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Abstract

Background: Gene expression genetic studies in human tissues and cells identify cis- and trans-acting expression
quantitative trait loci (eQTLs). These eQTLs provide insights into regulatory mechanisms underlying disease risk.
However, few studies systematically characterized eQTL results across cell and tissues types. We synthesized eQTL
results from >50 datasets, including new primary data from human brain, peripheral plaque and kidney samples, in
order to discover features of human eQTLs.

Results: We find a substantial number of robust cis-eQTLs and far fewer trans-eQTLs consistent across tissues.
Analysis of 45 full human GWAS scans indicates eQTLs are enriched overall, and above nSNPs, among positive
statistical signals in genetic mapping studies, and account for a significant fraction of the strongest human trait
effects. Expression QTLs are enriched for gene centricity, higher population allele frequencies, in housekeeping
genes, and for coincidence with regulatory features, though there is little evidence of 5′ or 3′ positional bias.
Several regulatory categories are not enriched including microRNAs and their predicted binding sites and long,
intergenic non-coding RNAs. Among the most tissue-ubiquitous cis-eQTLs, there is enrichment for genes involved
in xenobiotic metabolism and mitochondrial function, suggesting these eQTLs may have adaptive origins. Several
strong eQTLs (CDK5RAP2, NBPFs) coincide with regions of reported human lineage selection. The intersection of
new kidney and plaque eQTLs with related GWAS suggest possible gene prioritization. For example, butyrophilins
are now linked to arterial pathogenesis via multiple genetic and expression studies. Expression QTL and GWAS results
are made available as a community resource through the NHLBI GRASP database [http://apps.nhlbi.nih.gov/grasp/].

Conclusions: Expression QTLs inform the interpretation of human trait variability, and may account for a greater
fraction of phenotypic variability than protein-coding variants. The synthesis of available tissue eQTL data highlights
many strong cis-eQTLs that may have important biologic roles and could serve as positive controls in future studies.
Our results indicate some strong tissue-ubiquitous eQTLs may have adaptive origins in humans. Efforts to expand the
genetic, splicing and tissue coverage of known eQTLs will provide further insights into human gene regulation.
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Background
Genome-wide genetic analysis of gene expression [1,2]
identifies expression quantitative trait loci (eQTLs) which
are mainly regulatory variants associated with cis- expression
of nearby genes. Discovery of eQTLs may help elucidate
the genetic mechanisms underlying natural variation in
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gene expression [3,4]. Identifying these genetic variants
may improve our understanding of molecular mechanisms
of disease risk, and of potential drug targets. Human cross-
tissue allele-specific expression studies indicate a significant
fraction of genes are under genetic control by one or more
alleles [5-7]. Strong eQTLs are often highly correlated with
markers of disease and quantitative traits at loci identified
in GWAS [8-13], suggesting that these eQTLs account
for a significant fraction of human phenotypic variability.
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However, to date there are few attempts at characterizing
cross-tissue eQTL datasets in a centralized manner.
Thus far, eQTL studies have analyzed gene expression

traits measured primarily by DNA microarrays in liver
[9,14-16], multiple blood cell types [17-27], brain regions
[24,28-31], endothelial cells [32], stomach [9], skin [33], and
adipose [9,19]. Expression QTL effects are often partitioned
into either cis or trans-acting effects, and few studies
have thoroughly characterized trans eQTL associations,
in part due to computational burden [34]. Furthermore,
approaches to data collection and analysis of cis and
trans eQTLs have been relatively non-uniform [34,35].
Dimas et al. compared eQTLs discovered from 3 blood-
related cell types [17], and found that only ~30% of eQTLs
were directly shared across tissues. Later studies undertook
multi-tissue comparisons of cis-eQTLs including lym-
phoblastoid cell lines (LCL) versus skin cells [33]; LCL,
skin, and fat [36]; liver, omental, and subcutaneous adipose
[9], and re-analysis of the Dimas et al. datasets with new
methods [37]. Overall, these later studies found evidence
for a high degree of sharing (~50-80%) of cis-eQTLs
across tissues, while still indicating a significant minor-
ity of cis-eQTLs remain relatively tissue-specific. Prior
studies compared at most 4 tissues and generally did
not include external validation of signals or studies of
trans-eQTLs. Thus, a rigorous comparison, across many
tissues and populations with good statistical power remains
relatively incomplete.
We sought to collect, standardize, and annotate a var-

iety of eQTL results into a comprehensive central data-
base in order to answer several basic research questions
about eQTLs: 1) Are there master/housekeeping cis and
trans eQTLs across tissues and what are their biologic
functions? 2) What consistent cis and trans-eQTL patterns
emerge across datasets including positional genomic loca-
tion and overlap with regulatory annotations? 3) What
genome-wide association (GWAS) variants converge with
eQTL peaks? 4) Does integration of disparate eQTL data
identify new trans-acting loci?
To address these questions we collected and analyzed

available results from 53 eQTL population datasets. These
53 datasets represent analyses from 24 published manu-
scripts and 13 previously unpublished analyses reflect-
ing >27 cell and tissue types. Most summary-level results
are available for download as a subset of the NHLBI
Genome-wide Repository of Associations between SNPs
and Phenotypes (GRASPdb) [38].

Results
Characteristics of 53 gene expression GWAS (eQTL) datasets
The eQTL datasets (n = 53) collected included liver
[9,14-16], adipose tissues [9,19], various brain tissues
[24,28-31] and blood lineage cells including whole
blood [19,20,23,25], lymphocytes [17,21,26], monocytes
[24,39], osteoblasts [22], fibroblasts [17] and Epstein-Barr
transformed B-LCL [17,18,27]. Other tissues included
kidney, stomach [9], skin [33] and peripheral artery plaque
(see Table 1 for study summaries and [Additional file 1]
for detailed characteristics). In some cases significant results
beyond those originally reported were available via collabor-
ation, otherwise the results reflected either new results
from this paper or publicly available eQTL results that
passed statistical correction thresholds defined by the ori-
ginal authors. The sample size varied widely across these
studies (range n = 52-1,490, median n = 193, mean n = 311).
Some of the 53 datasets reflected subgroup analyses
(e.g., cases or controls, European or African ancestry).
After common annotation of all datasets, dataset sample
size showed modest logarithmic fit with the number of cis-
eGenes identified (r2 = 0.45) and less so with trans-eGenes
(r2 = 0.24) [Additional file 1]. This suggests many prior
studies may have been underpowered but signal saturation
may be approached with several thousand samples.
Genotyping and gene expression arrays across the

datasets were heterogeneous (Table 1). Genotyping assays
included Affymetrix (500 K, 6.0), Illumina (100 K, 300 K,
550 K, 610 Kquad, 650 K) and Perlegen SNP arrays (300 K,
438 K). Only a small proportion of datasets (n = 10, 18.9%)
included imputed SNP analysis. Expression assays in-
cluded custom arrays, Affymetrix (Human ST 1.0 exon,
U133 plus A/B/2.0), and Illumina (WG-6 v1, WG-6 v3,
HumanRefSeq-8 v2, HT12) arrays, with a mean of 20,246
RNAs interrogated across unique studies. Thus, these
analyses primarily reflected mRNA expression of protein-
coding genes, with few splice-specific analyses [24]. The
datasets utilized different criteria for reporting significant
results, including different multiple test correction thresh-
olds and distance thresholds for defining cis-acting eQTLs
(range = 100 kb to 5 Mb). As a result of these combined
factors, as well as varying statistical power, whether trans
analysis was conducted, and the extent of disclosed results,
there were a broad range of significant eQTLs defined by
the studies (range n = 33–22,473).

Frequency of eGenes and eQTLs across 53 datasets after
common annotation
A total of 19,444 eGenes mapped directly to NCBI RefSeq
gene symbols (n = 17,294) or RefSeq gene aliases (n = 2,150)
[Additional file 2]. The majority of both eGenes and eQTLs
were reported in only one dataset (Figure 1), which may
reflect false positives, tissue-specific results, or a lack of
statistical power, and SNP and/or transcript coverage
differences across studies. Nevertheless, 1,784 eGenes were
found in ≥30% of the datasets (n ≥ 15 datasets) (Figure 1A).
A total of 419,796 eQTLs passed at least nominal

statistical correction thresholds in the 53 original
sources. These included redundant eQTLs in relatively
high linkage disequilibrium (LD) in some datasets. We



Table 1 Summary of 53 eQTL datasets, their origins and original reported parameters

Author (PMID) Tissues (Sample size) cis analysis trans analysis Imputation
(SNPs tested)*

Genes
analyzed

Brain tissues

Emilsson (23622250)† DLPFC, VC, CR versus: All samples (n = 742), Alzheimer’s
(n = 376), Huntington’s (n = 193)†, Normal (n = 173)

<1 Mb Yes (diff. chr) No (838,958) 39,579

Kleinman (22031444) PFC_EA + AA + others (n = 269), PFC_AA (n = 147),
PFC_EA (n = 112)

n/a Yes (all) No (625,439) 30,176

Liu (20351726) PFC (n = 127) <1 Mb Yes No (366,140) 6,968

Webster (19361613) Cortex (n = 364), Cortex:Alzh (n = 176) <1 Mb Yes (≥1 Mb) No (502,627) 24,357

Myers (17982457) Cortex (n = 193) <1 Mb Yes (≥1 Mb) No (366,140) 14,078

Heinzen (19222302) Cortex (n = 93) <100 kb No No (~550,000) ~22,000

Gibbs (20485568) Temporal cortex (n = 144), Frontal cortex (n = 143),
Cerebellum (n = 143), Pons (n = 142)

<1 Mb Yes Yes (~1,655,958) ~9,372‖

Blood tissues/cells

Zeller (20502693) Monocytes (n = 1,490) <1 Mb Yes (≥1 Mb) No (675,350) 12,808

Fehrmann (21829388) Whole peripheral blood (n = 1,469) ≤250 kb Yes (>5 Mb) No (290,211) 19,609

Goring (17873875) Lymphocytes (n = 1,240) ≤1 Mb Yes No (~500,000) 18,519

Dixon (17873877) LCL (n ~ 400) <100 kb Yes (diff. chr) No (408,273) 20,599

Stranger (17873874) LCL (n = 210) ≤1 Mb Yes (>1 Mb) Yes (2.2 million) 13,643

Murphy (20833654) CD4 + lymph (n = 200) <50 kb No No (516,512) 19,904

Idaghdour (19966804) Leukocytes (n = 194) <50 kb Yes (diff. chr) No (516,972) 16,738

Emilsson (18344981) Blood (n = 150) <1 Mb Yes (≥1 Mb) No (317,503) 20,210

Heap (19128478) PaxGene whole blood (n = 110) <250 kb No No (257,013) 19,867

Grundberg (19654370) Osteoblasts (n = 95) <250 kb Yes (diff. chr) No (383,547) 18,144

Dimas (19644074) Tcells (n = 85), Fibroblasts (n = 85), LCL (n = 85) <1 Mb No No (394,651) 17,945

Heinzen (19222302) PBMC (n = 80) <100 kb No No (~550,000) ~22,000

Other tissues/cells

Greenawalt (21602305) Liver (n = 651), Subcutaneous Adipose (n = 701),
Omentum (n = 848), Stomach (n = 118)

<1 Mb Yes (>1 Mb) No (~650,000) 39,303

Schadt (18462017) Liver (n = 427) <1 Mb Yes (≥1 Mb) No (782,476) 34,266

Innocenti (21637794) Liver (n = 206), Liver (n = 60) <250 kb Yes‡ HapMap (rel.27) 14,703‖

Schroder (22006096) Liver (n = 149) <1 Mb Yes (>1 Mb) No (299,352) 15,439

Kim† Kidney (cortex) (n = 81) <1 Mb No No (906,600) 44,692

Emilsson† Peripheral artery plaque (n = 202) <1 Mb Yes (>1 Mb) No (224,698) 37,582

Emilsson (18344981) Subcutaneous Adipose (n = 150) <1 Mb Yes (≥1 Mb) No (317,503) 20,210

Ding (21129726) Normal Skin (n = 57), Psoriasis Lesional Skin
(n = 53), Psoriasis UninvolvedSkin (n = 53)

<1 Mb No HapMap(rel.21) ~54,000

Kompass (21226949) Endometrial Tumor (n = 52) 5 Mb Yes (>5 Mb) No (68,523) 8,543

“n/a” = not applicable. *Number of SNPs reported as being tested when specified. †dataset which has not previously been published separately. ‡no trans-eQTL
results given in the publication. ‖# of snps and/or genes varied among datasets in this paper. The maximum is given. kb = kilobase. Mb =megabase. PBMC = peripheral
blood mononuclear cells. LCL = Epstein-Barr transformed B-lymphoblastoid cell line. PFC = prefrontal cortex. DLPFC = dorso-lateral prefrontal cortex. VC = visual
cortex. CR = cerebellum.
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retained the most significant eQTL for each eGene
within each dataset yielding 116,563 “best” eQTLs from
the constituent datasets. We mapped all best eQTLs in
a common genome build (hg18) and applied a uniform
distance threshold (500 kb) across all 53 datasets to define
cis and trans-acting variants, finding 106,083 cis-eQTL-
eGene associations (91%) and 10,480 trans-eQTL-eGene
associations (9%). On average, each eGene is associated
with 1.8 eQTLs. For 62,872 unique best eQTLs across
datasets, 279 cis eQTLs are found in ≥30% of the datasets
(N ≥ 15) (Figure 1B), while only 37 SNPs are trans-associ-
ated with eGenes in ≥ 4 datasets (Figure 1C).



# eQTL datasets

19,038 eGenes >= 1 datasets 

1,784 eGenes >= 15 datasets 

# eQTL datasets

56,089 cis-eSNPs >= 1 datasets 

279 cis-eSNPs >= 15 datasets 

# eQTL datasets

7,075 trans-eSNPs >= 1 datasets 

37 trans-eSNPs >= 4 datasets 

B
A

C

Figure 1 Frequency of eGenes and eQTLs across 53 datasets. A: Distribution of the occurrence of 19,038 unique eGenes across all 53 eQTL
datasets. Inset: histogram of 1,784 genes found in > =15 eQTL datasets. B: Distribution of the occurrence of 56,089 unique, best cis-eQTLs across
all 53 eQTL datasets. Inset: Histogram of 279 cis-eQTLs found in > =15 eQTL datasets. C: Distribution of the occurrence of 7,075 unique and best
trans-eQTLs across all 53 eQTL datasets. Inset: Histogram of 37 trans-eQTLs found in≥ 4 eQTL datasets. For each trans-eQTL, all proxy SNPs in
perfect linkage disequilibrium (r^2 = 1 in CEU) are also included [42].
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Master eQTLs with strong cis genetic influences across tissues
To assess the most ubiquitous eQTLs, we examined 33
eGenes whose expression was significantly affected by
SNPs in ~70% of datasets (n ≥ 35) and performed un-
supervised hierarchical clustering (Figure 2). Several
eGenes demonstrated strong genetic influences in more
than 80% of datasets (n ≥ 42), including PEX6, GSTM3,
PPIL3, MRPL43, and CHURC1. When compared against
results from the GTeX (Genotype-Tissue Expression)
project portal [40], 30 of these 33 eGenes had significant
cis-eQTL in 2 or more of 9 independent tissues analyzed
in that project (Table 2). The SNPs in Table 2 were checked
for potential polymorphism in probe effects using PiPmaker
[41]. None of the SNPs listed were found to directly overlap
probes. Six of the SNPs had perfect proxy SNPs (r2 = 1.0)
that overlapped one or more Affymetrix or Illumina probes
(ACP6, ARNT, ITGB3BP, GSTM3, NDUFS5, THEM4), in-
dicating a small minority of these widespread cis-eQTLs
may be influenced by SNP in probe effects.
These genes may represent housekeeping or master

cis-eGenes, and could be useful positive controls in
future studies. We next extended clustering to 248
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PEX6
DNAJC15
CHURC1
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AMFR
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MRPL43
PPIL3
GSTT1
ZNF266
THEM4
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ACP6
WDR48
MYOM2
STAT6
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NDUFS5
AKAP10
IRF5
RABEP1
QRSL1
TRAPPC4
ABHD12
ARNT
ITGB3BP

33  eGenes >= 35 datasets

Figure 2 Hierarchical clustering shows robust eGenes with strong
genetic influences across a majority of studies. eGenes present in
>70% of datasets (>35/53 datasets). Individual datasets are indicated at
bottom with eGenes listed to the right. Presence (black) or absence
(white) of eGenes as eQTLs within individual datasets is shown.
high confidence eGenes found in ≥25 of our datasets
[Additional file 3] and found eQTLs clustered by tissue
type but were also greatly influenced by overlapping study
samples. For example there was clustering of eQTLs from
different brain anatomical sites derived from the same
study samples, whereas an independent brain study which
reported fewer eQTLs [28] was in a distinct cluster from
the largest brain eQTL study [31]. Clustering was ob-
served for three eQTL datasets in different blood cells
that applied similarly stringent correction thresholds
[17]. Pathway and ontology analysis of the 248 clustered
cis-eQTLs revealed enrichment of genes involved in anti-
gen processing and presentation and immune function,
glutathione S-transferase activity, and mitochondrial
function [Additional file 4].
We further characterized putative functional explanations

for the 33 most ubiquitous cis-eGenes (Figure 2), for
which gene symbols and basic functions are described
in [Additional file 5]. All of the eQTL SNPs were common
variants (the lowest MAF is 9% in CEU), and their signals
were consistently large in effect (Table 2). The most fre-
quent eQTL across datasets was often not the strongest
eQTL but was highly correlated with the strongest eQTL,
with a few exceptions (NUDT2 pairwise r2 = 0.08, NQO2
r2 = 0.11, MYOM2 r2 = 0.17, GSTM3 r2 = 0.20). These
exceptions may reflect coverage differences across stud-
ies or allelic heterogeneity of functional variants at some
loci. A functional characterization of all SNPs in Table 2
and their perfect proxies (r2 = 1.0 in 1000 Genomes
phase I European samples [42]) indicates ~2/3 of loci
had a perfectly correlated nonsynonymous SNP (nSNP),
splice site SNP or UTR SNP, although functional inter-
pretation was not always straightforward since there
were multiple SNPs with putative function in some
cases. We queried the SNPs in Table 2 against ENCODE
regulatory features using RegulomeDB [43]. Most of the
loci in Table 2 displayed one or more strong eQTL dir-
ectly overlapping an ENCODE regulatory features (e.g.,
transcription factor binding site prediction, footprinting
motif, chromatin structure features and/or protein binding
(ChIP-seq feature)) [Additional file 6], suggesting many of
them are likely functional regulatory variants. For example,
rs3768324 was the strongest observed eQTL for NDUFS5
in 8 datasets, overlapped abundant regulatory features
including ChIP-seq peaks such as POL2, SRF, PAX5 and
ELK4, and lay close to the transcription initiation site.

Long-range cis and trans-chromosomal eQTL results
Thirty-seven eGenes had trans-association (>500 kb
from the eGene to the eQTL, or the eQTL on a different
chromosome) in 4 or more datasets (Table 3). The 4 dataset
threshold was selected to reduce the effects of intra-
study sample correlation since most eQTL publications
contain ≤3 tissues from the same individuals. At least



Table 2 Most frequently occurring cis-eGenes across all datasets

eGene Datasets Best eQTL, [#datasets], fxn* Lowest P† CEU MAF GTeX results‡ Most common eQTL, [#datasets], fxn*

CHURC1 43 rs10144942, [1] 1E-322 0.175 Y (9/9) rs7143432, [29], 1.9 kb upstream

PEX6 43 rs2274517, [5], intron 1E-322 0.450 Y (9/9) rs2395943, [26], intron

PPIL3 43 rs10167387, [2], intron 1.87E-292 0.225 Y (9/9) rs7606251, [16], intron

GSTM3 42 rs10735234, [12] 1.10E-156 0.458 Y (9/9) rs11101992, [13]

MRPL43 42 rs2863095, [25] 7.20E-120 0.208 Y (3/9) <best eSNP, [25]

GSTT1 40 rs5760176, [1] 2.6E-317 0.375 Y (9/9) rs4822458, [17]

WDR41 39 rs335628, [6], intron 1E-322 0.158 Y (5/9) rs441102, [27], intron

AMFR 39 rs4924, [11], 3′UTR 9.80E-198 0.467 Y (3/9) rs2440468, [12], intron

ZNF266 39 rs6512121, [14], intron 2.90E-183 0.483 Y (9/9) <best eSNP, [14], intron

HMBOX1 39 rs8180944, [21], intron 1.53E-75 0.275 N (0/9) <best eSNP, [21], intron

DNAJC15 38 rs17553846, [3], intron 6.11E-181 0.233 Y (9/9) rs11617079, [19], nSNP

MTRR 38 rs3776455, [2], intron 2.60E-170 0.375 Y (2/9) rs162036, [19], nSNP

WDR48 38 rs1274958, [3], nSNP 4.50E-142 0.258 Y (2/9) rs12636980, [19], intron

MYOM2 38 rs9314455, [1] 8.40E-127 0.392 Y (6/9) rs12681998, [9], intron

CDK5RAP2 37 rs3780674, [10], introna 2.10E-172 0.092 N (0/9) rs10125592, [18], introna

ABHD12 37 rs2482911, [9], intronb 1.16E-104 0.417 Y (4/9) <best eSNP, [9], intronb

RABEP1 37 rs11078559, [14], intron 4.01E-103 0.417 Y (4/9) <best eSNP, [14], intron

NUDT2 36 rs10972063, [2], splice site 3.69E-182 0.108 Y (9/9) rs10971957, [13]

ACP6 36 rs12119079, [12], intron 1.76E-84 0.325 Y (7/9) <best eSNP, [12], intron

ARNT 36 rs11204726, [9] 2.80E-64 0.375 Y (3/9) rs7412746, [13]

AKAP10 35 rs203462, [6], nSNPc 1.70E-132 0.408 Y (2/9) rs397969, [8], 3.5 kb downstreamc

TPCN2 35 rs4930265, [3], 3UTRd 5.50E-127 0.275 Y (3/9) rs3750965, [16], nSNPd

TRAPPC4 35 rs11006, [11], 3UTR 1.10E-123 0.275 Y (9/9) rs4938621, [16], intron

ITGB3BP 35 rs6697508, [15], intron 1.27E-114 0.283 Y (9/9) <best eSNP, [15], intron

QRSL1 35 rs3101493, [22], 3UTR 7.90E-109 0.425 Y (8/9) <best eSNP, [22], 3′UTR

CAMKK2 35 rs11065504, [7], intron 2.40E-107 0.300 Y (4/9) rs3794207, [24], intron

NDUFS5 35 rs3768324, [8], intron 5.28E-48 0.375 Y (8/9) rs10888650, [16]

TIMM10 34 rs2649667, [1], intron 5E-324 0.233 Y (8/9) rs2848630, [18]

STAT6 34 rs324019, [4], intron 6.87E-198 0.392 Y (1/9) rs841718, [24], intron

CARD8 34 rs1062808, [25], 3UTR 9.80E-198 0.292 Y (3/9) <best eSNP, [25], 3′UTR

NQO2 34 rs1028612, [1] 6.12E-156 0.225 Y (9/9) rs2071002, [16], nSNP

THEM4 34 rs13320, [25], 3UTRe 2.60E-93 0.383 Y (3/9) <best eSNP, [25], 3′UTRe

IRF5 33 rs2172876, [1], intronf 1E-322 0.383 Y (3/9) rs6965542, [12], intronf

*fxn = functional annotation of SNP; if no function is listed the SNP is intergenic. †lowest eSNP p-value across all datasets where an eGene was reported. Results
from the GRASP GWAS database for SNPs or those in perfect LD (r2 = 1): abone mineral density (P < 7E-7), balkaline phosphatase (P < 7E-10), cplatelet count
(P < 2E-9), dhair color (P < 3E-11), emelanoma (P < 9E-11), fanti-dsDNA in systemic lupus erythematosus (P < 2E-6). ‡GTeX (Genotype Tissue Expression Resource)
results were queried for 9 tissues on August 6, 2013. Tissues queried included: adipose (subcutaneous), artery (tibial), blood, heart (left ventricle), lung, muscle
(skeletal), nerve (tibial), skin (sun exposed), and thyroid.
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half of the 37 trans eGenes appeared to be long-range
cis associations (>500 kb), and several appeared to be
possible misinterpretations due to genes that map to
multiple genomic locations. Among eGenes/eQTLs on
different chromosomes, there were several known and
replicated trans-eQTL loci, e.g., MHC class II region
on chr6 [20], the MAPT region on chr17 [44,45], and
the BCL11A/HBG beta-globin interaction [20,46]. A single
chr12 SNP, rs10876864, exhibited strong trans associations
with 9 targets on 9 different chromosomes, in 4 distinct tis-
sues: liver, omental adipose, blood cells and prefrontal cor-
tex. The same variant also showed strong cis associations
with RPS26, and to a lesser degree, SUOX [Additional file 7],
and was associated with vitiligo [47]. Notably, this vari-
ant is in high LD with rs11171739 (r2 = 0.86 in CEU)
previously implicated in blood cell cis association with
RPS26 and SUOX and trans association with several
targets, as well GWAS associations for Type I diabetes



Table 3 trans-eQTLs (>500 kb) observed in 4 or more datasets

Chr Pos (Mb) Nearby gene(s) [#datasets], fxn* trans eQTL(s)† eGene targets‡ eGene
(distances)

1 143 NBPF ncRNAs [12], intron rs10907360 Many targets 0.65-3.6 Mb

1 201 PPP1R12B [4], nSNP, splice sitea rs3881953,rs12734338,rs12743401 Many targets other chr.

2 60 BCL11A [4], intronb rs766432 HBG1 [4], HBG2 [3] other chr.

3 100 CPOX [4] rs1461161,rs1675511 DCAF12L1 [4] other chr.

3 40 ENTPD3 [5], intron rs2371185 Many targets other chr.

3 40 ENTPD3, EIF1B [4] rs2123999,rs11717036 Many targets other chr.

3 40 ENTPD3, RPL14 [4],3′UTR, intron rs9848083,rs4973898,rs11539046 Many targets other chr.

3 42 ULK4 [9], nSNPc rs1052501,rs10212536,rs3934103 CTNNB1 [9] 0.55-0.7 Mb

5 0.3 SDHA [4], intron rs6869925,rs6878087 SDHAP3 [4], KRT6B [1] other chr + cis

5 2 SDHAP3 [4], intron, near TSS rs7734561 CEP72 [1], PDCD6 [3] 0.94-1.3 Mb

6 164 PACRG [9], 3′UTR rs9306 PARK2 [9] 0.58 Mb

6 31 MHC locus [6]d rs6457374,rs2247056 Many targets other chr + cis

6 31 MHC locus [4]d rs2074488 Many targets other chr + cis

6 33 MHC locus [7]d rs2395185,rs9268853,rs9268858, +1 other Many targets other chr.

7 74 GTF2I [4], intron rs13238568 GTF2IP1 [4] 0.52 Mb

10 48 ZNF488 [4] rs4342964 ANXA8L2 [3], RP11-144G6.7 [1] 0.71-0.95 Mb

11 0.8 RPLP2 [4], intron rs10902222 LRFN1 [3], HCN2 [1], FAM72B [1] other chr.

11 55 TRIM48 [6] rs10792252 SPRYD5 [6] 0.78 Mb

12 55 SUOX, IKZF4 [5]e rs10876864 Many targets other chr.

16 68 NFAT5 [4], intron rs1064825 AARS [4] 0.56 Mb

17 34 MRPL45 [4] rs4329955,rs4514720 TBC1D3B/C/G [4] 1.8-2.2 Mb

17 40 ENSG00000214447,CCDC103 [4], 5′UTR rs2277616 ITGA2B [4] 0.51 Mb

17 41 MAPT [11], intronf rs17651507,rs3785885,rs8079215 ARL17A [5], ARL17P1 [6],
LRRC37A2 [5]

0.52-0.57 Mb

17 41 CRHR1 [7], intron rs12150547,rs2696425,rs418891, +46 others Many targets other chr.

17 41 MAPT [7], intron rs1864325,rs17762165,rs17688922, +62 others Many targets other chr.

17 42 MAPT,NSF [7], synonymous, intron rs199535,rs169201,rs199448, +2 others Many targets other chr.

17 42 MAPT,KIAA1267 [4], intron rs2532332,rs17659881,rs17660065, +6 others Many targets other chr.

17 42 MAPT,KIAA1267 [4], intron rs17660595,rs17563986,rs17649553, +53 others Many targets other chr.

19 22 BC033373, ZNF99, ZNF486 + 6
other ZNFs [4], UTR

rs3817397,rs8112960,rs7254018 ZNF595 [4], ZNF479 [2], ZNF679
[2], ZNF486 [1], ZNF99 [1]

other chr.

22 20 PI4KA, CRKL [4], intron rs178058,rs5761386,rs4822700 PI4KAP2 [3], POM121L10P [1] 0.63-3.8 Mb

*Representative nearby genes are given. Number of datasets with ≥1 target eGene originating from this trans-eQTL locus are given in brackets. Functional
annotation of trans eSNPs are given. †trans eSNPs were grouped within blocks of perfect linkage disequilibrium (r2 = 1). ‡Where there were limited targets the
target eGenes are given with the number of datasets for each in brackets. For all loci including those with Many targets more detailed association information is
found in Additional file 8. Results from the GRASP GWAS database for SNPs or those in perfect LD (r2 = 1): aasthma (P < 2E-6), bfetal hemoglobin (P < 2E-20),
beta-thalassemia severity (P < 1E-10), cblood pressure (P < 2E-7), multiple myeloma (P < 8E-9), dmany pleiotropic associations, etype I diabetes (P < 2E-16), alopecia
areata (P < 9E-8), adult asthma (P < 3E-6), fprogressive supranuclear palsy (P < 2E-120), Parkinson’s disease (P < 2E-16), primary biliary cirrhosis (P < 6E-6).
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[20,48]. Of the two variants, rs10876864 had strong cis and
trans associations in a broader range of tissues, and aligned
with histone signatures and >25 ChIP-seq binding signals
[Additional file 6]. Additionally, rs10876864 is in perfect LD
(r2 = 1 in CEU) with rs1131017, a SNP absent from all com-
mercial genotyping arrays which is positioned near the tran-
scription start site of RPS26. Many of the SNPs or proxies in
Table 3 also overlapped with ENCODE regulatory features
based on RegulomeDB queries [Additional file 6].
Our cross-dataset analysis also highlighted some inter-
esting potential new trans signals. Target transcripts and
tissue associations are fully described in [Additional file 8].
One set of correlated trans eQTLs on chr19p12 localized
near zinc finger (ZNF) gene ZNF429, and was found within
a large ZNF cluster including many genes. Notably the
correlated eQTLs in this region were specifically asso-
ciated in trans with the expression of zinc finger genes
elsewhere in the genome-wide, including 4p16.3 (ZNF595),
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7p11.2 (ZNF479), 7q11.21 (ZNF679), and within 19p12
(ZNF99, ZNF486). However, BLAT analysis [49] revealed
that the chr4 and chr7 transcripts map with 83.5%-85.1%
identity to the 19p12 region suggesting that gene homology
and probe cross-hybridization could be responsible for the
apparent trans associations. A SNP on chromosome 11,
rs10902222, demonstrated strong cis associations mainly
with PNPLA2 and RPLP2, as well as trans associations with
3 different target regions (LRFN1, HCN2, FAM27B). A
BLATanalysis of the SNP and the associated transcripts did
not show homology indicating this may represent a new
trans-eQTL locus [Additional file 9].
We additionally searched for distant eQTLs in 1 or more

dataset with P < 5E-8 that overlapped long range regulatory
interaction sites via ENCODE chromosome conformation
capture carbon copy (5C) data [50]. Two SNPs had evi-
dence for long-range interactions and eQTL association
at this stringent threshold. Both SNPs were associated with
expression in subcutaneous adipose (rs932562, P < 2.9E-22
for WFDC2 (10.2 Mb away) [9]; rs1045001, P < 1.9E-8 for
RHBDL1 (0.62 Mb away) [19]) [Additional file 10]. How-
ever, the 5C interactions for both SNPs were more localized
(up to 150 kb and 450 kb, respectively) than the eQTL as-
sociations (10.2 Mb and 6.6 Mb away) [Additional file 10].
Both variants also exhibit more localized, strong cis associa-
tions in other tissue datasets. This suggests medium-range
regulatory effects of these variants, possibly corresponding
to features identified by 5C, may in turn further influence
longer range gene regulation megabases away.

Significance of eQTLs relative to distance from eGenes
Strength of eQTL signal correlated with the distance of
the eQTL from its associated eGene boundary. Among
62,872 unique strongest cis- or trans-eQTLs, the majority
of identified eQTL (89%) were located within cis-regions
(cis-acting SNPs) (Figure 3), consistent with past reports
[2]. There was a sharp drop in eQTL significance, as
measured by P-values, near gene boundaries (median
dataset kurtosis = 11) both up and downstream of eGene
coding regions (Figure 4A), indicating eQTLs closer to
their associated transcripts have higher significance. In-
dividual dataset distributions split by 24 brain-related
datasets, 14 blood, 5 liver, 3 fat and 7 other tissue data-
sets are shown in [Additional file 11]. Distributions of
individual datasets were consistently kurtotic with only
slight bias to the 5′ direction (median skewness = −0.032,
mean SNP distance from gene = −1,356 bp). Results fo-
cused around 5′ transcription start site regions alone
showed a strong central tendency within ±5 kb, with
slight preference toward location in the downstream
Exon 1 or 5′UTR direction (Figure 4B).
A minority of SNPs > 500 kb away from their associated

eGenes were highly significant (0.5%, P < 1 × 10−50, 13.4%
with P < 5e-8) (Figure 4A). Nonetheless, there were 7,075
significant eQTLs that are >500 kb distant from their as-
sociated eGene. The relative proportions of SNPs mapping
within genes they are associated with, cis (1 bp-500 kb),
trans (same chromosome >500 kb) and trans (different
chromosome) is shown in Figure 3. Comparison across
major tissue groups indicated an enrichment of trans
(different chromosome) results in brain eQTLs relative to
other tissue types (e.g., P < 0.002 relative to blood eQTLs).

Enrichment of eQTLs within regulatory, selection and
chromosomal features
To understand the spectrum of potential cis and trans-
acting regulatory mechanisms across the human genome,
we examined functional mapping of eQTLs to regulatory
features from a variety of sources. A total of 62,872 unique
best eQTLs were aligned against 22 regulatory feature
datasets. Binomial tests indicated that these unique best
eQTLs are localized within several regulatory features in
the genome more than expected by chance (P < 0.01 for
14 out of a total of 22 regulatory features) shown in
Table 4. Many of these features tend to co-localize closely
to coding gene regions so overlaps may be expected
based on the gene-centric tendency of eQTLs to associated
eGenes. After adjustment for a variety of features, cis-
eQTLs were most abundant (in order) on chromosomes
22, 21, 6, 20, 10 and 19, and least abundant (in order)
on chromosomes Y, X, 7 and 3 [Additional file 12].

Housekeeping genes are more often eQTLs
When a gene is expressed in multiple tissues or cells at
relatively constant levels, regulatory control may be
common across the tissues. To investigate the relationship
between housekeeping and non-housekeeping eGenes
we categorized them based on a previous analysis of
publicly available expression data in 18 human tissues
[51]. Out of 19,038 unique eGenes in our study, 2,207
were defined as housekeeping genes and 16,831 as
non-housekeeping genes. A density plot of housekeep-
ing eGenes showed they are more overrepresented in
the right tail of distribution than non-housekeeping
eGenes (Figure 5, P < 1.12 × 10−11, Student’s t-test).

Expression QTL concordance with GWAS peak signals
Expression QTLs from the current study were compared
against the NHGRI GWAS catalog. Since many eQTL
studies did not conduct imputation we also assessed the
overlap with LD perfect proxies for the GWAS catalog
SNPs (r2 = 1) [42]. Among 8,845 unique GWAS SNPs,
926 were directly found among 62,872 unique best
eQTLs (~10.5% overlap) [Additional file 13]. For these
926 common SNPs, there was significant positive correl-
ation in strength of signal (assessed by P-values) between
reported eQTL and trait GWAS associations (Spearman’s
P = 2.75 × 10−26, [Additional file 14]. When LD partners



(<500kb)

Figure 3 eQTL-eGene distance distributions relative to datasets and tissue group. Common SNP and transcript annotations were used to
re-annotate all datasets and eQTL location categorized as: in the eGene, cis (≤500 kb from eGene), trans (>500 kb but on the same chromosome),
trans.diff.chr (eQTL and eGene map to different chromosomes).
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(r2 = 1) are incorporated ~22% of GWAS catalog signals
corresponded to a best eQTL association in our database.
The NHGRI catalog was limited to selected top results,
thus we further compared both eQTL and nSNP distribu-
tions within the test distributions of 45 full GWA trait
scans for a variety of human disease, dichotomous and
quantitative traits. For most GWA scans (n = 38/45)
we found significant enrichment of eQTL SNPs among
significant GWA results across the full test statistic
distributions [Additional file 15]. Non-synonymous SNPs
showed less enrichment (n = 13) and were significantly
depleted in some scans (n = 2). This pattern persisted
at the significant tail of the distribution (limiting to
GWAS P < 1E-2) where 25 of 45 GWA were enriched
for eQTL SNPs whereas only 3 GWA showed enrich-
ment for nSNPs and 11 indicated depletion of nSNPs
among significant results.

Novel plaque and kidney eQTLs linked to GWAS results
To our knowledge, the plaque and kidney eQTLs in this
study are the first reports for these tissues. We queried
eQTLs from these tissues against non-anthropomorphic



A

B

Figure 4 Significance of eQTLs relative to distance from eGene
boundaries. A: 116,563 best eQTLs per eGene per dataset are
shown across all 53 eQTL datasets. eQTLs located in their eGenes are
plotted at 0 on the x-axis, otherwise the x-axis indicates distance of
each eQTL to its eGene (from 5′: −1 Mb to 3′: +1 Mb). Not shown
are 393 eQTLs with P < 1 × 10−150 which also display a highly central
tendency. B: A histogram of the number of eQTLs per kb of distance
from the 5′ transcription start sites (TSS) of eGenes.
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GWAS results in the GRASP database. Results are re-
ported for kidney in [Additional file 16] and peripheral
artery plaque in [Additional file 17]. Serum creatinine
and creatinine estimated glomerular filtration rate are
associated with rs835223 [52], which is also associated
with DAB2 expression levels in kidney here (P < 1.4E-5).
Antibodies in systemic lupus erythematosus (SLE) accu-
mulate in tissues including the glomeruli of kidney. SNP
rs7808907 is associated with IRF5 expression levels in kid-
ney (P < 3.9E-13) and was previously associated anti-double
stranded DNA autoantibody status in SLE [53].
SNP rs2133189 was previously linked to coronary artery

disease (CAD) susceptibility [54] and is strongly linked
here to peripheral artery plaque expression levels of AIDA
(P < 2.1E-20). Other peripheral plaque eQTLs for SNPs
previously linked to CAD or myocardial infarction include
BTN3A1 (rs6929846 eQTL P < 2.8E-07, myocardial in-
farction P < 3.5E-24 [55]), ZNF344 (rs4803750 eQTL
P < 3.8E-05, atherogenic dyslipidemia P < 1.3E-33 [56]),
NBEAL1 (rs6725887 eQTL P < 2.7E-06, CAD P < 1.1E-09
[57]), ENST00000318084 (rs10764881 eQTL P < 2.7E-05,
CAD P < 1.4E-09 [58]).

Discussion
In this study, we systematically characterized and anno-
tated eQTL results from 53 genome-wide gene expres-
sion GWAS datasets. Overall 19,038 genes had at least
one eQTL significantly associated with their expression.
Even if a substantial proportion of these represent false
discoveries, a large proportion of human genes seem to
have common genetic influences on their expression
level, consistent with prior surveys using sensitive allelic
specific expression methods [6,59]. Given that few studies
have explicitly assessed genome-wide genetic effects on
splicing and alternate isoforms in human tissues there
likely remain many additional genetic effects on expres-
sion to be discovered. Regional cis-eQTLs predominate
genome-wide over trans-eQTLs, though limitations in
statistical and computational power have hampered trans-
eQTL discovery and validation.
We identified many cis and several trans-eQTLs that

have evidence for consistent association across more than
one study or tissue. These human master cis- and trans-
eQTLs may serve as potential positive controls in future
studies and may reveal important aspects of regulatory in-
teractions and human biology and evolution. Furthermore,
future researchers searching for and claiming tissue-specific
eQTLs could screen their results against the results we col-
lated and deposited in the GRASP database to ensure there
is no prior evidence in other tissues. The strong effects
and common allele frequencies of these variants may also
make them useful in sample forensics in expression-based
research [60].
Ubiquitous cis-eQTLs were enriched for housekeeping

genes consistent with a prior study [61] and for several
biological categories including antigen presentation, mito-
chondrial function and S-glutathione transferase activity.
We speculate these strong cis-eQTLs of common allele
frequency could represent beneficial alleles arisen in
human evolution that may enhance immune function,
mitochondrial function and xenobiotic metabolism.
Glutathione S-transferases are responsible for detoxification



Table 4 eQTLs compared to human genome regulatory features.

Genome regulatory track Nucleotides
per track

Probability* Expected
overlaps

Observed
overlaps

Obs:Exp P-value

ORegAnno 11,265,267 0.00366 230 744 3.24 1.73E-159

Functional RNAs 107,202 3.48E-05 2.19 7 3.2 0.00725

Gm12892V2.narrowPeak 80,820,229 0.0262 1,650 4,610 2.79 <1E-308

Gm12891V2.narrowPeak 84,650,075 0.0275 1,730 4,680 2.71 <1E-308

ENCODE H3k4me3 120,458,965 0.0391 2,460 6,500 2.64 <1E-308

Gm12878V3.narrowPeak 43,937,796 0.0143 897 2,260 2.52 <1E-308

ENCODE H3k27ac 125,879,335 0.0409 2,570 6,540 2.55 <1E-308

ENCODE H3k4me1 242,340,600 0.0787 4,950 11,300 2.28 <1E-308

Patrocles (miRNA database) 3,375,454 0.0011 68.9 153 2.22 1.78E-18

ENCODE H3k36me3 631,024,019 0.205 12,900 28,200 2.19 <1E-308

ENCODE CTCF 44,516,245 0.0145 909 1,900 2.1 1.97E-185

ENCODE 5C interactions† 10,484,463 0.34 214 510 2.38 8.80E-130

CpG islands 21,575,631 0.007 440 817 1.86 1.84E-58

Conserved TFBS 1,602,974 0.00052 32.7 54 1.65 4.00E-04

miRbase (v.13) 63,451 2.06E-05 1.3 2 1.54 0.371

TargetScan 354,030 0.000115 7.23 11 1.52 0.115

ENCODE H3k27me3 1,136,357,520 0.369 23,200 24,700 1.07 1.02E-37

Vista Enhancers 1,052,004 0.000342 21.5 16 0.745 0.906

lincRNAs 127,119,148 0.04 2,595 1,541 0.59 1

IHS sites (Z-score > 3) 2,275,923 0.000739 46.5 24 0.52 1

FST sites (Z-score > 3) 4,088,207 0.00133 83.4 41 0.49 1

PolymiRTS predicted miRNA binding sites 11,265,267 0.00366 230 1 0.00435 1

*Probabilities determined based on the fraction of the human genome covered by the feature track (human genome length = 3,080,436,451) and the total
unique eSNP positions (n = 62,872). P-values are for binomial tests for enrichment of observed over expected. All ENCODE feature tracks are for lymphoblastoid
cell lines and all are for sample GM12878 except where indicated. †ENCODE 5C long range interactions targeted ~1% of the genome this coverage and expectations
were derived based on this proportion, and 1% of the unique eSNP positions. TFBS = transcription factor binding sites. miRNA =microRNA. lincRNA= long, intergenic
non-coding RNA. IHS = integrated haplotype score. FST = Fixation index.
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of many compounds and five such transcripts were
found among strong cis-eQTLs (1p13.3: GSTM1, GSTM3,
GSTM4, 22q11.23: GSTT1, 10q25.1: GSTO2). GSTM1 and
GSTT1 have previously been reported to be subject to copy
number variation influencing gene expression [62,63].
Results integrated across studies here reveal other members
of the glutathione are subject to strong genetic regulation.
Mitochondrial-associated transcripts were significantly
enriched making up 12.1% of the cis-eGenes present in ≥25
datasets. These include genes that encode mitochondrial
proteins involved in the electron transport chain and ATP
synthesis (NDUFS5, COX7A2L, ATP5S), membrane
functions (AKAP10, FECH, SURF1, TIMM10), transport
(SLC25A16), and mitochondrial protein synthesis (MRPL19,
MRPL21, MRPL43). While overall eQTL results were not
enriched for overlap with selection features as defined by
integrated haplotype scores or fixation index (FST), several
of the master eQTL regions correspond with regions identi-
fied as containing human lineage-specific events [64]. These
include CDK5RAP2 which appears to be under positive
selection and may be involved in increased human brain
size [65,66], and the SRGAP2 and NBPF gene cluster on
chromosome 1 which demonstrates human lineage copy
number increases and is suspected to play a role in in-
creased neuronal branching in development [67-69].
We examined positional effects of eQTLs with respect

to associated transcripts, regulatory features and across
chromosomes. The strongest eQTLs cluster around their
associated gene transcript regions, a pattern that appears
universal across tissues and datasets, and is consistent
with prior reports considering smaller numbers of tissues
(e.g., [17]). A variety of regulatory features overlap eQTLs
more than expected by chance, as others have also re-
ported [70,71]. This is partially expected given gene
co-centricity of these features and eQTLs. Features
that lacked significant enrichment among eQTLs in-
cluded microRNA coding regions and targets, human
enhancer regions and non-coding RNAs. Thus, these
features may account for a smaller proportion of func-
tional genetic regulation of gene expression. This may
be a property of more distant location from coding
genes (i.e., enhancers, non-coding RNAs) but could



Figure 5 Housekeeping genes are over-represented among eGenes
common to many tissue datasets. A density plot of eGenes that are
housekeeping versus non-housekeeping genes (as defined by [51]) across
datasets. The eGene distributions differ significantly (P < 1.12 × 10−11).
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also suggest less tolerance of functional variation in
these features. Analysis across chromosomes reveals
that chromosomes 21 and 22, in particular, display higher
rates of cis-eQTLs after adjusting for a number of factors
including gene number, coding length and number of vari-
ants. Notably, chromosomes 21 and 22 have been subject
to major shifts in primate and human evolution [72].
Unlike the abundant cis-eQTLs, there appear to be

few trans-eQTL hotspots across the genome. Many studies
have chosen not to calculate long range cis- or trans-eQTL
effects. Furthermore, given the large multiple testing
burden discriminating true positives from false positives
is challenging, particularly with limited statistical power,
and if replication is not attempted. Homologous transcript
mapping and cross-hybridization artifacts may also con-
found trans-eQTL discovery in some cases. Nonetheless, a
few trans-acting regions have emerged with consistent
evidence across a number of studies, including the HLA
region (6p21.32), ARHGEF3 (3p14.3), the MAPT region
(17q21.31), HBG (11p15.4), SUOX-IKZF4-RPS26 (12q13.2),
and now RPLP2-PNPLA2 (11p15.5). Most of these regions
have been implicated by human disease GWAS. Combining
data across studies and tissues may help resolve mecha-
nisms, key targets, and the extent of targeted expression
networks. For example, our study suggests that RPS26-asso-
ciated variants may be the key trans regulators at 12q13.2.
Data from subcutaneous adipose included in the current
study suggest rs4731702 near KLF14 (7q32.3) is associ-
ated in trans with SLC7A10 expression, which supports
SLC7A10 as an important trans adipose target associated
with metabolic traits as previously suggested [73]. Greater
sample sizes may be needed to find and validate more
trans-eQTLs, or the application of other approaches such
as analysis of co-expressed modules [48], multi-species
studies or addition of functional screens.
Prior studies suggested enrichment of eQTLs among

some full GWAS scans and among topmost significant
results. Here we examined a greater number of tissue
eQTLs and GWAS results. Among 45 full human
GWAS scans of disease and non-disease traits, we ob-
serve a consistent pattern whereby there is enrichment
of eQTLs above and beyond nonsynonymous SNPs,
and across the significant tail of the statistical distributions.
This suggests that eQTLs contribute to the multi-genic
nature of many complex human traits and may account
for a greater proportion of variance than protein-coding
variation [74]. In an analysis focused on strongest GWAS
results from the NHGRI catalog we observe significant
correlation between the strength of signal for GWAS and
expression traits. Concordant strongest GWAS and eQTL
SNPs establish a conservative floor indicating ~10% of
GWAS phenotype signals are likely directly attributable to
genetic regulation of expression. The true proportion of
functional regulatory variants is likely much higher given
functional alleles in LD, and incomplete coverage in
the available eQTL results for variants and human
populations, alternative splicing, non-coding RNAs,
and tissue-specific expression. Overall these results
imply that eQTLs will remain a critical component in
interpreting genetic associations and prioritizing rep-
lication candidates for a variety of traits.
The addition of new tissue eQTLs may continue to

suggest new mechanisms or reinforce prior hypotheses
for functional variants. Here we report the first human
kidney and plaque eQTLs. Kidney eQTLs corresponded
with several prior kidney-related GWAS findings. Several
findings of peripheral plaque eQTLs were for variants
previously associated in GWAS of coronary artery dis-
ease or myocardial infarction. Notably, a prior study
reported rs6929846 to be associated with myocardial
infarction in a Japanese GWAS sample and replicated the
finding in a subsequent Japanese sample [55]. Yamada et al.
also provided evidence for rs6929846 transcriptional effects
on BTN2A1 expression, and immunohistological positivity
for BTN2A1 in human myocardial infarction lesions,
and coronary endothelium, arterioles and capillaries [55].
Our study links the same SNP to expression levels of
nearby BTN3A1 in peripheral artery plaque (P < 2.8E-7).
This locus contains 6 butyrophilin genes and 1 butyrophilin
pseudogene. The combination of these results suggests
butyrophilin genes may play roles in coronary artery disease
pathogenesis, possibly through roles in antigen presentation
and Tcell stimulation [75].
Beyond limitations in the analysis of trans-eQTLs this

study has several significant limitations. The full gene
expression-SNP datasets are generally unavailable, so the
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current catalog is limited by significant results available
from individual studies, and probe annotations are often
missing limiting precise localization and assessment of
potential probe artifacts. The specific studies are biased
mainly toward more readily available tissues, including
blood, B-lymphoblastoid cell lines and brain autopsy tis-
sues. Studies were further biased by their non-uniform
transcript and genetic content and statistical power. Overall
these limitations suggest the current database would most
likely be prone to false negatives, thus lack of association at
a specific locus cannot be viewed as definitive.
The decrease in the cost of genome-wide genotyping,

sequencing and expression profiling means that larger
sample sizes are increasingly feasible for eQTL studies.
Applying RNA sequencing to eQTL studies may increase
discoveries particularly with regard to genetically regulated
alternative splicing [3,4]. While still in early stages, the
study of additional RNA types such as long non-coding
RNAs [76] and micro RNAs and their targets [77,78]
and corresponding tissue-specific QTLs is leading to new
insights. Deeper profiling of eQTLs via dense imputation
with a modern 1000 Genomes based genetic map should
increase eQTLs and improve fine mapping as recently
demonstrated [79]. Profiling a greater proportion of hu-
man tissues as undertaken by the GTex project should
further aid in defining tissue-specific eQTLs [80]. These
are important goals since eQTLs seem to account for a
significant proportion of human phenotypic and disease
variability. Many areas require further study at the
population level including detailed probing of extensive
tissue and cell types, and ascertainment of QTLs related
to splicing [4,24], RNA decay mechanisms [81], non-coding
RNA [76,82], and epigenetic mechanisms such as methyla-
tion [28,83-85]. A deeper understanding of RNA-driven
QTLs, whether cis or trans, tissue-specific or ubiquitous,
coding or non-coding, splicing-, decay- or epigenetic-
related may be critical to the interpretation of human
phenotypic variability, in order to further disease risk
prediction, understand causal mechanisms, and enable
targeted therapies.

Conclusions
Expression QTLs inform the interpretation of human
trait variability, and may account for a greater fraction of
phenotypic variability than protein-coding variants. Our
analysis of >50 eQTL datasets, in a more extensive set of
tissues than previously characterized, highlights the gene
centricity of eQTLs and their overlap with regulatory
features, as well as their strong enrichment in significant
GWAS results for a wide variety of traits. Novel trans-
eQTLs are suggested by our study but overall their iden-
tification remains challenging. Using new eQTL data
from kidney and peripheral plaque we note intersections
with GWAS for renal and arterial disease associations
which may suggest causal genes or functional mecha-
nisms. This large-scale synthesis of available tissue eQTL
data identifies many strong and relatively ubiquitous
cis-eQTLs that could serve as positive controls in future
studies. Our results also suggest some of these common
and strong tissue-ubiquitous eQTLs may have adaptive
origins in humans. Efforts to expand the genetic, splicing
and tissue coverage of known eQTLs will provide further
insights into human gene regulation.

Methods
Ethics statement
Approvals for published eQTL studies are described
in their original publications. New eQTL samples
(kidney, peripheral artery plaque) described in conjunc-
tion with this study were collected with written informed
consent and under institutional approvals. For the kidney
eQTL study ethical approval for the study was obtained
from the Stanford University Institutional Review Board
(IRB protocol 3941). That study was conducted according
to the principles expressed in the Declaration of Helsinki.
Multi-institutional approvals for the collection of periph-
eral artery plaque tissue were previously described [86].

Selection and collection of eQTL datasets
Many eQTL studies have been published in human and
non-human species across a broad range of tissue and
cell types. Early eQTL studies focused on the heritability
and genetic basis of gene expression including several
studies on lymphoblastoid cell lines used in the HapMap
project. Several studies evaluated genetic variants related
to drug response in cell lines. We focused our studies
primarily on minimally altered human cells and tissues.
Only one of the largest analyses of HapMap LCL sam-
ples was included here [27], and drug response, methy-
lation, miRNA and non-human eQTL studies were
excluded. Several published eQTL studies were not in-
cluded since authors disclosed few results. Included
studies, their citations and parameters are described in
Table 1 and [Additional file 1]. The predominant tissue
datasets are brain (n = 24 studies) and blood (n = 14),
with other tissues including liver, adipose depots, kidney,
skin, stomach and peripheral artery plaque. Previously
unpublished data on kidney and peripheral artery plaque
eQTLs are described in [Additional file 18]. Some previ-
ously published results were more extensively shared for
the current analysis including liver, adipose and stomach
[9], and lymphocytes [21].

Unifying eQTL and eGene annotations into a
cross-dataset database
The workflow of the complete analysis is delineated in
[Additional file 19]. We define genes whose expression
levels are significantly associated with SNPs as eGenes.
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The term does not explicitly imply a specific transcript
isoform since this information is often indeterminable
with available data, but is likely to reflect expression
variation in dominant gene isoforms. We refer to SNPs
associated significantly in combination with an eGene as
eQTLs (expression QTL SNPs). After we removed dupli-
cate entries in some datasets, we used custom programs
to map remaining identifiers either directly to unique
NCBI Entrez Gene IDs, or via alias identifiers for heteroge-
neous gene names, in order to create a harmonized eGene
dataset for further analysis. Only the strongest eQTL was
kept for each eGene in each study in most subsequent
analyses. Unified genomic locations (see Method below)
for each eGene and eQTL in hg18/b36 reference were used
to recalculate eQTL-eGene distances and direction (5′/- or
3′/+), and this dataset was used for subsequent analysis.

Filtering of low quality SNPs and unification of SNP
genomic coordinates
Studies either reported no SNP coordinates, or reported
them in hg18 or hg19 frameworks. We mapped all of
the SNP rsIDs reported in 53 datasets to dbSNP130 and
used dbSNP reference genome mappings to obtain uni-
form genomic position for SNPs in hg18/Build 36.3. We
removed SNPs which mapped to >1 location, or to the
pseudo-autosomal region. For SNPs not initially mapped
by this approach we checked for alias SNP identifiers to
link to dbSNP130, and used the alias IDs when available
to complete mapping. In this manner the majority of
eQTLs were mapped to a single genomic position with
high confidence.
Genomic locations for each gene boundary were retrieved

from NCBI RefSeq 56 (GRCh36.3 assembly) using hg18/
b36 reference. If multiple transcripts/isoforms are tran-
scribed from the same genomic locus/gene region the max-
imal union of boundaries was used. Data were retrieved
using the biomaRt package [87], available through the
Bioconductor repository [88]. eQTLs ≤ 500 kb from asso-
ciated eGenes were defined as cis. Those eQTLs > 500 kb
were defined as trans, and further segmented into those
being trans on the same or different chromosomes.

Summary of eGenes and eQTLs mapped to
different categories
In total 419,796 eQTLs were reported from the 53 eQTL
datasets. Among them, 359,268 eQTLs and their associated
eGenes were mapped to RefSeq gene symbols or gene
aliases, indicating both eQTL and eGene genomic positions
in the RefSeq database. We selected the strongest eQTL
per eGene per unique dataset yielding 116,563 best eQTLs
(106,083 cis and 10,480 trans with the 500 kb threshold).
Among these, there were 62,872 unique SNP identifiers
that were the best eQTL in 1 or more dataset, for a total of
19,038 mapped eGenes.
Unsupervised hierarchical clustering
Unsupervised hierarchical clustering was used to assess
patterns of regulatory variants across different tissues
and cell types. Initially a 19,038 × 53 data matrix was
constructed. Given the sparse nature of the matrix
(most eGenes are unique to 1 study), we generated clusters
based on eGenes present in higher proportions of studies
(n = 15-53). The heatmap function in R 2.11 was used to do
clustering with the Disfun parameter set to binary.

Comparison of eQTLs to NHGRI GWAS catalog
The NHGRI GWAS catalog (March-22-2013) was down-
loaded [89]. Expression SNPs strongly associated with the
gene expression traits were cross-referenced with SNPs in
the GWAS catalog. Two sets of eQTLs were compared
(160,580 unique eQTLs and 62,872 unique best eQTLs)
against two sets of SNPs derived from the GWAS catalog
(8,845 unique SNPs and 40,573 unique SNPs plus those in
tight LD (r^2 = 1 in CEU based on SNAP [42] queries))
yielding four pair-wise comparisons.

Enrichment of eQTLs over protein-coding SNPs in full
GWA trait scans
Full GWA trait scan statistics (n = 45 scans) were identified
as part of the NHLBI GRASP database [38] and down-
loaded. Genomic lambda values were calculated relative
to the null expectation for the full GWA distributions
[90]. Likewise, lambda values were calculated within
each GWAS for expression SNPs from the current study
(n = 62,872 best eSNPs) and nSNPs (based on dbSNP anno-
tation, n = 100,601). Further lambda values were calculated
restricted to those GWAS results with P < 1E-2. The ratios
for enrichment were determined by comparing lambda
values of eQTLs versus non-eQTLs, and nSNPs versus
non-nSNPs. Komologorov-Smirnoff tests were applied to
test differences in the distributions under each criterion.
Individual lead cis-eQTLs and trans-eQTLs were directly
assessed for presence in the GRASP database containing
results from among 1,390 GWAS studies.

Comparison to human genome and regulatory features
We compared only the 62,872 unique best eQTLs to
regulatory tracks. To take into account the different size
of features (base pairs) reported by different tracks, for
each regulatory track, the probability of any random base
overlapping each track was calculated as the number of
unique bases in each track divided by the total bases in
the genome (3,080,436,451). Based on this probability, the
expected number of overlaps between 62,872 single base
position eQTLs and each track was computed. Binominal
tests indicated whether observed overlaps were greater than
expected by chance.
Regulatory tracks (B36 coordinates) were downloaded

from the UCSC Genome Browser [91] or other sites. The



Zhang et al. BMC Genomics 2014, 15:532 Page 15 of 19
http://www.biomedcentral.com/1471-2164/15/532
22 regulatory features include ENCODE histone modi-
fication sites, transcription factor and CTCF insulator
sites in lymphoblastoid cell lines, ORegAnno (Open
Regulatory Annotation) [92], predicted TFBS (UCSC
conserved transcriptional factor binding sites), Vista
Enhancers [93], human selection sites as determined
by FST and IHS (integrated haplotype scores), human
microRNAs (miRbase13) [94], TargetScan (predicted
miRNA targets) [95], Patrocles (experimentally supported
miRNA sites) [96], PolymiRTS (predicted SNP-miRNA
binding sites) [97], UCSC functional RNAs (e.g., tRNA),
UCSC CpG islands, long intergenic non-coding RNAs
[98], and long-range 5C experiments in targeted ENCODE
regions [50]. Specific top cis- and trans-eQTL SNPs were
queried against ENCODE data using RegulomeDB [43].
The unique best cis-eQTLs were analyzed for differential

representation by chromosomes. The total number of
cis-eQTLs for each chromosome was divided by 4
distinct features to produce 4 rankings for enrichment:
1) total chromosome length (GRCh37.p11), 2) number
of CCDS genes (release 11), 3) length of HuRef RNAs,
and 4) number of HuRef variants. The chromosome
rankings by the 4 metrics were averaged to produce an
overall rank for over-representation of cis-eQTLs.
Housekeeping gene analysis
Housekeeping transcripts were defined based on previous
analysis of 18 human tissues [51]. Within our dataset 2,207
eGenes were designated as housekeeping genes and 16,831
as non-housekeeping genes. Frequencies of each eGene
across dataset were calculated for housekeeping and non-
housekeeping genes and compared by Student’s t-test.
Availability of supporting data
The primary data for some of the eQTL studies is available
in public repositories as described in the original reports.
The summary level eQTL results data sets supporting
the results of this article are largely available in the full
download of the NHLBI Genome-wide Repository of
Associations between SNPs and Phenotypes (GRASPdb)
[Build 1.0, http://apps.nhlbi.nih.gov/grasp/] [99].
Additional files

Additional file 1: eQTL dataset origins and descriptions. eQTL
dataset sources and information about sample sizes, total cis and trans
eQTLs and eSNPs, SNP and expression platforms.

Additional file 2: Summary of all eQTLs and eGenes and their
mapping and filtering. Description of filtering steps and number of
eQTLs, eSNPs and eGenes.

Additional file 3: Hierarchical clustering analysis of 248 eGenes
found in ≥ 25/53 datasets used in pathway and ontology analyses.
Clustering diagram of eGenes found in ≥ 25 datasets.
Additional file 4: Pathway and ontology analysis results for 248
most ubiquitous eGenes. Significantly enriched gene categories among
highly repeated eGenes across tissues.

Additional file 5: Full gene names and descriptions for 33 eGene
significant in ≥35 datasets. Full gene names and descriptions for 33
eGene significant in ≥35 datasets.

Additional file 6: Overlap of master-cis and trans-eQTLs with ENCODE
regulatory features. Intersection of master-cis and trans-eQTLs with
ENCODE regulatory features (transcription factor position weight matrices,
DNA footprinting motifs, chromatin structure, protein binding by chIP-seq)
as determined with RegulomeDB queries.

Additional file 7: Trans-eQTL and cis-eQTL associations in chr12q13.2
region. Trans-eQTL and cis-eQTL associations in chr12q13.2 region.

Additional file 8: Trans-eQTL loci results (for loci summarized in
Table 3). Individual trans-eQTL loci results for those loci summarized in
Table 3.

Additional file 9: Putative novel trans-eQTL and results at chr
11p15.5. Putative novel trans-eQTL and results at chr 11p15.5. All cis and
trans results for 11p15.5 are displayed.

Additional file 10: Long range cis eQTLs (P < 5E-8) and their short
and long cis-eQTL associations. Short- and long-range cis-eQTL
associations for chromosome 16 and 20 regions with associations
overlapping ENCODE 5C (chromatin conformation) interactions in
lymphoblastoid cell lines.

Additional file 11: Significance of eSNPs relative to distance from
their associated eGenes for different tissue types. Significance of
eSNPs relative to distance from their associated eGenes for different tissue
types, respectively. PanelA: blood tissues and cell types (n = 14 datasets),
PanelB: brain tissues (n = 24 datasets), PanelC: liver (n = 5 datasets), PanelD:
fat-related (n = 3 datasets), PanelE: other tissues (n = 7 datasets). Y-axis is
scaled to a cutoff at P < 1E-150 obscuring a small proportion of results.

Additional file 12: cis-eQTL representation by chromosome
(relative to length, gene #, RNA #, variation #). Proportion of unique
best cis- and trans-eQTLs by autosomal and sex chromosome. Proportions
after adjustment for chromosome length, number of CCDS genes, total
HuRef human RNA lengths, and number of HuRef variants are displayed,
along with overall mean ranks for most to least cis-eQTLs per chromosomes
across all adjustments.

Additional file 13: Comparison of eQTL results to NHGRI GWAS
catalog SNPs. Comparison of eQTL results (all or best eSNPs and their
perfect proxies in HapMap CEU) to NHGRI GWAS catalog SNPs.

Additional file 14: Correlation between eQTL and GWAS p-values in
the NHGRI GWAS catalog. The correlation in strength of signal
(represented by –log10 P-value) between reported eQTL studies and trait
GWAS associations represented in the NHGRI GWAS catalog.

Additional file 15: Enrichment or depletion of nSNPs (n = 100,601)
and eQTLs (n = 62,872 best) among 45 full trait GWAS scans.
Pubmed identifiers and GWAS traits are given for 45 full GWAS scans whose
results were compared to nSNPs (n = 100,601) and eQTLs (n = 62,872 best
eSNPs). Genomic inflation factors (λ) are given for each trait and nSNPs
and eQTLs for the full scans and at a threshold of P < 1E-2 in the GWAS.
Komogorov-Smirnoff (K-S) test p-values for differences in distributions
are given. Enrichments are highlighted in blue and depletions in grey,
with significant K-S tests in red and non-significant ones in green.

Additional file 16: Kidney eQTLs reported in this study and
association with GWAS traits (P < 5e-8). Kidney eQTLs reported in this
study were queries against the NHLBI GRASP GWAS database for overlaps.
All GWAS intersections are given and GWAS results with particular relevance
to renal function (serum creatinine, SLE and eGFR) are highlighted.

Additional file 17: Peripheral plaque eQTLs reported in this study
and association with GWAS traits (P < 5e-8). Plaque eQTLs reported in
this study were queries against the NHLBI GRASP GWAS database for
overlaps. All GWAS intersections are given and several associations with
coronary artery disease and myocardial infarction are highlighted.

Additional file 18: Supplemental methods description of eQTL
analysis for novel data (kidney, peripheral plaque, HBTRC brain).

http://apps.nhlbi.nih.gov/grasp/
http://www.biomedcentral.com/content/supplementary/1471-2164-15-532-S1.xlsx
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Detailed methods and demographics for new eQTL analyses in included
in this study.

Additional file 19: Flow chart of overall study, data collection and
annotation and analysis. Flow chart of overall study, data collection
and annotation and analysis.
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