
EUROGRAPHICS 2018/ N. N. Education Paper

Teaching Image-Processing Programming for Mobile Devices:
A Software Development Perspective

Matthias Trapp1, Sebastian Pasewaldt2, Tobias Dürschmid1, Amir Semmo1 and Jürgen Döllner1

1Hasso Plattner Institute, Digital Engineering Faculty, University of Potsdam, Germany
2Digital Masterpieces GmbH, Germany

Abstract

In this paper we present a concept of a research course that teaches students in image processing as a building block of mobile
applications. Our goal with this course is to teach theoretical foundations, practical skills in software development as well as
scientific working principles to qualify graduates to start as fully-valued software developers or researchers. The course includes
teaching and learning focused on the nature of small team research and development as encountered in the creative industries
dealing with computer graphics, computer animation and game development. We discuss our curriculum design and issues in
conducting undergraduate and graduate research that we have identified through four iterations of the course. Joint scientific
demonstrations and publications of the students and their supervisors as well as quantitative and qualitative evaluation by
students underline the success of the proposed concept. In particular, we observed that developing using a common software
framework helps the students to jump start their course projects, while industry software processes such as branching coupled
with a three-tier breakdown of project features helps them to structure and assess their progress.

Categories and Subject Descriptors (according to ACM CCS): K.3.2 [Computer Graphics]: Computers and Education—Computer
and Information Science Education

1. Introduction

Mobile devices are causing a fundamental shift in how digital con-
tent is created, processed and consumed. In particular, with the
continuous advancements of mobile camera hardware and process-
ing power, graphics applications—once designed exclusively for
desktop systems—have emerged into the ubiquitous domain, for
instance non-photorealistic rendering [Dev13]. However, develop-
ing mobile applications requires special knowledge that is typically
not taught in core courses of computer science, such as dealing
with the specific requirements and inherent constraints of mem-
ory resources, APIs, and user interfaces [CPAM08]. In this context,
this paper presents the experience of teaching real-time image pro-
cessing techniques and algorithms for mobile devices [TMB14] in
Computer Graphics subjects within the Computer Science degree
with a strong focus on the software development process.

Especially in higher education it becomes more and more im-
portant to bridge the gaps between theory and practice—between
concept and implementation—by increasing software development
experiences and thus supporting professionalism and operational
readiness of graduates in the software industry. Further, undergrad-
uate research is also considered important by employers. To facil-
itate both, universities are required to educate graduate software
developers with not only vocational but also advanced research

Figure 1: Overlapping fields of education targeted by the presented
project seminar structure.

skills [AAF16]. This can be achieved by taking the demands of
companies into account and adapt the teaching process, which is
appreciated by our students, since they articulated an interest in
industry projects or collaborations during their education. With re-
spect to this, the presented approach implements such a collabora-
tion between academic institution and companies by the example
of image processing algorithms and techniques for both, bachelor
and master student courses.

Teaching students in image processing techniques for mobile de-
vices comprises a number of different fields (Figure 1). Besides the
fundamental knowledge of concepts and data structures specific to
image processing, aspects of real-time graphics APIs [FWW13]

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

M. Trapp, S. Pasewaldt, T. Dürschmid, A. Semmo & J. Döllner / Teaching Image-Processing Programming for Mobile Devices

become more important when focusing on mobile devices as im-
plementation platform. To successfully handle a topic within a
semester term, a student and adviser is confronted with the follow-
ing aspects and contents of teaching:

Image Processing: This teaches fundamental concepts, tech-
niques, and algorithms of digital image processing [GW06]. The
students should understand these independently of possible im-
plementations to apply these in different contexts.

Rendering APIs: This is about basic concepts of OpenGL ES and
the OpenGL shading language , standard APIs in industry and
education, especially for mobile devices. The goals are to teach
fundamental API principles and performance optimization tech-
niques for digital image processing enabling students to transfer
their knowledge to hardware-accelerated implementations of im-
age processing pipelines.

Software Development: This teaches foundations of agile soft-
ware development processes for individual workers and teams
and introduces tools for code versioning and build processes.
With respect to mobile platforms, we focus on Android appli-
cation development [Wer13] using Java in combination with the
Android NDK for performance critical tasks.

Research Skills: In addition to technical skills, the preparation
and performance of presentations, literature work, and writing
scientific reports or papers represent major necessities of higher
education. Therefore, these take a high priority in the course de-
sign.

Covering all these aspect within a project seminar proves unreal-
istic when starting from scratch. Instead, we rely on a common
software framework provided by a collaborating company and in-
tegrate it into teaching to facilitate the work on complex topics,
by enabling fast prototyping and the reuse of existing software
components. However, the educational objective differs from soft-
ware engineering courses that are oriented on the development
process, methodologies, and organization by experiencing a team-
based project [DFH02]. In contrast, the presented course focuses
on the development of mobile image processing applications in an
artifact-oriented context with a single or two programmers. There-
fore, rather than teaching software engineering through a specific
application domain [CC05], the main goal is to teach image pro-
cessing programming under conditions close to industrial practice.

To summarize, this paper makes the following contributions:
(1) it presents a concept for a series of project seminars with a
strong focus on software development that can be implemented
both in bachelor and master courses; (2) it gives sufficient imple-
mentation details for reproduction, and (3) it presents an evalua-
tion and discussion mainly based on the student’s feedback. The
remainder of this paper is structured as follows. Section 2 presents
the concept and details of our teaching approach. Section 3 dis-
cusses the presented concept by means of student examples and
course evaluation results. Finally, Section 4 concludes this paper
and presents future work.

2. Teaching Concept

2.1. Academic Environment

The presented concept was implemented for two bachelor and two
master courses in the Computer Graphics Systems Group (8 to 14
researchers) of the Hasso Plattner Institute at University of Pots-
dam during the last two years. It is designed for 6 European Credit
Points System (ECTS) points per semester term, which relates to
180 h of study time, i.e., approx. 10 h to 12 h per week. In gen-
eral, it is limited to approximately 8 to 16 participants—without
group work—and is supervised by three to four course instructors.
The students are required (1) to have successfully participated in
basic computer graphics lectures and (2) have basic knowledge in
programming (C++, Java). We use the Moodle platform [DT03] as
learning management system (LMS). All students are required to
use a common software framework [SDT∗16] that has been im-
plemented for the Android operating system. It is written in Java
and uses OpenGL ES for GPU-accelerated image processing. Fur-
thermore, it uses a software product line architecture [DTD17] to
enable students to create their own apps based on a common core.
In addition to example apps and reusable software components, the
framework includes a collection of effects to facilitate rapid effect
creation and ease a low-level to high-level development [She11],
e.g., by writing GLSL shader code or combining existing effects.
The usage of the framework lets the students focus on the devel-
opment of computer graphics techniques. Moreover, it trains their
skills to integrate solutions into an existing software architecture to
gain practical experience.

2.2. Overview of Course Design

Figure 2 illustrates an overview of the general course structure that
can be implemented at bachelor and master levels. It basically com-
prises three phases. Its individual steps are described in the remain-
der of this section:

Introduction Phase: The course introduction phase usually con-
sists of five to six lecture sessions and is structured into (1) sem-
inar introduction (Section 2.3), (2) topic assignment (Sec-
tion 2.4), and (3) intermediate presentation (Section 2.5).

Project Phase: Subsequent to the seminar introduction, students
start to work on their individual topics supported by regular one-
on-one meetings with their respective instructors (Figure 2.6).

Evaluation & Grading Phase: The final phase comprises the stu-
dent evaluation and grading based on final presentations (Sec-
tion 2.7), submitted code artifacts (Section 2.8), and project doc-
umentation (Section 2.9) in form of a research paper (master
courses only).

2.3. Seminar Introduction Sessions

The seminar introduction sessions basically covers the following
aspects in the form of separate 90 minutes lectures:

Seminar Kick-Off: This session briefly: (1) introduces the prob-
lems and challenges of image processing in general, (2) presents
the course topics to choose from, (3) describes the course for-
mat and structure, and (4) communicates the assessment scale.
In addition thereto, the students proficiency level is recorded by

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

M. Trapp, S. Pasewaldt, T. Dürschmid, A. Semmo & J. Döllner / Teaching Image-Processing Programming for Mobile Devices

Seminar Introduction Sessions Sci. Writing

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 Week 15 Week 16

Introduction Phase Evaluation & Grading PhaseProject Phase

Lecture Sessions

Literature Work

Software Development

Presentations

Documentation

FinalIntermediate

Figure 2: The course is structured in mainly three phases: In the introduction phase multiple lectures are given to provide a common
knowledge base. The project phase starts with literature work and an intermediate presentation of the students. This phase is dominated by
software development and ends with the final presentation. In the final evaluation phase the students document their work.

a survey. Administrative aspects, such as the signing of a non-
disclosure agreement (NDA), are regulated, if necessary.

Introduction to Image Processing: In usually two to three ses-
sions, the general concepts and techniques of image process-
ing are covered on an introductory level. This includes im-
age and video data representations, as well as point-based,
neighborhood-based, and global processing techniques.

Basics of OpenGL ES and GLSL ES: These sessions cover
specifics of the OpenGL ES and WebGL APIs as well as
differences to desktop OpenGL versions, students may be
familiar with. Exemplary implementations of image processing
techniques that are available in the framework are used to
illustrate the APIs.

Software Development Tools: These sessions introduce the Git
code versioning system including issue writing, the branching
concept, and merges in particular. In addition, the work flow of
respective web platforms (e.g., Bitbucket or GitHub) are dis-
cussed. Further, IDEs such as Android Studio, are briefly pre-
sented, especially the build process and debugging functionality.

Software Framework: Finally, to steepen the technical learning
curve for integrating OpenGL ES API and OpenGL ES shader
programs with Android, a brief introduction to the rendering
framework is given. It covers the framework’s architecture, as-
sets, and file formats.

For all students, the attendance of all lectures is mandatory. In order
to respond to the students’ potential foreknowledge gained in other
courses, they are asked during the kick-off for possible topics they
like to focus on.

2.4. Topic Assignment

Subsequent to the topics briefly pitched during first session, each
student chooses three topics and submit them to the course instruc-
tor. In addition thereto, the students should submit device specifics
(brand, version of operating system, OpenGL API version, etc.) to
check whether the mobile devices are capable for implementation
of the chosen topics. If this is not the case, the work group can lend
a device to the respective student. The topic assignments are then
performed by the instructors using the first-come-first-served prin-
ciple. In exceptional cases, students are required to sign an NDA
to protect intellectual property of partner institutions or companies.
The results of the topic assignment is then presented to the class
during the next session. Following to that, each student meets with
the personal instructor.

In this one-on-one meeting between instructor and student, must-
have, should-have, and nice-to-have features are defined for the
topic resulting in a requirements document (similar to contracts or
user stories) that serves as one basis for grading. These documents
can also be prepared in advance. We observed that such kind of
documents support especially undergraduate students in structur-
ing their topic into milestones and features (cf. Section 2.6). Fur-
ther, if required by the student, a recurring appointment for further
one-on-one meetings during the course of the semester is defined.

The complexity of the project topics differs between bachelor
and master courses. While topics for bachelor student mostly fo-
cus on using the framework by implementing shader programs and
rendering pipelines (specified using XML) for image-processing
effects, master students’ topics partially include research ques-
tions [AAF16] (Section 3.1) that require to extend the framework’s
code base. In general, students are encouraged to define their own
topics in collaboration with their supervisor [Rom13].

2.5. Intermediate Student Presentations

To enforce to start work early during the semester, students must
prepare and deliver a brief intermediate presentation in front of
the class and instructors. The presentation duration of ten minutes
plus five minutes feedback should include: (1) motivation of the
topic, (2) a structured overview of related work, and (3) a struc-
tured overview of their approach. To facilitate students to focus on
the presentation contents and not its formatting or layout, LATEX,
Keynote, and PowerPoint presentation style templates are provided.
All slides are distributed via LMS. Students are also encouraged to
use the whiteboard for presentation. In addition to a projector, a
digital clock showing the remaining time is displayed. The presen-
tation material of all students is collected and made accessible to
all students of this seminar subsequently to the presentation.

During feedback round, fellow students and instructors can give
direct feedback on the chosen approach, used technology, and pre-
sentation skills. Based on experience, feedback on presentation
skills are made at classmate level. Therefore, two students that are
randomly selected must comment on the presenters performance.
To facilitate grading of the intermediate presentation, feedback
sheets (Figure 4), which are known to the students, are filed by
instructors directly after the session.

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

M. Trapp, S. Pasewaldt, T. Dürschmid, A. Semmo & J. Döllner / Teaching Image-Processing Programming for Mobile Devices

master

develop

[course_xyz]

[course_xyz][topic_xyz]

[course_xyz][topic_xyz]/[issueNumber2]

[course_xyz][topic_xyz]/[issueNumber1]

Figure 3: Example of the course software branching concept. Each
course instance has its own branch (green). Based on that, each stu-
dent works in his / her own topic branch (red), which represents the
parent of the specific branches (violet) for each issue to implement.

2.6. Project Phase

This phase is the most labor-intensive time for the students and
comprises basically three concurrent tasks: (1) literature work,
(2) software development, and (3) attending status meetings on a
regular basis, as well as broadcast communication.

Literature Work. An important didactic goal in higher education
is to gain experience in proper literature work. Therefore, the stu-
dents must create and maintain a collection of related and previ-
ous work. The results of this process are: (1) a bibliography file
(e.g., for BIBTEX) including searchable abstracts and linked source
files (e.g., Digital Object Identifier (DOI) or local PDF files) for
each resource, as well as (2) a brief bullet-point list referencing
these, which are used in master courses for paper preparation (Sec-
tion 2.9).

Software Development. The organization of the software devel-
opment process is designed to be close to agile industrial software
development [Wil12] with its respective tools. Each student works
on their own topic branch [BA02] in the version control system
(Figure 3). During the development process, for each identified fea-
ture an issue and a respective feature branch is created. Issues are
described in the form of user stories [Coh04].

After completing a feature, the respective branch is merged into
the topic branch by pull requests (PRs), which are reviewed by fel-
low students and (in the beginning) by the respective course in-
structors. This increases code quality, enables mutual learning, and
keep the instructors “in the loop” [MKAH14, BCB∗17]. The re-
viewing students are selected during introduction phase based on
the thematic proximity and common factors with respect to the im-
plementation. Code reviews follow a contemporary process mainly
used in industry [RB13]. Participation in code reviews is manda-
tory. Finally, based on the specifications described in the user story
of the respective issue and a definition-of-done [Wil12], the PR is
than approved or declined.

To steepen the implementation learning curve, descriptive ef-
fect templates, shader program templates, and class templates are
provided that demonstrate the respective naming schemes (coding
style guides) and documentation principles (e.g., JavaDoc). Stu-
dents are allowed and encouraged to reuse existing source code.
Further, as commonly used in industry, a continuous integration

platform executes build step after each push to their branch [Wil12].
To enforce good code quality a linter automatically checks code and
comment style conventions in continuous integration.

Individual Status Meetings. To keep track of development and
establish a forum for advise using direct communication between
student and instructor, a (bi)weekly meeting shows to have been
most effective. Depending of the progress and topics to discuss, the
meeting duration is usually between 15 and 60 minutes. At the end
of the meetings, a brief informal protocol is shared, used to pick-up
communication for the subsequent meeting.

Information Broadcast & Discussions. During the course work-
ing phase, each student usually works individually. To support and
facilitate communication between fellow students and to broad-
cast specific or important course information, two newsgroups are
established in the beginning of each course: one open to instruc-
tors (news channel) and one for students only (discussion board).
Changes in course dates etc. are communicated using a course cal-
endar. Each enrolled student receives updates via email.

2.7. Final Student Presentations

Based on the experience made during the intermediate presenta-
tions (Section 2.5), the students present their results by giving a fi-
nal talk of their achieved course results. The talk duration can vary:
for example 20 minutes talk plus 10 minutes open discussion for
bachelor students or 25 minutes plus 5 minutes for master students.
For demonstration purposes, a competitive and common set of test
images is used, in our case focusing on image stylization [MR16].
The remaining section covers presentation setup, grading, and feed-
back channels used.

Presentation Setup. In contrast to intermediate presentations, the
presentation setup is more elaborated. For final presentations, the
students must prepare (1) a slide deck, (2) an executable and de-
ployable prototype, as well as (3) a demonstration video:

Slide Deck: The presentation should be prepared in terms of a
scientific talk. Basically, the talk should be structured into dis-
tinguished sections: introduction (motivation, teaser, problem
statement, and conceptual as well as technical challenges), re-
lated work (overview and classification), concept, implemen-
tation (pipeline integration, OpenGL specifics, architecture us-
ing unified modeling language (UML)), and discussion (perfor-
mance evaluation, conceptual and technical limitations), conclu-
sions and future work. Beside electronic presentation, the stu-
dents are encourage to also use the whiteboard for communi-
cation. The slides are collected prior to presentations and dis-
tributed afterwards.

Prototype Application: We observed that the most effective way
to present achieved results is by demonstrating features imple-
mented in a prototypical mobile app. Therefore, students can
prepare a deployable version of their app, which is then installed
on a presentation device prior to the sessions. Thereby, we used
a Google Chromecast for the demonstration setup.

Demonstration Video: In addition, students should prepare a
short video (approximately 5 minutes in length) to demonstrate

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

M. Trapp, S. Pasewaldt, T. Dürschmid, A. Semmo & J. Döllner / Teaching Image-Processing Programming for Mobile Devices

Presentation Feedback Form

 (Based on the “HPCC Seminar Presentation Feedback Form”, Department of Computer Science, University of Minnesota)

Speaker:

Date:

Talk title:

Evaluator: Familiarity with the topic: (++ , + , O , - , -- , ?)

1. Overall Structure

a) Was the presentation well organized? (++ , + , O , - , -- , ?)

b) Did each slide make the intended point? (++ , + , O , - , -- , ?)

 ++ for slide: -- for slide:

c) Were the slides well presented? (E.g. color, fonts, space, etc.) (++ , + , O , - , -- , ?)

 ++ for slide: -- for slide:

2. The Introduction

a) Did the talk have a distinct introductory section? (++ , + , O , - , -- , ?)

b) Did the introduction clearly state and explain the problem? (++ , + , O , - , -- , ?)

c) Did the introduction attract the audience curiosity? (++ , + , O , - , -- , ?)

3. The Body

a) Was the presenter’s center approach clearly stated? (++ , + , O , - , -- , ?)

b) Was the proper amount of detail presented? (++ , + , O , - , -- , ?)

c) Were the results adequately justified? (++ , + , O , - , -- , ?)

4. Conclusion

a) Did the talk have a distinct conclusion? (++ , + , O , - , -- , ?)

b) Did the conclusion summarize the key aspects of the talk? (++ , + , O , - , -- , ?)

c) Were the take home points clearly stated? (++ , + , O , - , -- , ?)

5. Questions / Answers

a) Were the questions (if occurred) handled properly? (++ , + , O , - , -- , ?)

6. Presentation Style

a) Was the presentation easily audible and visible? (++ , + , O , - , -- , ?)

b) Did the speaker make eye contact? (++ , + , O , - , -- , ?)

c) Did the speaker respond to the audience’s needs? (++ , + , O , - , -- , ?)

d) Were all terms properly defined before they were used? (++ , + , O , - , -- , ?)

7. Free Space for additional Comments

(Please use backpage.)

Figure 4: Presentation feedback form used for structured feedback
on intermediate and final presentations.

features to be used as a fall-back solution and alternative to the
prototype. Videos from mobile devices can be easily captured
from the IDE (Android Studio).

To support students to keep track of their timing during perfor-
mance, and to simulate a conference-alike situation, an additional
timer can be displayed. As an alternative, the session chair raises
leaflets with timings (15, 10, 5, and 1 minute). Further, to raise addi-
tional motivation, a best project award is sponsored by the working
group. The three possible winners (obtaining a voucher of different
price categories each) are chosen by the number of votes. The com-
plete auditorium have three votes for best presentation. The com-
plete work group (including PhD students and senior research staff)
attend these presentations.

Presentation Grading. Since the final presentation significantly
contributes to the final mark, it is important to make the grading
process as transparent as possible to the students. Therefore, each
instructor fills out a presentation grading form (Figure 4) during
the respective presentation. Subsequent to all presentations, the ad-
visors gather the forms and perform grading. The results of this
process is documented accordingly for students interested in their
performance.

Presentation and Student Feedback. Proper presentation feed-
back is important to cultivate and improve communication and
feedback culture among students and advisors. Therefore, at the

end of each presentation, a brief and open feedback round is con-
ducted. In general, these feedback rounds are moderated by one of
the advisors. Two students are selected randomly to give feedback.
After the presentation sessions, the instructor gives its respective
students elaborated feedback in an one-on-one meeting.

During the last course session, students are encouraged to give
direct voluntary feedback to the course instructors to highlight as-
pects for improvement or performance. These “lessons learned”
are documented and shared among the working group to facilitate
subsequent efforts of instructors to improve the teaching concepts
and to adapt to different student generations. This is performed in
addition to using an institution-wide evaluation platform that en-
ables anonymous feedback and instructor assessment. Section 3
discusses these evaluations and its results in more detail.

2.8. Final Code Submission

The final code submission is performed by creating a final pull re-
quest (FPR) of the complete student’s topic branch into the course
branch. This includes review of submitted code and commenting
where applicable. The student has one week time to correct or dis-
pute comments. The instructors check-out the individual branches,
compiles, deploys and test the code. Based on the results, the re-
spective instructor approves or decline the FPR. Following to that,
the grading is based on different criteria, such as (1) effectiveness
of the approach, (2) achieved performance, and (3) adherence to
code style guidelines.

In addition thereto, students deliver a brief overview page of
the implemented technique to facilitate conceptual understanding
and code reuse of their achievements. It includes: (1) a rendering
pipeline overview, (2) notations, ranges, and default values of pa-
rameters, as well as (3) a description of compatibility issues. This
document is stored in the respective versioning system as Mark-
down! document (RFC 7763).

2.9. Paper Submission

In master courses, students have to submit a research paper describ-
ing their results in a scientific manor within up to 4 to 5 pages (short
paper), preferably using the English language. A didactic goal is
to introduce students to scientific writing and to gain experiences
with tools such as LATEX, BIBTEX, including bibliography data ba-
sis such as JabRef, Mendeley or similar. The paper structure and
presentation should adhere to scientific writing standards.

To ease the writing process, a common conference style template
is handed out to the students (e.g., the LATEXAuthor Guidelines for
Eurographics proceedings). If requested by the students, an addi-
tional lecture slot on “Scientific Writing” is given by the course
instructors, which is often the case for first year master students.
The paper submission process for grading comprises three steps:
(1) paper preparation, (2) paper review, and (3) paper grading.

Paper Preparation. Paper preparation starts subsequently to the
final presentation sessions. Already at the beginning of the mas-
ter course, related work on scientific writing are provided to the
students.For paper preparation, the students start by drafting a pre-
liminary paper structure, writing an abstract, and by creating stubs

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

M. Trapp, S. Pasewaldt, T. Dürschmid, A. Semmo & J. Döllner / Teaching Image-Processing Programming for Mobile Devices

Figure 5: Examples of successful student projects (top row: bachelor students’ results, bottom row: master students’ results).

for images and figures. At this point, students are strongly encour-
aged to integrate the (content) feedback from final presentation into
their papers. The submission deadline is set by LMS. Papers that
are submitted too late are not considered for grading or the subse-
quent review cycle.

Paper Review & Grading. Subsequent to paper preparation, the
students must submit their paper draft version into a review cycle.
Two students that are assigned by the course instructor and that
are not the same as the respective PR reviewer (cf. Section 2.6)
review the paper of a fellow student within one week. In order to
organize and structure the review process, a review form similar
to these of computer graphics conferences such as Eurographics or
SIGGRAPH are used. The review results are send back to the stu-
dent as annotated PDF file. The final paper grading for each student
is performed by the respective course instructor using basically the
same process as the paper review stage.

3. Evaluation and Discussion

We evaluated the presented teaching concept during four project
seminar implementations—i.e., two bachelor and two master sem-
inars respectively (one master seminar is ongoing at the time of
writing)—by means of working examples and feedback results.

3.1. Student Working Examples

Figure 5 shows some examples of recent student projects. The top
row are results achieved by bachelor students: (A) a pencil hatch-
ing app based on orientated tonal art maps [WPFH02], (B) an
effect mimicking the style of Sheng-Qi based on bilateral filter-
ing [TM98], (C) interactive, adjustable painterly rendering using an
example-based rendering technique similar to [Her98]. The bottom
rows depict working examples achieved by master students: (D) a

low-poly effect, (E) a real-time implementation of feature-guided
image stippling [KSL∗08], and (F) semantic-aware style transfer
based on generative convolutional neural networks [ZD17].

Out of 37 student projects, four contributed to research papers
for international conferences. Two projects have led to winning
two “Best Demo Awards” and a Best Paper Award at renowned
international symposia. Furthermore, one student project received
a student speaker invitation to the Ada Lovelance Festival and one
was submitted to a national media award. Eight students continued
their project as student assistants to further contribute to the devel-
opment of the framework, and more than ten students participated
in follow-up projects or lectures.

3.2. Evaluation Results

The student grading results indicate a good learning success for the
finished bachelor (A and B) and master (C) courses. Students of
course A were graded overall with 1.2 (out of the range 1–5, i.e.,
1 means very good and 5 means the seminar has not been passed)
with a standard deviation of σ = 0.23. Students of course B were
graded overall with 1.7 with a standard deviation of σ = 0.67. The
master’s course students C were graded 1.6 with a standard devia-
tion of σ = 0.73.

The following anonymous, quantitative and qualitative student
feedback has been obtained using a course evaluation platform.
Students are able to give their feedback prior to the grading pro-
cess, and the results are published after the course has been fin-
ished. Qualitative feedback is available to people that have been
evaluated and to the person responsible for the course.

Quantitative Student Feedback. Course A was graded overall
with 1.4 (out of the range 1–5, with 1 means very good) by 71 %
of the bachelor students (5 out of 7 participants) with a standard

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

M. Trapp, S. Pasewaldt, T. Dürschmid, A. Semmo & J. Döllner / Teaching Image-Processing Programming for Mobile Devices

Table 1: Overview of quantitative course evaluation results. The
grades (1–5) are categorized into very good (green: 1.0–1.6), good
(orange: 1.7–2.3), and satisfying (red: 2.4–3.3).

Aspect
Bachelor

Course (A)
Bachelor

Course (B)
Master

Course (C)

Participants: 7 16 14

Course content:
I learned a lot in the course. 2.0 1.6 1.6
The content of the course was well structured. 1.2 1.6 1.9
The course deepened my knowledge in this topic. 1.2 1.3 1.6

Learning Material:
The provided learning material was sufficient. 1.0 1.8 1.6
The provided learning material was useful. 1.2 1.7 1.5

Project:
I enjoyed the project. 1.2 1.7 1.7
The expenditure of time was appropriate. 1.6 3.0 3.0
I learned something from the project. 1.6 1.6 1.6

deviation of 0.4. Course B was graded overall with 1.7 by 62.5 %
of the bachelor students (10 out of 16 participants) with a stan-
dard deviation of σ = 0.6. The master’s course C was rated 1.6 by
50 % (7 out of 14 participants) with a standard deviation of 0.5.
Table 1 shows grades by participants with respect to specific eval-
uation questions. In general, the course was positively rated, with
an exception regarding the time that has to be invested. Compared
to course A, course B and C required the students to invest more
time, since writing an additional scientific paper was required or a
more complex task had to be solved. Students state that this yields
problems in time management, which subsequently impacts other
factors such as motivation and joy. However, the same is observed
in lectures and seminars of other work groups as well.

Qualitative Student Feedback. Besides the quantitative results,
students are able to give qualitative feedback in form of responses
to general questions, which is presented in the following.

The question “What were the strengths of the course?” was ad-
dressed as follows. Some students rate the available programming
framework as practical, since it steepens the learning curve and en-
ables fast and early prototypes, and thus, more feedback iterations.
In general, the use and application of Git and Bitbucket as well
as the accompanying software development process were received
positive. Further, the possibility to lend a mobile testing device was
received overall positive. Although, paper writing was not part of
the concept for bachelor courses, some students were interested to
do so. Most students were satisfied with their topics and make use
of possible synergy effects between implementations.

The question “How could the course be further improved?” re-
ceived the most student feedback. In general, master students find
the efforts of a software project, two presentations, one paper, and
the additional pull requests (PRs) as too much for 6 ETCS points.
Especially PRs were identified by the students as a possible crit-
ical aspect, since some PR were not processed in time by fellow
students. A mentioned cause for that is the missing opportunity for
team work, which limits the motivation to review (considered as an
“additional”, non-integral part of the work). From a technical point
of view, relatively slow deployment times (up to 1–2 minutes) to
the mobile device were generally considered negative, since it pre-

vents quick “trial and error” iterations in programming. This es-
pecially arises due to the lack of OpenGL ES capabilities in the
Android Studio emulators (limited to OpenGL ES 2.0). A minority
of students also missed a theoretic introduction to concepts regard-
ing their topics and more in-depth discussion of image operations
during the introduction lectures.

3.3. Discussion & Lessons Learned

Overall, we received positive feedback for this course format over
the last five semesters and registered an increase of students. Only
one (master) student out of a total of 37 did not successfully finish
the course. In the last seminar, 16 bachelor students were enrolled,
which represents a limit to the instructor work loads. Thus, a suc-
cessful accomplishment of such project seminar usually requires
more than one course instructor. Even for up to three instructors, it
results in a relatively high (but usually predictable) workload. We
strive towards continuously offering this project seminar in future
terms by alternating between bachelor and master courses. How-
ever, this will require changes in the concept especially for the
master courses. We identified several aspects to support the stu-
dent’s time management for the seminar: Concerning the schedule,
the intermediate presentation should start early during introduction
phase and regular group meetings for direct communication should
be introduced. Instead of reducing the student’s work load directly,
e.g., by trading final presentation against paper writing, we chose to
allow team work with a maximum of two students per team, which
is evaluated in the current semester.

Despite the focus of this paper, the presented concept is ap-
plied during recent years in several bachelor and master courses.
Although the described concept seems cumbersome, it showed to
have some major advantages for the student’s education and with
respect to code reuse. Using a common software framework and
working with PRs, a higher code quality could be obtained, which
reduces possibly future refactoring time. The increased effort for
students and instructors for this course format yields the question
of the direct benefits. These can be summarized with respect to the
students, instructors, and collaborating companies as follows:

Students: The benefits for students are diverse. First, we observed
that the gained experiences in presentation and paper writing
skills have a positive effect on the resulting quality of their bach-
elor and master thesis. Further, early introduction to scientific
working principles raises the motivation to participate in subse-
quent teaching and research activities, for example by contribut-
ing to research papers or working as student assistants. The us-
age of industry-proven software development processes and the
complex common software framework enables students to work
as professional software developers or interns for the collaborat-
ing companies. Furthermore, students can use the prototypes to
demonstrate their results to friends and family outside the aca-
demic environment, which increases motivation for this topic.

Teachers: Teaching personal can benefit from various seminar re-
sults. The early prototypical implementations of image process-
ing techniques and algorithms often represent first feasibility
studies of research ideas. These can be used to support future re-
search and publications as well as to facilitate funding activities.
Further, an early effort in teaching expenses is counterbalanced

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

M. Trapp, S. Pasewaldt, T. Dürschmid, A. Semmo & J. Döllner / Teaching Image-Processing Programming for Mobile Devices

by reduced teaching overhead during the subsequent supervision
of bachelor, master, and PhD theses. Furthermore, the resulting
code artifacts and documents can be easily integrated into the
existing framework and for future research and teaching.

Collaborating Companies: Besides proof-of-concept implemen-
tation that can be used to communicate new ideas, inspired and
specifically educated students are a major benefit for collabo-
rating companies. These can represent future student trainees as
well as employees, which are familiar with challenges and fields
of engineering that are of particular interest to a company.

4. Conclusions and Future Work

This paper describes a concept and implementation details for a
project seminar course in the computer graphics domain applied to
teach the implementation of real-time image processing techniques
and algorithms for mobile devices. The seminar focuses on combin-
ing several teaching goals: gain hands-on experiences in OpenGL
ES or WebGL in combination with industry-wide software pro-
cesses and research skills such as giving presentations and paper
writing. The presented concept and the evaluation of its imple-
mentation partially answers questions to the much discussed topic
of undergraduate research and how it can be integrated into un-
dergraduate degree programs [AAF16]. For future work, a major
question is how to break down the presented concept for a massive
online-enrolled courses (MOOC) on image-processing program-
ming for mobiles devices, or computer graphics courses in general,
which represents an increasing demand today [KH16, Bou16].

Acknowledgments

We thank all students and researches that participated in the sem-
inar for their work and extensive feedback. This work was funded
by the Federal Ministry of Education and Research (BMBF), Ger-
many (AVA, 01IS15041).

References
[AAF16] ANDERSON E. F., ADZHIEV V., FRYAZINOV O.: Aiming

High: Undergraduate Research Projects in Computer Graphics and Ani-
mation. In Proc. Eurographics - Education Papers (2016), Santos B. S.,
Dischler J.-M., (Eds.), The Eurographics Association. 1, 3, 8

[BA02] BERCZUK S. P., APPLETON B.: Software Configuration Man-
agement Patterns: Effective Teamwork, Practical Integration. Addison-
Wesley Longman Publishing Co., Inc., 2002. 4

[BCB∗17] BOSU A., CARVER J. C., BIRD C., ORBECK J., CHOCKLEY
C.: Process Aspects and Social Dynamics of Contemporary Code Re-
view: Insights from Open Source Development and Industrial Practice
at Microsoft. IEEE Transactions on Software Engineering 43, 1 (2017),
56–75. 4

[Bou16] BOURDIN J.-J.: MOOCs in Computer Graphics. In Proc. Euro-
graphics - Education Papers (2016), Santos B. S., Dischler J.-M., (Eds.),
The Eurographics Association. 8

[CC05] CLAYPOOL K., CLAYPOOL M.: Teaching software engineering
through game design. SIGCSE Bull. 37, 3 (June 2005), 123–127. 2

[Coh04] COHN M.: User Stories Applied: For Agile Software Develop-
ment. Addison Wesley Longman Publishing Co., Inc., 2004. 4

[CPAM08] CAPIN T., PULLI K., AKENINE-MÖLLER T.: The State of
the Art in Mobile Graphics Research. IEEE Computer Graphics and
Applications 28, 4 (July 2008), 74–84. 1

[Dev13] DEV K.: Mobile Expressive Renderings: The State of the Art.
IEEE Computer Graphics and Applications 33, 3 (May 2013), 22–31. 1

[DFH02] DEMUTH B., FISCHER M., HUSSMANN H.: Experience in
early and late software engineering project courses. In Proc. Conference
on Software Engineering Education and Training (2002), CSEET ’02,
pp. 241–248. 2

[DT03] DOUGIAMAS M., TAYLOR P. C.: Moodle: Using learning com-
munities to create an open source course management system. In Proc.
of the EDMEDIA 2003 Conference (2003). 2

[DTD17] DÜRSCHMID T., TRAPP M., DÖLLNER J.: Towards Architec-
tural Styles for Android App Software Product Lines. In Proc. MOBILE-
Soft (2017), pp. 58–62. 2

[FWW13] FINK H., WEBER T., WIMMER M.: Teaching a modern
graphics pipeline using a shader-based software renderer. Computers
& Graphics 37, 1–2 (Feb. 2013), 12–20. 1

[GW06] GONZALEZ R. C., WOODS R. E.: Digital Image Processing
(3rd Edition). Prentice-Hall, Inc., 2006. 2

[Her98] HERTZMANN A.: Painterly Rendering with Curved Brush
Strokes of Multiple Sizes. In Proc. SIGGRAPH (New York, NY, USA,
1998), SIGGRAPH ’98, ACM, pp. 453–460. 6

[KH16] KAPLAN A. M., HAENLEIN M.: Higher education and the dig-
ital revolution: About MOOCs, SPOCs, social media, and the Cookie
Monster. Business Horizons 59, 4 (2016), 441–450. 8

[KSL∗08] KIM D., SON M., LEE Y., KANG H., LEE S.: Feature-guided
Image Stippling. Computer Graphics Forum 27, 4 (2008), 1209–1216. 6

[MKAH14] MCINTOSH S., KAMEI Y., ADAMS B., HASSAN A. E.:
The Impact of Code Review Coverage and Code Review Participation
on Software Quality: A Case Study of the Qt, VTK, and ITK Projects.
In Proc. Working Conference on Mining Software Repositories (2014),
MSR ’14, pp. 192–201. 4

[MR16] MOULD D., ROSIN P. L.: A Benchmark Image Set for Evaluat-
ing Stylization. In Non-Photorealistic Animation and Rendering (2016),
The Eurographics Association. 4

[RB13] RIGBY P. C., BIRD C.: Convergent Contemporary Software Peer
Review Practices. In Proc. Foundations of Software Engineering (2013),
pp. 202–212. 4

[Rom13] ROMERO M.: Project-Based Learning of Advanced Computer
Graphics and Interaction. In Proc. Eurographics - Education Papers
(2013), Bourdin J.-J., Cerezo E., Cunningham S., (Eds.), The Eurograph-
ics Association. 3

[SDT∗16] SEMMO A., DÜRSCHMID T., TRAPP M., KLINGBEIL M.,
DÖLLNER J., PASEWALDT S.: Interactive Image Filtering with Multiple
Levels-of-control on Mobile Devices. In Proc. SIGGRAPH ASIA Mobile
Graphics and Interactive Applications (2016), SA ’16, pp. 2:1–2:8. 2

[She11] SHESH A.: High-Level Application Development for non-
Computer Science majors using Image Processing. In Proc. Eurograph-
ics - Education Papers (2011), Maddock S., Jorge J., (Eds.), The Euro-
graphics Association. 2

[TM98] TOMASI C., MANDUCHI R.: Bilateral Filtering for Gray and
Color Images. In Proc. International Conference on Computer Vision
(1998), ICCV ’98, pp. 839–846. 6

[TMB14] THABET R., MAHMOUDI R., BEDOUI M. H.: Image Pro-
cessing on Mobile Devices: An Overview. In Proc. International Image
Processing, Applications and Systems Conference (2014), pp. 1–8. 1

[Wer13] WERNER M.: Teaching Graphics Programming on Mobile De-
vices. J. Comput. Sci. Coll. 28, 6 (June 2013), 125–131. 2

[Wil12] WILLIAMS L.: What Agile Teams Think of Agile Principles.
Commun. ACM 55, 4 (Apr. 2012), 71–76. 4

[WPFH02] WEBB M., PRAUN E., FINKELSTEIN A., HOPPE H.: Fine
Tone Control in Hardware Hatching. In Proc. Symposium on Non Pho-
torealistic Rendering (June 2002), pp. 53–58. 6

[ZD17] ZHANG H., DANA K. J.: Multi-style Generative Network for
Real-time Transfer. Tech. Rep. 1703.06953, arXiv, 2017. 6

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

http://dx.doi.org/10.2312/eged.20161021
http://dx.doi.org/10.2312/eged.20161021
http://dx.doi.org/10.2312/eged.20161021
http://dx.doi.org/10.2312/eged.20161021
http://dx.doi.org/10.1109/TSE.2016.2576451
http://dx.doi.org/10.1109/TSE.2016.2576451
http://dx.doi.org/10.1109/TSE.2016.2576451
http://dx.doi.org/10.1109/TSE.2016.2576451
http://dx.doi.org/10.1109/TSE.2016.2576451
http://dx.doi.org/10.2312/eged.20161028
http://dx.doi.org/10.2312/eged.20161028
http://dx.doi.org/10.2312/eged.20161028
http://dx.doi.org/10.1145/1151954.1067482
http://dx.doi.org/10.1145/1151954.1067482
http://dx.doi.org/10.1109/MCG.2008.83
http://dx.doi.org/10.1109/MCG.2008.83
http://dx.doi.org/10.1109/MCG.2008.83
http://dx.doi.org/10.1109/MCG.2013.20
http://dx.doi.org/10.1109/MCG.2013.20
http://dx.doi.org/10.1109/CSEE.2002.995216
http://dx.doi.org/10.1109/CSEE.2002.995216
http://dx.doi.org/10.1109/CSEE.2002.995216
http://dx.doi.org/10.1109/CSEE.2002.995216
https://research.moodle.net/33/
https://research.moodle.net/33/
https://research.moodle.net/33/
http://dx.doi.org/10.1109/MOBILESoft.2017.12
http://dx.doi.org/10.1109/MOBILESoft.2017.12
http://dx.doi.org/10.1109/MOBILESoft.2017.12
https://www.cg.tuwien.ac.at/research/publications/2013/fink-2013-cag/
https://www.cg.tuwien.ac.at/research/publications/2013/fink-2013-cag/
https://www.cg.tuwien.ac.at/research/publications/2013/fink-2013-cag/
http://dx.doi.org/10.1145/280814.280951
http://dx.doi.org/10.1145/280814.280951
http://dx.doi.org/10.1145/280814.280951
http://EconPapers.repec.org/RePEc:eee:bushor:v:59:y:2016:i:4:p:441-450
http://EconPapers.repec.org/RePEc:eee:bushor:v:59:y:2016:i:4:p:441-450
http://EconPapers.repec.org/RePEc:eee:bushor:v:59:y:2016:i:4:p:441-450
http://dx.doi.org/10.1111/j.1467-8659.2008.01259.x
http://dx.doi.org/10.1111/j.1467-8659.2008.01259.x
http://dx.doi.org/10.1145/2597073.2597076
http://dx.doi.org/10.1145/2597073.2597076
http://dx.doi.org/10.1145/2597073.2597076
http://dx.doi.org/10.1145/2597073.2597076
http://dx.doi.org/10.1145/2597073.2597076
http://dx.doi.org/10.2312/exp.20161059
http://dx.doi.org/10.2312/exp.20161059
http://dx.doi.org/10.2312/exp.20161059
http://dx.doi.org/10.1145/2491411.2491444
http://dx.doi.org/10.1145/2491411.2491444
http://dx.doi.org/10.1145/2491411.2491444
http://dx.doi.org/10.2312/conf/EG2013/education/001-006
http://dx.doi.org/10.2312/conf/EG2013/education/001-006
http://dx.doi.org/10.2312/conf/EG2013/education/001-006
http://dx.doi.org/10.2312/conf/EG2013/education/001-006
http://dx.doi.org/10.1145/2999508.2999521
http://dx.doi.org/10.1145/2999508.2999521
http://dx.doi.org/10.1145/2999508.2999521
http://dx.doi.org/10.1145/2999508.2999521
http://dx.doi.org/10.2312/EG2011/education/037-041
http://dx.doi.org/10.2312/EG2011/education/037-041
http://dx.doi.org/10.2312/EG2011/education/037-041
http://dx.doi.org/10.2312/EG2011/education/037-041
http://dx.doi.org/10.1109/ICCV.1998.710815
http://dx.doi.org/10.1109/ICCV.1998.710815
http://dx.doi.org/10.1109/ICCV.1998.710815
http://dx.doi.org/10.1109/IPAS.2014.7043267
http://dx.doi.org/10.1109/IPAS.2014.7043267
http://dx.doi.org/10.1109/IPAS.2014.7043267
http://dl.acm.org/citation.cfm?id=2460156.2460179
http://dl.acm.org/citation.cfm?id=2460156.2460179
http://dx.doi.org/10.1145/2133806.2133823
http://dx.doi.org/10.1145/2133806.2133823
http://dx.doi.org/10.1145/508530.508540
http://dx.doi.org/10.1145/508530.508540
http://dx.doi.org/10.1145/508530.508540
http://arxiv.org/abs/1703.06953
http://arxiv.org/abs/1703.06953

