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Quantum control of double ionization of calcium

Maxim Sukharev,* Eric Charron, and Annick Suzor-Weiner
Laboratoire de Photopysique Mole´culaire du CNRS, Universite´ Paris-XI, Bâtiment 210, 91405 Orsay Cedex, France

~Received 25 July 2002; published 18 November 2002!

We have performed nonperturbative time-dependent calculations of single and double ionization of atomic
calcium by short and intense laser pulses using a two-active-electron model. It is shown that the significant
enhancement of the Ca21 yield observed in a recent experiment@E. Papastathopulous, M. Strehle, and
G. Gerber~unpublished!# using feedback control techniques originates from the time asymmetry of the pulse
shape. Numerical simulations have been performed for various asymmetrical pulses. The initial part of the
pulse prepares a coherent superposition of excited states which is transferred into the double-electron con-
tinuum at later times. An asymmetric shape, with a slowly decreasing tail, therefore favors the production of
Ca21. Single-active-electron calculations have also been performed to demonstrate the significant role played
by electron correlations and by doubly excited states.

DOI: 10.1103/PhysRevA.66.053407 PACS number~s!: 32.80.Qk, 82.50.Nd, 32.80.Fb, 32.80.Rm
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I. INTRODUCTION

Multiple ionization dynamics studies have shown that, d
pending on the intensity regime, direct two-electron and
quential ionization processes may occur@2,3# under strong
laser irradiation. In particular, the measurement@4,5#, ten
years ago, of a shoulder in the double ionization yield of
He atom as a function of intensity was interpreted as
indication that direct two-electron processes can domin
double ionization at moderate intensities@6–8#.

Atoms with lower ionization potentials, like alkaline
earth-metal elements, usually show a more complex ion
tion dynamics since single and double ionization can be
competition at relatively low intensities. Early experimen
studies on the Calcium atom for example@9,10# have shown
that intermediate resonances may influence significantly
ionization dynamics, and that, even if sequential ionizat
usually dominates the production of doubly charged io
electron correlations play an important role, even for sin
ionization.

More recently @1#, feedback control experiments hav
been performed to determine the conditions required to
hance double ionization. These experiments follow the or
nal ideas ofoptimal control theory@11–13#, later extended
by Judson and Rabitz@14# into an hypothetical experimenta
setup able to solve and control the Schro¨dinger equation ex-
actly and in real time. Shortly afterwards, this approach
proven to be very effective in real experimental conditio
@15–17# using a feedback which automatically adapts
laser characteristics in the quest for an optimal electric fie

In intense fields, the experimental control of the compe
tion between single and double ionization of Calcium@1#
was performed using a programmable pulse shaper w
maintains the pulse energy while modifying its spect
phase components, and therefore its chirp and shape,
the best solution for the ‘‘fitness’’ function is found. A de
tailed description of this experimental scheme can be fo
in Refs.@15,18#. The maximization of the double ionizatio
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yield was achieved for a specific electric field, from whic
we try, in this article, to extract the main features respons
for the optimization.

Section II presents the numerical method used here
order to follow the single and double ionization dynamics
Ca, while our main results are presented in Sec. III. A br
conclusion, Sec. IV, summarizes our results.

II. NUMERICAL METHOD

A. Two-electron model

In intense fields with linear polarization, the electron
motion is mainly confined along the direction of the elect
field, and we therefore restrict our calculation to on
dimension only. The model atom which results from th
restriction cannot be expected to represent faithfully the r
atomic Ca, but we show, by comparison with experimen
results, that this approximation is accurate enough to br
some physical insight into the dynamics of ionization w
intense and linearly polarized laser pulses. We also res
the number of active electrons in our model to the two el
trons of the outer shelln54. The system under conside
ation thus consists in two electrons and a fixed nucleus
chargeZ512, interacting through a screened Coulomb p
tential @see, e.g., Ref.@19# for an overview#. The Hamil-
tonian of this one-dimensional atom can be written in t
following form ~if not indicated differently, atomic units are
used throughout the paper!

H0~x1 ,x2!5T11T21V~x1!1V~x2!1V12~ ux22x1u!,
~1!

wherexi ( i 51,2) denote the positions of the two electron
and

Ti52
1

2

]2

]xi
2

~2!

are their kinetic energy operators. The interaction energy
tween thei th electron and the nucleus is taken as a smoot
Coulomb potential
©2002 The American Physical Society07-1



f

-

pe

t

-

s

th

er

so

co
te
e

on

ar
le

ons
nly

ns

vi-

il-
x
of

the

ing
can
n-

ate
inct

set
e
ble-
the

e

SUKHAREV, CHARRON, AND SUZOR-WEINER PHYSICAL REVIEW A66, 053407 ~2002!
V~xi !52
2

Aa21xi
2

, ~3!

as well as the electron-electron interaction

V12~ ux22x1u!5
1

Ab21~x22x1!2
. ~4!

The two smoothing parametersa and b are chosen (a
53.894 90 a.u.,b53.963 05 a.u.! such that the energies o
the ground electronic states of Ca and Ca1 equal their ion-
ization potentials (Vion

1 56.1126 eV,Vion
2 511.8725 eV).

B. Basis set representation

In order to obtain the stationary statescn(x1 ,x2) of the
field-free Hamiltonian~1!, we solve the two-particle time
independent Schro¨dinger equation

H0cn~x1 ,x2!5Encn~x1 ,x2! ~5!

using a basis set representation.
We first obtain the one-electron wave functionswk(x)

which are solutions of the equation

S 2
1

2

d2

dx2
2

2

Aa21x2D wk~x!5«kwk~x!. ~6!

To solve this last equation, we use the so-called map
Fourier grid method@20–22#. Let us introduce the new
mapped coordinatep(x):

p~x!5
1

pEx0

x
A2V~x8!dx8, ~7!

wherex0 is the left grid boundary (2100 a.u. in the presen
calculation!. The integral~7! has an analytical form for a
smoothed Coulomb potential~see the Appendix A for de
tails!. The coordinate transformation~7! is useful with a
long-range potential~like the Coulomb interaction! because
it ‘‘compresses’’ the grid at large distances. Figure 1 illu
trates this effect: with a constant grid stepdp in the mapped
space, many points are located nearx50, while the density
of points decreases at large distances. Indeed, within
approach, the variable grid stepdx happens to be simply
proportional to the local de Broglie wavelength. For conv
gence, we use anx range of 200 a.u. (2100 a.u.<x
<100 a.u.), with 300 points. When diagonalizing the as
ciated Fourier grid Hamiltonian@20#, we obtainN593 one-
electron wave functionswk at an energy«k,1 a.u.

These one-electron wave functions are then used to
struct a basis set of two-electron noninteracting sta
Fm(x1 ,x2). These spatial wave functions must be eith
symmetric~if singlet! or antisymmetric~if triplet! with re-
spect to the exchange of the two indistinguishable electr
(x1↔x2). In the absence of orbital motion~1D model!, there
is no spin-orbit coupling, so all spin quantum numbers
conserved. Throughout this work we shall assume the e
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tron spins to be antiparallel, and thus restrict our calculati
to singlet electronic states only. Therefore, we consider o
the symmetric combinations

Fm~x1 ,x2!5H 1

A2
~ uk1l 2&1uk2l 1&! if kÞ l

uk1k2& otherwise,

~8!

where we have used the following compact Dirac notatio
for the one-electron wave functions solutions of Eq.~6!:

wk~xi ![uki&. ~9!

From the N593 one-electron eigenstates obtained pre
ously,N(N11)/254371 basis functionsFm(x1 ,x2) are ob-
tained.

We then construct the matrix representation of the Ham
tonian ~1! in the basis set~8!, as discussed in the Appendi
B. After diagonalizing this matrix we obtain the solutions
the Schro¨dinger equation~5! as

cn~x1 ,x2!5(
m

Am
(n)Fm~x1 ,x2!. ~10!

The slowest step in the calculation of these eigenstates is
construction of the matrix representingH0, since it requires
the evaluation of two-dimensional integrals. However, tak
into account another symmetry property of the system
enhance significantly the efficiency of the calculation. I
deed, the HamiltonianH0 is invariant when changing
(x1 ,x2) for (2x1 ,2x2). As a consequence, one can separ
the Hilbert space into two uncoupled subspaces of dist
symmetry: the symmetric orgerade gand the antisymmetric
or ungerade usubspaces. Finally, we obtain a discretized
of eigenstates ofH0 which, in a first approximation, can b
interpreted as bound, singe-electron continuum and dou
electron continuum states, as listed in Table I. Note that

FIG. 1. Mapped coordinatep(x) defined in Eq.~7! as a function
of the electron coordinatex in a.u. The smoothing parameter of th
screened Coulomb potential isa53.894 90 a.u.
7-2
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QUANTUM CONTROL OF DOUBLE IONIZATION . . . PHYSICAL REVIEW A66, 053407 ~2002!
numberNg of geradestates is higher than the numberNu of
ungeradestates because the productsuk1k2& in Eq. ~8! are
necessarily symmetric.

C. Laser interaction

The dynamics of the system in an external linearly pol
ized laser field is described by the time-dependent Sc¨-
dinger equation

i
]

]t
C~x1 ,x2 ,t !5@H02m E~ t !#C~x1 ,x2 ,t !, ~11!

where m52(x11x2) is the two-electron dipole momen
andE(t) the time-dependent electric field.

Let us expand the wave packetC(x1 ,x2 ,t) over the
eigenfunctionscn(x1 ,x2):

C~x1 ,x2 ,t !5(
n

cn~ t !e2 iEntcn~x1 ,x2!. ~12!

Introducing this expansion into Eq.~11!, and taking into ac-
count the fact that the electric field only couples states
different symmetry (g with u), yields the following system
of first-order ordinary differential equations for the coef
cientscn(t):

dcn
(g)

dt
5 iE~ t !(

m
cm

(u)~ t !ei (En
(g)

2Em
(u))tDnm

(gu) ,

dcn
(u)

dt
5 iE~ t !(

m
cm

(g)~ t !ei (En
(u)

2Em
(g))tDnm

(ug) , ~13!

where the matrix elementsDnm
(gu) of the dipole moment are

given by the two-dimensional integrals

Dnm
(gu)5^cn

(g)umucm
(u)&. ~14!

The superscripts~g! and ~u! have been added here to disti
guish the two different symmetries. It should be emphasi
that the calculation of these matrix elements can be redu
to simple sums of one-dimensional integrals^wkuxuw l&, ow-
ing to Eqs.~8! and ~10! ~see the Appendix C for details!.

The Eqs. ~13! are solved by the Runge-Kutta-Vern
method@23#, assuming that the atom is initially in its groun
state:cn(t50)5d1n . Since this method enables the trunc
tion error to be estimated, the desired solution is obtai
with automatic control of the step sizedt.

TABLE I. Number of gerade Ng and ungerade Nu bound ~a!,
single-electron continuum~b!, and double-electron continuum
states~c! calculated when diagonalizingH0 . E1 is the ground-state
energy.

Ng Nu States of energyEn

~a! 9 8 E1,En,E11Vion
1

~b! 203 193 E11Vion
1 ,En,E11Vion

1 1Vion
2

~c! 1574 1552 E11Vion
1 1Vion

2 ,En,1a.u.
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In this approach, the eigenstates ofH0 are box-normalized
~i.e., ^cnucm&5dnm), and the probabilities of single an
double ionization at the end of the pulse (t5t f) are therefore
obtained as

W~Ca1!5 (
n0,n<n1

ucn~ t f !u2, ~15!

and

W~Ca21!5 (
n1,n<n2

ucn~ t f !u2, ~16!

where the indexn0 refers to the last bound state~i.e., the last
state of energyEn0

,E11Vion
1 ), n1 to the last single-electron

continuum state~i.e., the last state of energyEn1
,E11Vion

1

1Vion
2 ), andn2 to the last two-electron continuum state i

cluded in the expansion~12!, with the energyEn2
.1 a.u.

The probability of survival of the neutral atom is thus give
by

W~Ca!5 (
1<n<n0

ucn~ t f !u2. ~17!

Note that a useful convergence test can be performed
verifying that

W~Ca!512W~Ca1!2W~Ca21!, ~18!

an indication that the norm of the wave packet is well co
served.

We have assumed here that autoionizing states ly
within the single-electron continuum ultimately decay
(Ca11e2). The typical values of the autoionization rates
alkaline-earth-metal elements@10921014 s21 @24## justify
this approximation.

The fact that we can easily separate the Ca1 from the
Ca21 parts in the ionization probability is a clear advanta
of the basis set representation that we have adopted c
pared to a grid approach. When the wave packet propaga
is performed on a grid, disentangling single- from doub
ionization requires the use of drastic approximations, like
instance a spatial discrimination@see, e.g., Refs.@7,25##, or
requires to project the wave packet at the end of the pu
(t5t f) on approximate~usually uncorrelated! continuum
eigenstates@see, e.g., Ref.@26##.

III. NUMERICAL RESULTS

A. Experimentally optimized electric field

The time-dependent electric field associated with the la
pulse can be written as

E~ t !5AI 0f ~ t !cos@vt1w~ t !#, ~19!

whereI 0 denotes the peak intensity,f (t) the pulse envelope
and v the angular frequency. The associated wavelengt
l5800 nm, corresponding to the photon energy\v
51.55 eV. The time-dependent phasew(t) is introduced to
7-3
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SUKHAREV, CHARRON, AND SUZOR-WEINER PHYSICAL REVIEW A66, 053407 ~2002!
describe the frequency chirp of the pulse. The experimen@1#
used pulse durations of about 300 fs. To keep the execu
time of the numerical simulations within reasonable limi
we performed calculations for shorter pulses, with duratio
of the order of 150 fs. We have verified, for a restricted se
laser intensities, that increasing the pulse duration up to
fs does not change our main conclusions.

The pulse envelopef (t) obtained in the experimenta
study @1# when maximizing the Ca21 yield is plotted in the
lower panel~b! of Fig. 2 as a solid line. This envelope can
compared with the unmodulated Gaussian pulse carrying
same amount of energy, shown as a dash-dotted line in
same figure. The main differences between the two pu
shapes are~i! their maxima, higher for the Gaussian puls
and ~ii ! the long tail of the optimized pulse on the fallin
edge, after the peak att5tp . The asymmetry of this pulse
envelope with respect totp , as we will show below, plays a
significant role in the enhancement of the Ca21 yield.

The phasew(t) associated with the optimized pulse sha
is plotted in the upper panel~a! of Fig. 2. This phase is
roughly constant~no chirp! over the interval 40 fs<t
< 80 fs, where the intensity is the largest. At later timest
>80 fs), a negative chirp is observed.

In order to determine the influence of the chirp on t
ionization dynamics, we first compare numerical simulatio
taking into account the optimized phasew(t) with calcula-
tions using an unchirped electric field, i.e.,w(t)50. These
calculations were performed with the optimized pulse sh
f (t) shown in Fig. 2. Figure 3 shows a typical example of t
effect of the chirp on the single-@panel ~b!# and double-
@panel ~a!# ionization probabilities, for the intensityI 0
5331012 W/cm2. Until the datetp.64 fs of peak intensity,
the single- and double-ionization probabilities are clearly

FIG. 2. Optimized electric field as a function of timet in fs,
from Ref. @1# ~with permission!. The maximization of the Ca21

signal yields the pulse shapef (t) plotted as a solid line in panel~b!
and the phasew(t) shown in panel~a!. An unmodulated Gaussia
shape carrying the same amount of energy is also shown as a
dotted line in panel~b!. We have squeezed the experimental pu
shape given in Ref.@1# such that its total duration does not exce
150 fs ~see text for details!. The vertical dashed lines indicate th
time interval during whichw(t). cst.
05340
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sensitive to the introduction of the optimal phase. At la
times (t>tp for Ca1 and t>80 fs for Ca21), a relatively
small enhancement of single-, as well as double-ionizat
is observed with the chirped pulse. In our calculation,
production of Ca1 is increased by about 7% with the chir
while the Ca21 yield is only increased by about 3%. Intro
ducing the chirp, therefore mainly favors single ionizatio
an effect which seemsa priori in opposition with the desired
goal of favoring double ionization. However, the experime
tal optimization was performed on the absolute Ca21 yield,
and not on the Ca21/Ca1 ratio. The small negative chirp a
t>80 fs slightly helps double ionization, but its effect is f
from being large enough, at least in our model, to explain
experimental result, which is characterized by an increas
the Ca21 yield of about 30%.

We will now look at the influence of the long tail of th
optimal pulse att>tp by comparing, in Fig. 4, the single
~solid line! and double-~dash-dotted line! ionization prob-
abilities calculated with the two pulse shapes shown pre
ously: the Gaussian shape in panel~a! and the optimal shape
in panel~b!. These calculations were performed without a
chirp, i.e.,w(t)50. The production of the doubly charge
ion dominates at intensitiesI>3.731012 W/cm2 with the
Gaussian shape, while the optimal pulse already favors C21

for I>2.831012 W/cm2. The enhancement of double ioniza
tion with the asymmetric shape appears to be much m
significant than the increase due to the chirp. For example
the intensity I 052.831012 W/cm2, the single-ionization
probability decreases by about 17% when changing
Gaussian shape for the optimal shape, while the dou
ionization probability increases by about 35%. This last
sult is in good agreement with the experimental control
double ionization:130% for Ca21 @1#.

The ratio Ca21/Ca1 is presented in Fig. 5 as a function o
the peak intensity for the two pulse shapes of Fig. 2. T
solid line represents the branching ratio obtained with

sh-
e

FIG. 3. Single- and double-ionization probabilitiesW(Ca1)
@panel ~b!# and W(Ca21) @panel ~a!# as a function of time. The
optimized pulse envelopef (t) of Fig. 2 has been used to calcula
the ion yields with~solid lines! and without~dotted lines! the opti-
mal phasew(t). The peak intensity isI 05331012 W/cm2. The
vertical dashed line indicates the date of peak intensitytp564 fs.
7-4
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QUANTUM CONTROL OF DOUBLE IONIZATION . . . PHYSICAL REVIEW A66, 053407 ~2002!
Gaussian pulse, while the dash-dotted line was obtained
the optimal shape. One can notice here that, at any p
intensity, the optimized shape favors the production of
doubly charged ion.

Obviously, a realistic comparison with the experiment
quires averaging the ionization probabilities over the fo
volume. We calculated these averaged yields assuming
the continuous distribution of intensities inside the focal v
ume can be described by a standard Lorentzian profile a
the direction of propagation of the laser beam and a Gaus
profile in the perpendicular direction@27#. This average pro-
cedure allowed us to compare the calculated and meas
single- and double-ionization yields: at low intensities~be-

FIG. 4. Log-log representation of the single- and doub
ionization probabilitiesW(Ca1) ~solid line! and W(Ca21) ~dash-
dotted line! as functions of the peak intensityI 0 in W/cm2 for the
Gaussian~a! and the optimized~b! shapes of Fig. 2. These resul
were obtained assumingw(t)50. The two vertical dashed line
indicate the intensities at whichW(Ca21)5W(Ca1) for the two
pulse shapes.

FIG. 5. Calculated double- to single-ionization branching rat
W(Ca21)/W(Ca1) as a function of the peak intensityI 0 in W/cm2

for the two pulse shapes of Fig. 2: the Gaussian pulse with a s
line and the optimized shape with a dash-dotted line. The s
ratios, but for probabilities averaged over the focal volume,
shown in the inset.
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fore the saturation regime!, the averaged calculated Ca1 and
Ca21 yields vary as I N with N54.04 for Ca1, and N
53.10 for Ca21. Experimentally, the following power value
have been obtained for single and double ionization:N
54.260.7 andN53.460.1. These results are again in goo
agreement and indicate that the proposed two-active-elec
model gives a realistic description of the single- and doub
ionization dynamics of Ca in short and intense linearly p
larized fields. The power law for Ca21 indicates that some
intermediate resonances are involved in the doub
ionization process since direct double ionization of Ca wo
require 12 photons in order to reach the two-electron c
tinuum.

The ratios of the averaged double- to single-ionizat
probabilities for the Gaussian and the optimized shapes
shown in the inset of Fig. 5. The enhancement of dou
ionization with the optimized pulse is confirmed, as seen
the experiment.

In order to understand the physics behind these optim
tions it is informative to scrutinize the dynamics for ea
pulse shape by plotting the time-dependent populations
the eigenstatesPn(t)5ucn(t)u2 as functions of timet and
energyEn . These populations are shown in Fig. 6. The upp
panel ~a! pictures the excitation and ionization dynami
with the Gaussian shape, while the dynamics with the o
mized pulse is shown in the lower panel~b!. This figure
shows these coefficients in the energy range (E114\v
<En<E117\v), corresponding to the absorption of 4 to
photons from the ground state. The eigenstates assoc
with these coefficients are therefore lying in between the t
ionization thresholds, sinceVion

1 .4\v and Vion
1 1Vion

2

.12\v. The peak intensity is hereI 05431012 W/cm2.

-

s

id
e

e

FIG. 6. Contour plots of the square of the coefficients of t
wave packetC(x1 ,x2 ,t) in the expansion~12!, ucn(t)u2, as func-
tions of time t in fs and energy (En2E1)/v, in units of photon
energy. The time-dependent coefficients calculated with the Ga
ian pulse are shown in panel~a!, while panel~b! is for the optimized
shape, withI 05431012 W/cm2. Note that the different total dura
tions of the Gaussian and optimized pulses of Fig. 2 are also see
the different time intervals of panels~a! and ~b!. The solid line at
tp564 fs indicates the date of peak intensity in both panels wh
the right solid line in panel~a! shows the end of the Gaussian puls
7-5
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It is clear from Fig. 6 that the ionization dynamics of th
Ca atom is very similar when excited by the Gaussian or
optimized pulse at early times (t<tp564 fs), but very dif-
ferent afterwards. Many more excited states are popula
after the peak intensity when using the Ca21 optimization.
With this shape, the initial part of the pulse (t<80290 fs)
prepares a coherent superposition of excited states. This
perposition is then efficiently transferred into the doub
electron continuum. Even though the Gaussian shape is c
acterized by a higher peak intensity, it does not carry
much energy as the optimized shape in the intervaltp<t
<t f , and therefore, does not induce efficient double ioni
tion. The transient excited states seen in panel~b! could be
either doubly excited states of Ca lying above the first io
ization threshold or excited states of Ca1. We will try, in the
following Sec. III B, to determine their nature by performin
single-active-electron~SAE! calculations. Indeed, SAE
simulations should be able to reproduce the enhanceme
double ionization if this enhancement proceeds sequent
with a transient production of Ca1. On the contrary, if the
electron correlations must be introduced in order to rep
duce the optimization of double ionization, this enhancem
is likely to involve one or a few doubly excited states.

B. Modeling the asymmetry

The obvious difference between the two laser-pu
shapes of Fig. 2 is the time asymmetry of the optimiz
pulse. To verify that this asymmetry is responsible for t
optimization, we performed numerical simulations usi
simple model asymmetric pulse shapes whose widthst1 be-
fore t5tp differ from their widthst2 after tp . These simple
pulse shapes are made of two different sin2 wings: f (t)
5 f 0 sin2(pt/2t1) for 0<t<tp , and f (t)5 f 0 sin2@p(t1t2
2t1)/2t2# for tp<t<t f . The date of peak intensity is her
tp5t1, and the end of the pulse corresponds tot f5t11t2.
The amplitude parameterf 0 is adapted such that the tot
energy carried by the pulse remains constant whent1 or t2
vary. The asymmetry can then be characterized by the r
g5e2 /e1 of the energye2 carried by the pulse aftertp to its
energy content beforetp : a valueg,1 corresponds tot2
,t1 and therefore to a time asymmetry opposite to that
served in the Ca21 optimization, a symmetric shape is ob
tained forg51, andg.1 gives an asymmetry analogous
that of the optimization.

In the following simulations, we fixt2520 fs wheng
,1, and t1520 fs wheng.1. Figure 7 shows two ex
amples of these shapes with the asymmetry parameteg
51 in panel~a! andg52 in panel~b!. The resulting ampli-
tude f 0 is shown as a function ofg in panel ~c!, and the
maximum intensity is reached for the symmetric caseg
51.

A naive guess for the variation of the ionization probab
ity with the asymmetry parameterg would be: the higher the
peak intensity, the larger the ionization. In other words
could expect a global maximum of double ionization for t
symmetric pulse (g51). However, Fig. 8 demonstrates th
the ionization of Ca is very sensitive to the asymmetry. T
figure represents the double-ionization probabilityW(Ca21)
05340
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calculated within the SAE~dash-dotted lines! and two-
active-electrons~TAE, solid lines! approaches, as a functio
of the parameterg. The upper curves~a! correspond to the
intensity I 053.7531012 W/cm2, while the lower curves~b!
were obtained at the intensityI 052.8731012 W/cm2. The
single-active-electron calculations obviously do not inclu
any electron correlations, and are similar to those descri
in Ref. @25#, with soft-Coulomb parameters adjusted to r
produce the ionization potentials of Ca and Ca1. Note that
the left vertical scale refers to the TAE calculation, while t
SAE probabilities should be read on the right side axis.

One can first note from the comparison of the SAE@right-
hand side~rhs!# and TAE@left-hand side~lhs!# scales of this
figure the huge enhancement, by four orders of magnitude
double ionization when taking into account the electron c
relations. The Coulomb repulsive force allows for ener
transfer between the two electrons, and this acts in favo
ionization in situations where the two electrons are in
excited state. Even though it is not shown in this figure,
same trend is obtained for single ionization, and this c
roborates some early experiments by DiMauroet al. @10#,

FIG. 7. Asymmetric laser pulse shapesf (t) defined in Sec. III B
as functions of timet in fs for two different values of the asymmetr
parameterg5e2 /e1 : g51 in panel~a! andg52 in panel~b!. The
variation of f 05Max@ f (t)# with the asymmetry parameterg is
shown in panel~c! ~see text for details!.

FIG. 8. Double-ionization probabilityW(Ca21) calculated using
the two-active electron model~solid line! as well as using the
single-active electron approximation~dash-dotted line! as a func-
tion of the asymmetry parameterg. The lhs and rhs vertical scale
are associated with the TAE and SAE probabilities, respectiv
The peak intensity is fixed atI 053.7531012 W/cm2 for the two
curves labeled~a!, and atI 052.8731012 W/cm2 for the curves~b!.
7-6
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who found that electron correlations play a significant r
for the production of singly ionized Calcium.

Additionally, the SAE simulations follow the naive expe
tation described previously, and give a large global ma
mum of double ionization forg51. This maximum is
shifted aroundg52 in the TAE calculation. This difference
demonstrates that the electron correlation is the key to
optimization of double ionization in the adaptive control e
periment@1#. The enhancement of the Ca21 yield is therefore
likely to proceed through some intermediate doubly exci
states. The increase of the formation probability of Ca21

when going from a symmetric to an asymmetric shape
pends upon the intensity of the field. For examp
this increase is of about 5% for the lowest intens
(2.8731012 W/cm2) shown Fig. 8, while it is of about 13%
for the highest intensity (3.7531012 W/cm2). Of course, at
much higher intensities the saturation regime is reached,
this phenomenon disappears. With the model sin2 pulse
shapes used here, the enhancement of double ionizatio
not as impressive as with the optimized pulse, but never
less this effect is still significant enough to be compared w
the results described in the previous Sec. III A using the
perimental pulse shape.

In order to stress the role of doubly excited states in
optimization process, let us introduce the degreexn of
double excitation of each bound and continuum eigens
cn @see Eq.~10!#

xn5(
m

uAm
(n)u2, ~20!

where the indexm only spans doubly excited states, corr
sponding tok.1 andl>k in Eq. ~8!. In Fig. 9,xn is plotted
as a function of energy (En2E1)/v, in units of photon en-
ergy. Note that the first and second ionization thresholdsVion

1

FIG. 9. Degreexn of double excitation of each bound and co
tinuum eigenstatecn as a function of energy (En2E1)/v, in units
of photon energy. Panel~a! corresponds to states ofgeradesymme-
try, while panel~b! is for ungeradestates. Doubly excited states a
embedded in the continuum lying above the first ionization thre
old (;4 photons!, and are ordered in core-excited Rydberg ser
converging to higher thresholds@28#.
05340
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e
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and Vion
2 roughly correspond to the absorption of 4 and

photons, respectively. This figure clearly shows that
eigenstates located around the six-photon transition are
bly excited (xn.1). Turning back to the optimization, w
saw in Fig. 6 that these eigenstates are highly populated
t.tp . This is a clear indication that the enhancement mec
nism obtained experimentally proceeds through doubly
cited states.

It should also be mentioned that the optimal value of
asymmetry parameterg is found positive, as in the experi
ment, indicating that the left wing of the pulse shapet
,tp) has to be shorter than the right wing (t.tp). The ori-
gin of this phenomenon can be tentatively outlined as f
lows. As seen in Fig. 6, the states lying just above the fi
ionization threshold are excited relatively quickly, before t
peak of the pulse. However, from this first step, the abso
tion of eight more photons is required to reach the sec
ionization threshold. In order to transfer this transient pop
lation into the double-ionization continuum, it is therefo
preferable to ‘‘stretch’’ the pulse shape such that the inten
does not drop too quickly aftert5tp , even if this is done at
the cost of lowering a bit the peak intensity of the pulse. T
net result of the optimization is therefore to give a pu
shape which carries more energy aftert5tp, and this corre-
sponds tog.1.

IV. CONCLUSION

We have performed time-dependent simulations of
single and double ionization of atomic Calcium using a tw
active-electron model. These simulations have been im
mented within a basis set representation, allowing for an
ambiguous calculation of the single- and double-ionizat
probabilities. The electron wave packet dynamics have
vealed the main feature responsible for the enhancemen
double ionization which was observed in a recent adap
control experiment@1#: the time asymmetry of the laser-puls
envelope. During the ionization process, electron corre
tions play a decisive role, and doubly excited states serv
intermediate resonances.

The simulations show that the initial part of the pul
prepares a coherent superposition of excited states abov
first ionization threshold. This superposition is ionized aft
wards to produce Ca21. This second step is performed effi
ciently if the laser intensity does not drop too quickly aft
the peak of the pulse, and an asymmetric shape, wit
slowly decreasing tail on the falling edge, therefore favo
double ionization.
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APPENDIX A: MAPPED COORDINATE

The integral~7! can be written in terms of the hyperge
metric function 2F1 as

p~x!5
1

p
A2

aF x32F1S 1

2
,
1

4
,
3

2
;2

x2

a2D 2x0

32F1S 1

2
,
1

4
,
3

2
;2

x0
2

a2D G . ~A1!

From the Eq.~A1!, it is easy to obtainp(x) for the pure
Coulomb potential (a50)

p~x!5
2A2

p
~Aux0u1sgn~x!Auxu!. ~A2!

It should be noted that at small distancesx, p(x) is propor-
tional to x when aÞ0, while in the case of the Coulom
problemp(x) varies asAx.

APPENDIX B: MATRIX ELEMENTS
OF THE HAMILTONIAN

Using the Dirac notations defined in Eq.~9!, we write two
basis set functions~8! as

Fm5H 1

A2
~ uk1l 2&1uk2l 1&! if kÞ l

uk1k2& otherwise,

~B1a!

and

Fn5H 1

A2
~ u i 1 j 2&1u i 2 j 1&! if iÞ j

u i 1i 2& otherwise.

~B1b!

The full HamiltonianH0 of Eq. ~1! is a sum of single-
electron Hamiltonians, and of the electron-electron inter
.
d-

-
-

r,

er

K

05340
-

tion V12. Using the orthonormalization relations of th
single-electron wave functionswk , we then obtain the matrix
elements ofH0 in the basis~8! as

^FnuH0uFm&5^FnuV12uFm&1Enm , ~B2!

where

Enm5H ~«k1« l !~d ikd j l 1d i l d jk! if iÞ j or kÞ l

2«kd ik otherwise.
~B3!

It should be mentioned that due to the spatial symmetry
the Hamiltonian~1! the eigenfunctions~10! with a given
symmetry~geradeor ungerade, see text for details! are ex-
panded over the basis set functions~8! showing the same
symmetry

cn
(g,u)~x1 ,x2!5(

m
Am

(n)Fm
(g,u)~x1 ,x2!, ~B4!

where the superscripts~g! and ~u! denote thegeradeand
ungeradesymmetries, respectively. Hence, the matrix e
ments~B2! of the Hamiltonian~1! can be calculated sepa
rately for the two different symmetries.

APPENDIX C: DIPOLE MATRIX ELEMENTS

Using the notations defined in Eq.~9!, the calculation of
the dipole matrix elementsDnm5^FnumuFm& gives

2~xikd j l 1xil d jk1xjkd i l 1xjl d ik! if iÞ j and kÞ l ,

2A2~xil d ik1xikd i l ! if i 5 j and kÞ l ,

2A2~xikd jk1xjkd ik! if iÞ j and k5 l ,

22xikd ik if i 5 j and k5 l ,

~C1!

where the notationxik denotes the one-dimensional integr

xik[^ i uxuk&. ~C2!
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