful they may be for teachers, do not appear to benefit students in any way since most times their results are not available to learners. A system that opens the student model to the user is KERMIT (Hartley and Mitrovic, 2002), which among others shows a hierarchical representation of student’s progress with the ability to expand some of the subcategories of the course.

As far as we are aware, none of the above systems accounts for learners’ progress in accordance with the student’s educational goals since either they provide information at the concept level or measure user progress over the whole course as an integrated domain. Therefore, in the case where a learner wants to study only a part of the domain, the results may be inaccurate. We promote the development of tools that can determine a learner’s progress both to his/her educational goals as well as to the whole course. In the following sections, we present how ProPer assists both students and teachers by tracking the appropriate data and sending them feedback about student and course status.

3 FEEDBACK VISUALIZATION IN ProPer

ProPer is an integrated adaptive and adaptable learning environment that offers LMS administration facilities and conforms to SCORM specifications. It comprises a combination of an AEHS and a LMS, while providing a variety of additional educational features on the one hand for the learner (Instant feedback, dynamic F.A.Q., Draft notes, Java Online Editor-Compiler etc.) and on the other for the teacher (course-user statistics, course management etc.). It therefore takes advantage of the strengths of both system categories. The system can be adapted to the learner’s progress, previous knowledge, goals, navigation through the course, as well as his/her learning style. Even if ProPer uses most of the adaptation techniques as identified by Brusilovsky (2001) we wanted to not only support students with their study by providing personalized instruction but also to try to motivate them for a better learning outcome. Research (Hartley and Mitrovic, 2002) has shown that feedback about user progress can motivate students to achieve better outcome results. Thus, we decided to provide students with the appropriate feedback about their progress on the course. In addition, many research streams like those referred to in related works, aim to inform instructors on class progress and any potential problems that particular students or even specific parts of the course may be experiencing. This will help authors to support weaker students and to revise their courses so as to rectify any problems. For these reasons ProPer provides instructors with detailed statistics both for user and course status.

3.1 Design Guidelines

Some basic guidelines where followed in order to visualize feedback about user and course status:

1. Simple and Easy to use Feedback. Many non-technical instructors encounter problems administering their courses and even worst, students without a technical background may have a cognitive overload problem in the case of either a complicated interface or system functionality. Thus, ProPer was designed for use by non-technical instructors and students, providing simple and easy to understand feedback.
2. **Available Feedback to the Learners.** Since feedback can motivate learners with their study, it is made available to them throughout the learning process.

3. **Real-time Feedback of Learner’s Progress and Detailed Feedback through Specific Tools.** Simple feedback about user progress is available in real-time while an option for more detailed feedback will enable students to check their current course progress in more depth.

4. **Detailed Feedback about Course and Learners’ Status to Instructors.** The system provides instructors with detailed statistics for every course, who also have the option of checking the entire class progress of the course as well as each individual user’s progress and attitudes.

5. **Allows Learners to send their own Feedback to Instructors.** In addition to any likely problems that the course might have, learners may encounter some difficulties with specific course concepts. In both cases, the system provides the necessary mechanism to enable learners to easily send feedback to their instructors about every single course concept.

3.2 System Architecture

The system has a combined architecture of SCORM LMS and AEHS. As shown in simplified form in Fig. 1, we adopt the typical SCORM Run Time Environment (RTE) structure adding an Adaptation Module (AM) and extending the pre-existent Domain and User Models. Therefore, the system consists of: i) the Domain Model (DM) that represents the system’s domain knowledge; ii) the User Model (UM) that represents the particular user’s knowledge of the domain as well as his/her individual characteristics (both these models comprise the system’s Data Model (DM)), iii) the AM which interacts with the DM and the UM in order to provide adaptive navigation to the course; and iv) the RTE Sequencer that is triggered by course navigating controls, interacts with the DM and delivers the appropriate educational content to the learner.

To be able, however, to provide feedback to users and instructors, ProPer needed two additional mechanisms. Firstly it had to be able to track user progress and interaction with the system and secondly, it had to implement the necessary tools to calculate the appropriate feedback and visualize it in an easy, useful and understandable way. Therefore, two new modules were integrated, the User Tracker (UT) and the Feedback Visualizer (FV) (Fig. 1).

The UT monitors learner’s interaction with the system and stores all the essential data into the UM. When feedback has to be delivered, the FV initially calculates the information that has to be sent, then it visualizes results and delivers them to the user.

3.3 Modeling Cognitive Aspects

An initial survey with instructors revealed that they were concerned as to how they could supervise a virtual classroom through an LMS and how students’ learning difficulties can be recognized in order for the appropriate actions to be taken. They also drew attention to the importance of a tool that gives them feedback on their already developed
courses facilitating improvement.

Based on the above, we thus decided to track the following user data:

- A score for every course concept. This is the
 score that a user gets on completion of their
 study of a specific course concept, which shows
 the level of knowledge acquired for each concept;
- The number of visits to a concept. The user may
 only need to study a concept once or may
 need to go back and study it again in order to
 reinforce learning. This number will help both
 learners and instructors to pinpoint possible
 difficulties and problems in specific parts of the
 course;
- Study time. The time that a student spends on a
 course indicates how easy or difficult it is for
 them to learn the course domain.
- Based on the above data some additional useful
 results can be calculated, such as:
- Course score – user progress. This score can
 show the level of knowledge acquired on the
 domain of the course. It actually shows user
 progress through the learning process.
- Coverage of educational goals. Often on web
 courses users have different needs and therefore
 different educational goals, for this reason,
 ProPer allows learners to define which parts of
 the course they wish or not. For those learners
 who want to study particular parts of a course, it
 is more relevant that the feedback provided is
 related to their own educational goals rather than
 to the whole course. Thus, coverage of
 educational goals is the percentage of the
 learner’s educational goals learned so far.
- Position in the class. This number will show the
 student their class position in comparison with
 their fellow students on the course. We have
 strong reason to believe according to our survey
 (Lawrence et al., 2004; Regueras et al., 2008) that
 this helps to motivate students to study harder
 with a view to improving their score position, i.e.
 it stimulates healthy competition among learners.

A special mechanism was incorporated to

In order, therefore, to ascertain user progress,
initially the score of every concept is retrieved as
well as its weight on its parent’s score. In this way,
the system calculates every parent’s score, until it
reaches the primary parent of all the course’s
activities. The score of the primary parent is the one
that the user has in regards to the whole course.

More specifically, let us assume that LA is a leaf
activity, PA a parent activity which contains one or
more child activities. CA is a child activity where
CA ∈ {PA, LA} and n is the number of CAs
included in a PA. Every activity has a score ∈ [-1, 1]
and a weight ∈ [0, 1]. These values are retrieved
from the system’s data server and only the PA scores
have to be calculated according to their CA weights
and scores. Now, let us assume that CA, is the i
child of a PA. Also PAscore is the score of a PA;
CAscore, CAweight are respectively the score and
the weight of CA. Therefore, the following
formula is used to find the score of a PA:

\[
PAscore = \frac{\sum_{i=1}^{n} CAscore_i \times CAweight_i}{\sum_{i=1}^{n} CAweight_i}
\] (1)

A more complicated procedure is, however,
followed for the calculation of goals covered. Let us
assume that goalscore and goalweight are the goal
score and goal weight of an activity. Therefore,
LAGOALscore and LAGOALweight are the score
and weight of an LA according to user educational
goals, while LAscore and LAweight are the score
and weight of an LA in regards to the whole course.
Similarly, PAGOALweight and CAGOALweight are the
goal weights of a PA and a CA. In addition,
PAwight and CAweight are the weights of a PA
and the CA of the PA as defined by the course author.
In order to find the user score in accordance with the
student’s educational goals we need to first find the
goal weight of each activity. Thus, the following
rules apply:

\[
IF \text{ LA is a goal THEN } LAGOALweight = LAwight \ ELSE \ LAGOALweight = 0
\] (2)

\[
IF \text{ PA is a goal THEN }
\]
Following the calculation of the goalweight for each activity, the goalscore of each parent activity must also be found until the primary parent of the course is reached. Let us further assume that \(PA\text{goalscore} \) and \(CA\text{goalscore}_i \) are the goal scores of the PA and the CA\(_i\) respectively. In order to determine the goalscore of a PA the following formula is used:

\[
PA\text{goalscore} = \sum_{i=1}^{n} CA\text{goalscore}_i \times CA\text{goalweight}_i
\]

(4)

3.4 Visualizing Cognitive Aspects

Feedback in ProPer is offered in two ways: i) that which is provided to the students and whose principal aim is to motivate them with their studying; and ii) that which is provided to the instructors and whose chief aim is to enable the detection of learning difficulties that their students may have or develop, and to detect potential problems the course may contain.

3.4.1 Student Feedback

It was decided that learners would receive feedback in three different ways. The first is at the selection of a course where they can view both their score and their position in the class in comparison to the other students on the course (Fig. 2a). The second is throughout the duration of the course. Learners have access to their scores on the basis of the whole course as well as their individual educational goals. These scores are demonstrated as a percentage as well as a colored bar (Fig. 2b). In addition, when a user places the mouse over a course activity — concept in the table of contents, then the score of this activity is given. Moreover, all learners can at anytime select the feedback button on the top right of the screen (Fig. 2b) and send instant feedback to their instructor related to the specific concept that he/she is studying. In this way, the instructor can be acquainted with learners’ opinions about the course. The third way for the students to obtain feedback is with a screen that presents detailed statistics about the course (Fig. 2c). On this screen they can see their course score, the goals covered, their position in comparison to the other users, as well as the score, time spent, and number of visits for every activity. Furthermore, goal activities are marked with a red target icon, while pre-known activities and those known through study are annotated with a man and an open book respectively with a checkmark on top. This screen enables learners to view their exact status in a course and to further define their actions.
3.4.2 Instructor Feedback

The system also sends feedback to instructors not only on every course but also on the status of every student. More specifically, if an instructor chooses to see feedback on a specific student, he/she initially sees a screen similar to Fig. 2a displaying the course’s name that the student has registered for, followed by the student’s score and position. Then, the instructor may select one of the courses and see further details as presented in Fig. 2c. On this screen they can figure out the real user status about the course. In the case where an instructor wants to see feedback on one of their courses, then a two-part information screen is displayed (Fig. 3). The first part shows the users registered for that course as well as their scores and their study times, allowing the instructor to select one user to view further details. The second part shows the mean score and mean study time that users spent studying the course as well as the number of registered users. Next, the system provides the following details for every leaf activity of the course: i) mean score, ii) the percentage of students that knew the corresponding concept before their study, iii) mean study time, iv) the percentage of the students who consider this activity as one of their goals, v) the number of students that studied the activity, vi) the total number of visits, and vii) whether student feedback is available. If feedback is available instructors may select the related icon and read it. It is worth mentioning that these results can be exported to an excel file for further statistical analysis. In this way instructors can decide on the courses’ usefulness or about the possible problems that learners may come up against.

4 CONCLUSIONS

In this paper we have presented how ProPer, a SCORM compliant LMS with adaptive features provides and visualizes feedback both to learners and instructors. Despite the fact that many systems do not open the user model to learners, ProPer does just this and in so doing provides them with detailed feedback about their progress on the learning process. In addition, most of the SCORM compliant or AEHSs do not provide detailed feedback at either the course or concept levels. Perhaps worse is the fact that the feedback they do send is related to the course rather than the individual’s educational goals. In contrast, ProPer calculates and delivers feedback according to both the course domain and to specific learner goals. This feedback can be provided at either the course or concept level. Furthermore, even if some LMSs provide some kind of feedback to instructors, they in no way incorporate such detailed feedback as ProPer does.

We believe that the kind of feedback presented above will, on the one hand greatly benefit learners...
by motivating them with their study and making them aware of their weaknesses, and on the other, ProPer’s functionality will facilitate instructors to supervise a virtual class and inspect their courses for potential problems and/or omissions.

A formative evaluation of ProPer (Kazanidis and Satratzemi, 2009a) has shown that instructors had a high perception of the system’s usefulness. They stated that they found the screens displaying feedback on user and course statistics as one of the most valuable system features. One of their suggestions, incorporated into the revised system, was for functionality to be added to enable every user to send direct feedback to their instructor on course activities. The student’s evaluation of the system’s functionality gave mixed views, namely that while some liked the feature very much that shows the user’s score and position on the course in comparison to the rest of the class, there were those who felt this could be counter-effective in regards to motivation. We believe that this reflects the individual’s learning style, some people like and thrive on competition, while others do not. We are therefore considering offering users the option of choosing their learning style when they sign up in the system and later allowing the system to dynamically decide on the appropriate functionality for each user.

In concluding it can be said that the same framework as that applied for ProPer can be implemented by every SCORM compliant LMS and many AEHSs, so as to improve learners’ motivation and simultaneously increase the usefulness for instructors.

REFERENCES