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Abstract. We present an algebraic part of our research on quadratic differen-
tial equations in 3- dimensional space, which posses a plane of critical points.
Our goal is to provide a classification, up to an isomorphism, of those algebras
which arise from above mentioned systems via Markus construction.

1. Introduction

It is well known, an even taught at undergraduate courses, that the stability of
non-linear flow ~x′ = ~f (~x) near the critical point ~x0 can often be determined from its
linearization D~f(~x0). There exist however many system of ODEs, used in natural
sciences, where this classical result can not be applied. In a homogeneous quadratic
system ~x′ = K (~x) the origin ~x0 = ~0 is always a critical point, but DK(~0) = 0 and
so the stability of origin in such systems must be studied with new methods.

The first author who realized that the ideas of abstract algebra, ring theory in
particular, can be used to study the solution of quadratic ODEs was Markus [7].
Applications of his ideas to the study of stability started with Kinyon and Sagle [6]
who proved a fundamental Lemma: if a (real) algebra has a nonzero idempotent,
the corresponding system of ODEs has a non-stable origin. Moreover, because of
the result of Kaplan and York [4] who proved that a real algebra contains either a
nonzero idempotent or nonzero nilpotent, it follows that any algebra with a stable
origin must contain at least one nonzero nilpotent n of index 2 and hence the
corresponding system of ODEs has a line of critical point, i.e. Rn.

In two dimensional case this information is sufficient to classify all quadratic
systems with stable origin (see [10] for example) just with a case by case inspection.
Already in dimension 3 just the determination of all equivalence classes of systems
with a line of critical points requires enormous amount of computational work and
is not really feasible. Because of this reason, the study of one step simpler problem,
namely systems with a plane of critical points, was tackled in [10, 11] in order to
see how large percentage of algebras not satisfying the condition of Kinyon-Sagle
Lemma give rise to stable origin. The present paper contains the algebraic analysis
needed in [10,11] but omitted there.
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Our research seems to imply that quadratic systems with stable origin are very
few in number. For this reason we believe that the next step in the research of
stability of quadratic ODEs should be a second ring-theoretic lemma, in the spirit
of Kinyon and Sagle, which would eliminate most algebras (containing nilpotents
elements) in advance. Such result might keep the final case by case ε − δ analysis
to a manageable size that could be handled by a human.

The connection between real algebras and quadratic ODEs, given by Markus
in [7] can be briefly described as follows. Every system of homogeneous quadratic
differential equations in Rn can be written as ~x′ = K (~x), where K : Rn → Rn is a
quadratic form. There exists a unique symmetric bilinear form B : Rn × Rn → Rn

such that K (~x) = B (~x, ~x) for every ~x ∈ Rn.
It is possible to equip Rn with a structure of a (nonassociative in general)

commutative algebra (A, ∗) by defining ~x ∗ ~y = B (~x, ~y). For example a quadratic
system

ẋ = a1x
2 + 2b1xy + c1y

2

ẏ = a2x
2 + 2b2xy + c2y

2 ; ai, bi, ci ∈ R for i = 1, 2

gives rise to the following algebra

∗ e1 e2

e1 a1e1 + a2e2 b1e1 + b2e2

e2 b1e1 + b2e2 c1e1 + c2e2

.

For a full survey of this theory the reader can consult for example [16], [5], [6]
and [12]. Walcher’s monograph [16] is also a standard reference for the state of
art in 1990, with many references to older papers. Let us just mention that for the
homogeneous systems of degree m > 2 one can also apply the Markus construction
but the corresponding algebra is actually a m−ary algebra (see [13], [14] and [16]).

Since K(~0) = ~0, the origin is always a critical point of system ~x′ = K (~x) and
it is one of the most interesting questions to study its stability. The stability in the
sense of Lyapunov roughly means that solutions which start near the origin remain
near the origin for all subsequent times.

Applications of algebra to this problem are based on the following result of
Markus (see [7, Th. 1], [16, p. 20]):

If (A1, ∗) and (A2, ?) are two commutative algebras modelled on Rn and Φ :
A1 → A2 an isomorphism, then Φ maps the solutions of the system ~x′ = ~x ∗ ~x onto
the solutions ~x′ = ~x ? ~x. Since Φ is a bounded linear map this implies that the
qualitative properties, such as the stability of the origin, of both systems are the
same.

This observation is a base for the classification of the systems of quadratic
ODEs with a stable origin within a given class Cdiff. The approach is the following:

(i) Determine the class Calg which corresponds to the class of Cdiff via the
Markus construction.

(ii) Classify the algebras from Calg up to an isomorphism.
(iii) For every isomorphism class in Calg pick the representative with the sim-

plest multiplication table and form some estimates, of the ε − δ type, in order to
show whether the origin is stable or not.

In our previous paper [10] we used the classification results but we did not
provide any proofs, which are presented separately in our present paper.
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In order to identify an algebraic problem, which we are to solve, we denote by
C the class of homogeneous quadratic systems of ODEs in R3 which have a plane
of critical point. The identification of the corresponding algebras, via the Markus
construction, is given in the following result.

Proposition 1. A three dimensional real commutative algebra A corresponds
to some system of quadratic ODEs from the class C if and only if there exists a
basis {N1, N2, E} in which the multiplication table is given by

· N1 N2 E

N1 0 0 aN1 + bN2 + cE
N2 0 0 αN1 + βN2 + γE
E aN1 + bN2 + cE αN1 + βN2 + γE dN1 + eN2 + fE

Table 1.

Proof. From the above table it is obvious that all elements of the form x =
αN1 + βN2 are nilpotents, i.e. x2 = 0. Since we are dealing with the system
ẋ = f(x) = x2, it is obvious that f(αN1 + βN2) = 0 and therefore x is a critical
point.

In order to prove the converse, we note that if N is a critical point, then f(N) =
N2 = 0. If N1 and N2 form a base of a plane of critical points, whose existence
we assumed, then all elements of the form αN1 + βN2 satisfy (αN1 + βN2)2 = 0.
From this it follows easily that N1 ·N1 = N2 ·N2 = N1 ·N2 = N2 ·N1 = 0. ¤

The multiplication table from Proposition 1 appears to be very simple, but it
still has enough room for 44 equivalence classes as we shall see in the sequel.

2. A first classification step

The classification of algebras from Proposition 1 will be carried on in three
steps, because there are three unknown products. At the first step we form classes
I, II, III and IV. At the second step each of them is further subdivided into I.1, I.2
etc. At the final step we use notation I.1.a, I.1.b etc.

In our first step we concentrate on the product N1 · E. We want to change a
basis {N1, N2, E} for a basis {N ′

1, N
′
2, E

′} such that N ′
1 ·N ′

1, N ′
2 ·N ′

2 and N ′
1 ·N ′

2

would still be zero, while N ′
1 · E′ would take a simpler form than N1 · E. Note

again that all our algebras are commutative, thus E′ ·N ′
1 = N ′

1 · E′ automatically.
It is obvious that the most general family of linear transformations preserving the
conditions N1 ·N1 = N1 ·N2 = N2 ·N2 = 0 is defined by

N ′
1 = AN1 + BN2,(2.1)

N ′
2 = CN1 + DN2,

E′ = FN1 + GN2 + HE,

where H(AD−BC) 6= 0. Let us begin with a systematic determination of products
N ′

1 · E′, N ′
2 · E′ and finally E′ · E′. On every step just several calculations will be

carried in full details. The omitted ones are very similar to those we perform below.

Proposition 2. For any choice of parameters a, b and c in Table 1 there exists
a new basis N ′

1, N ′
2, E′ in which the product N ′

1 ·E′ has exactly one of the following
values

• I) N ′
1 · E′ = E′,
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• II) N ′
1 · E′ = N ′

1,
• III) N ′

1 · E′ = N ′
2,

• IV) N ′
1 · E′ = 0.

Proof. Let us begin with a new basis of type (2.1) for B = 0. Therefore
ADH 6= 0. Let us compute, taking Table 1 into account,

N ′
1E

′ = AN1(FN1 + GN2 + HE)
= AH ·N1E

= AHaN1 + AHbN2 + AHcE.

Then we have the following possibilities
If c 6= 0 then N ′

1E
′ = E′ where F = aAH, G = bAH and A = 1

c .
If c = 0 and b 6= 0 then N ′

1E
′ = N ′

2 where C = aAH, D = bAH and A = H = 1.
If c = 0 and b = 0 and a 6= 0 then N ′

1E
′ = N ′

1 where A = 1 and H = 1
a . And

finally, if a = b = c = 0 obviously N ′
1E

′ = 0. ¤

We shall use the notation from the above theorem in the sequel and shall
therefore speak about algebras of type I, II, III and IV.

3. A second classification step

In this section we intend to further subdivide all four types by studying the
product N2 · E. We start with algebras of type I. From the previous section we
know that Table 1 for them is the following

· N1 N2 E

N1 0 0 E
N2 0 0 αN1 + βN2 + γE
E E αN1 + βN2 + γE dN1 + eN2 + fE

We again look for a basis in which N2E will be simplified.

Proposition 3. Let us consider an algebra of type I. For any choice of param-
eters α, β and γ there exists a new basis N ′

1, N ′
2, E′ in which the product N ′

2 · E′

has exactly one of the following values
• I.1) N ′

2 · E′ = N ′
1,

• I.2) N ′
2 · E′ = N ′

2,
• I.3) N ′

2 · E′ = 0.

Proof. Let us begin with a new basis of type (2.1). First we ensure that the
product N1E = E is preserved. Let us compute

N ′
1E

′ = AN1(FN1 + GN2 + HE) + BN2(FN1 + GN2 + HE)
= AH ·N1E + BH ·N2E

= AH · E + BH · (αN1 + βN2 + γE)

= αBHN1 + βBHN2 + (γBH + AH)E.

Hence the following equations must be satisfied

αBH = F

βBH = G

γBH + AH = H
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So we are left with the following family of linear transformations:

N ′
1 = (1− γB)N1 + BN2,

N ′
2 = CN1 + DN2,

E′ = αBHN1 + βBHN2 + HE,

where H(D(1− γB)−BC) 6= 0. Let us compute N ′
2E

′ :

N ′
2E

′ = CH · E + DH · (αN1 + βN2 + γE)

= αDH ·N1 + βDH ·N2 + (γDH + CH) · E.

Let us first choose C = −γD. Then we have:
If α+βγ 6= 0 then N ′

2E
′ = N ′

1 where B = β
α+γβ and D = 1

H(α+γβ) . (We choose
H = 1 to ensure H(D(1− γB)−BC) = 1

α+γβ 6= 0.)
If α + βγ = 0 and β 6= 0 then N ′

2E
′ = N ′

2 where H = 1
β .

If α + βγ = 0 and β = 0 then obviously N ′
2E

′ = 0. ¤

Note, that by choosing C = −γD we can always avoid the case N ′
2E

′ = µE′,
even in the case α = β = 0, γ 6= 0. For algebras of type II we get:

Proposition 4. Let us consider an algebra of type II. For any choice of pa-
rameters α, β and γ there exists a new basis N ′

1, N ′
2, E′ in which the product N ′

2 ·E′

has exactly one of the following values
• II.1) N ′

2 · E′ = E′,
• II.2) N ′

2 · E′ = βN ′
2, where β 6= 0, β 6= 1,

• II.3) N ′
2 · E′ = N ′

1 + N ′
2

• II.4) N ′
2 · E′ = N ′

1.

Proof. Let us begin with a new basis of type (2.1). First we ensure that the
product N1E = N1 is preserved. Let us compute

N ′
1E

′ = AH ·N1E + BH ·N2E

= AH ·N1 + BH · (αN1 + βN2 + γE)

= (AH + αBH) ·N1 + βBHN2 + γBH · E.

Hence the following equation must be satisfied

AH + αBH = A
βBH = B
γBH = 0

⇒ B = 0, H = 1.

So we are left with the following family of linear transformations:

N ′
1 = AN1,

N ′
2 = CN1 + DN2,

E′ = FN1 + GN2 + E,

where AD 6= 0. Let us compute N ′
2E

′ :

N ′
2E

′ = C ·N1 + D · (αN1 + βN2 + γE)

= (C + αD) ·N1 + βDH ·N2 + γD · E.

If γ 6= 0 then for D = 1
γ , G = β

γ , F = C + α
γ we have N ′

2E
′ = E′.

If γ = 0 and β 6= 0 and β 6= 1 then for D = β−1, C = α we have N ′
2E

′ = βN ′
2.
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If γ = 0 and β = 1 and α 6= 0 then for A = α, D = 1 we have N ′
2E

′ = N ′
2 +N ′

1.
If γ = 0 and β = 0 then for A = C + αD, we have N ′

2E
′ = N ′

1 for every α. ¤

For algebras of type III we obtain the following result.

Proposition 5. Let us consider an algebra of type III. For any choice of
parameters α, β and γ there exists a new basis N ′

1, N ′
2, E′ in which the product

N ′
2 · E′ has exactly one of the following values

• III.1) N ′
2 · E′ = E′

• III.2) N ′
2 · E′ = kN ′

1 + N ′
2;k ∈ R,

• III.3) N ′
2 · E′ = N ′

1

• III.4) N ′
2 · E′ = −N ′

1

• III.5) N ′
2 · E′ = 0

Its proof is rather similar to the proof of Proposition 3 and Proposition 4, so
we omit details. For algebras of type IV we obtain the following result, which can
also be proved in a similar way to Proposition 4.

Proposition 6. Let us consider an algebra of type IV. For any choice of pa-
rameters α, β and γ there exists a new basis N ′

1, N ′
2, E′ in which the product N ′

2 ·E′

has exactly one of the following values
• IV.1) N ′

2 · E′ = E′

• IV.2) N ′
2 · E′ = N ′

2

• IV.3) N ′
2 · E′ = N ′

1

• IV.4) N ′
2 · E′ = 0

Remark 1. It is quite obvious that (families of) algebras I.2 and II.1 are iso-
morphic. The same is true for algebras III.1 and I.1. Algebras I.3 and IV.1 are
also isomorphic. The same is true for algebras III.5 and IV.3. The corresponding
isomorphism in all four cases is the same. For example, let us consider the iso-
morphism Φ between algebra(s) I.2 (i.e. A∗ = (R3, ∗)) and II.1 (i.e. A? = (R3, ?))
defined with the following multiplication tables:

∗ n1 n2 e

n1 0 0 n1

n2 0 0 e
e n1 e e2

A∗=(R3,∗)

Φ7→
? N1 N2 E

N1 0 0 E
N2 0 0 N2

E E N2 E2

A?=(R3,?)

,

where e2 = dn1+εn2+fe, E2 = εN1+dN2+fE and d, ε, f ∈ R. The isomorphism
Φ is defined by the following:

N1 7→ n2

N2 7→ n1

E 7→ e.

So, on the next step we will not consider cases II.1, III.1, IV.1 and IV.3 in
order to avoid repetitions.

4. A final classification step

At the final classification step we intend to determine the simplest possible form
of the last remaining product E2 = dN1 + eN2 + fE for all types from I.1 to IV.4.
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Of course, the above constructed structure must be preserved in all cases, i.e. the
products N ′

1N
′
1, N ′

2N
′
2 and N ′

1N
′
2 must remain zero in the new basis {N ′

1, N
′
2, E

′},
and the products N ′

1E
′ and N ′

2E
′ must remain unchanged for all cases from I.1 to

IV.4.

4.1. Algebras of class I. In the next three propositions we are going to
determine the simplest possible form of product E2 = dN1 + eN2 + fE providing
the products N1E = E and N2E ∈ {N1, N2, 0} are known and are of type I.

Proposition 7. Let N2
1 = N2

2 = N1N2 = 0, N1E = E and N2E = N1, i.e.
the algebra is of type I.1. For any choice of parameters d, e and f there exists a
new basis N ′

1, N ′
2, E′ in which the product E′ · E′ has exactly one of the following

values
• I.1.a) (E′)2 = mN ′

1 + nN ′
2 + E′ (m,n ∈ R),

• I.1.b) (E′)2 = mN ′
1 + N ′

2 (m ∈ R),
• I.1.c) (E′)2 = N ′

1,
• I.1.d) (E′)2 = −N ′

1,

• I.1.e) (E′)2 = 0.

Proof. Let us begin with a new basis of type (2.1). First we ensure that the
product N1E = E is preserved. The equation N ′

1E
′ = E′ reads as

BH ·N1 + 0 ·N2 + AH · E = F ·N1 + G ·N2 + H · E
and yields F = BH, G = 0 and A = 1 (hence H 6= 0). So we are left with the
following family of linear transformations:

N ′
1 = N1 + BN2,

N ′
2 = CN1 + DN2,

E′ = BHN1 + HE.

The condition N ′
2E

′ = N ′
1 reads as

DH ·N1 + 0 ·N2 + CH · E = N1 + B ·N2 + 0 · E
and yields H = 1

D (D 6= 0), C = 0, B = 0. So we are left now with only one-
parameter-family of linear transformations:

N ′
1 = N1,

N ′
2 = DN2

E′ =
1
D

E, for D 6= 0.

Let us compute now (E′)2:

(E′)2 =
1

D2
E2

=
1

D2
(dN1 + eN1 + fE)

=
d

D2
N1 +

e

D2
N2 +

f

D2
E.

We can conclude:
• if f 6= 0, e 6= 0 and d 6= 0 where D = f , n = e

f3 and m = d
f2 we have

(E′)2 = mN ′
1 + nN ′

2 + E′,
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• if f 6= 0, e 6= 0 and d = 0 where D = f and m = e
f3 we have (E′)2 =

mN ′
2 + E′ and m 6= 0,

• if f 6= 0, e = 0 and d 6= 0 where D = f and m = d
f2 we have (E′)2 =

mN ′
1 + E′ and m 6= 0,

• if f 6= 0, e = 0 and d = 0 where D = f we have (E′)2 = E′,
• if f = 0, e 6= 0 and d 6= 0 where D = e and m = d

e2 we have (E′)2 =
mN ′

1 + N ′
2,

• if f = 0, e 6= 0 and d = 0 where D = e we have (E′)2 = N ′
2,

• if f = 0, e = 0 and d > 0 where D =
√

d we have (E′)2 = N ′
1,

• if f = 0, e = 0 and d < 0 where D =
√−d we have (E′)2 = −N ′

1,
• and finally, if f = 0, e = 0 and d = 0 we obviously have E2 = 0.

¤
In a similar way we can treat types I.2 and I.3, so we omit the details. The

results are summarized in the two propositions below.

Proposition 8. Let N2
1 = N2

2 = N1N2 = 0, N1E = E and N2E = N2, i.e.
the algebra is of type I.2. For any choice of parameters d, e and f there exists a
new basis N ′

1, N ′
2, E′ in which the product E′ · E′ has exactly one of the following

values
• I.2.a) (E′)2 = dN ′

1 + N ′
2 + fE′, d, f 6= 0,

• I.2.b) (E′)2 = 2N ′
1 + fE′, f 6= 0,

• I.2.c) (E′)2 = dN ′
1, for d ∈ R,

• I.2.d) (E′)2 = 2N ′
1 + N ′

2,

• I.2.e) (E′)2 = fE′, f 6= 0,

• I.2.f) (E′)2 = N ′
2 + 2E′.

Proposition 9. Let N2
1 = N2

2 = N1N2 = 0, N1E = E and N2E = 0, i.e. the
algebra is of type I.3. For any choice of parameters d, e and f there exists a new
basis N ′

1, N ′
2, E′ in which the product E′ ·E′ has exactly one of the following values

• I.3.a) (E′)2 = mN ′
1 + E′, m6=0,

• I.3.b) (E′)2 = N ′
2 + E′,

• I.3.c) (E′)2 = E′,
• I.3.d) (E′)2 = N ′

1,

• I.3.e) (E′)2 = −N ′
1,

• I.3.f) (E′)2 = N ′
2,

• I.3.g) (E′)2 = 0.

4.2. Algebras of class II. In the next four propositions we are going to
determine the simplest possible form of product E2 = dN1 + eN2 + fE providing
the products N1E = N1 and N2E ∈ {E, βN2, N1 + N2, N1} are known and are of
type II. In all four cases we can begin with the linear transformations of the form
N ′

1 = AN1, N ′
2 = CN1 + DN2, E′ = FN1 + GN2 + E, which preserves the crucial

condition N1E = N1.

Proposition 10. Let N2
1 = N2

2 = N1N2 = 0, N1E = N1 and N2E = βN2;
β 6= 0, β 6= 1, i.e. the algebra is of type II.2. For any choice of parameters d, e and
f there exists a new basis N ′

1, N ′
2, E′ in which the product E′ · E′ has exactly one

of the following values
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• II.2.a) (E′)2 = fE′; f ∈ R
• II.2.b) (E′)2 = N ′

1 + 2E′,
• II.2.c) (E′)2 = N ′

2 + 2βE′.

Proof. The linear transformation N ′
1 = AN1, N ′

2 = DN2, E′ = FN1 +GN2 +
E (where AD 6= 0) preserves conditions N ′

1E
′ = N ′

1 and N ′
2E

′ = βN ′
2. A direct

computation yields

(E′)2 = (d + 2F )N1 + (e + 2βG)N2 + fE.

Now, if f 6= 0 and f 6= 2 and f 6= 2β then for F = d
f−2 , G = e

f−2β we have

(E′)2 = fE′.
If f = 2 and d 6= 0 then for A = d and G = e

2−2β we have (E′)2 = N ′
1 + 2E′.

If f = 2 and d = 0 then for G = e
2−2β we have (E′)2 = 2E′.

If f = 0 we can always choose F = −d
2 and G = − e

2β to get (E′)2 = 0.

If f = 2β and e 6= 0 then for D = e and F = d
2β−2 we have (E′)2 = N ′

2 +2βE′.

If f = 2β and e = 0 then for F = d
2β−2 we have (E′)2 = 2βE′.

Note that 2β − 2 6= 0 since β 6= 1. ¤

Proposition 11. Let N2
1 = N2

2 = N1N2 = 0, N1E = N1 and N2E = N1 +N2,
i.e. the algebra is of type II.3. For any choice of parameters d, e and f there exists
a new basis N ′

1, N ′
2, E′ in which the product E′ ·E′ has exactly one of the following

values
• II.3.a) (E′)2 = fE′; f ∈ R
• II.3.b) (E′)2 = N ′

2 + 2E′.

Proof. The linear transformation N ′
1 = AN1, N ′

2 = CN1 +AN2, E′ = FN1 +
GN2 + E (where A 6= 0) preserves conditions N ′

1E
′ = N ′

1 and N ′
2E

′ = N ′
1 + N ′

2. A
direct computation yields

(E′)2 = (2F + 2G + d)N1 + (2G + e)N2 + fE.

Now, if f 6= 0 and f 6= 2 then for F = −2d+2e+fd
(f−2)2 , G = e

f−2 we have (E′)2 =
fE′.

If f = 0 then for G = − e
2 and F = e−d

2 we have (E′)2 = 0.

If f = 2 and e 6= 0 then for C = 2G + d and A = e we have (E′)2 = N ′
2 + 2E′.

If f = 2 and e = 0 then for G = −d
2 we have (E′)2 = 2E′. ¤

Proposition 12. Let N2
1 = N2

2 = N1N2 = 0, N1E = N1 and N2E = N1, i.e.
the algebra is of type II.4. For any choice of parameters d, e and f there exists a
new basis N ′

1, N ′
2, E′ in which the product E′ · E′ has exactly one of the following

values
• II.4.a) (E′)2 = fE′; f ∈ R,
• II.4.b) (E′)2 = N ′

1 + 2E′,
• II.4.c) (E′)2 = N ′

2.

Proof. The linear transformation N ′
1 = AN1, N ′

2 = (A−D)N1 + DN2, E′ =
FN1 +GN2 +E (where AD 6= 0) preserves conditions N ′

1E
′ = N ′

1 and N ′
2E

′ = N ′
1.

A direct computation yields

(E′)2 = (2F + 2G + d)N1 + eN2 + fE.
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Now, if f 6= 0 and f 6= 2 then for F = 2e+fd
f(f−2) , G = e

f we have (E′)2 = fE′.

If f = 0 and e 6= 0 then for D = e and A = 2F +2G+d+e we have (E′)2 = N ′
2.

If f = 0 and e = 0 then for G = 0 and F = −d
2 we have (E′)2 = 0.

If f = 2 and e + d = 0 then for G = e
2 we have (E′)2 = 2E′.

If f = 2 and e + d 6= 0 then for A = e + d and G = e
2 we have (E′)2 =

N ′
1 + 2E′. ¤

In a similar way we can treat all the remaining types III. and IV. The proofs of
the corresponding propositions are rather similar to the proofs of Proposition 12,
Proposition 11, etc. So, we can omit them.

4.3. Algebras of class III. In the next five propositions we seek a linear
transformations which take the product E2 = dN1 + eN2 + fE into as simple form
as possible. Of course these isomorphisms must preserve the form of the already
determined products N1E = N2 and N2E ∈ {E, kN1 + N2,±N1, 0} .

Proposition 13. Let N2
1 = N2

2 = N1N2 = 0, N1E = N2 and N2E = kN1+N2;
k ∈ R, i.e. the algebra is of type III.2. For any choice of parameters d, e and f
there exists a new basis N ′

1, N ′
2, E′ in which the product E′ ·E′ has exactly one of

the following values

• III.2.a) (E′)2 = fE′, for f 6= 0 and k 6= f2−2f
4 ,

• III.2.b) (E′)2 = N ′
1 + fE′, for f 6= 0 and k = f2−2f

4 ,

• III.2.c) (E′)2 = N ′
1,

• III.2.d) (E′)2 = 0.

Proposition 14. Let N2
1 = N2

2 = N1N2 = 0, N1E = N2 and N2E = N1, i.e.
the algebra is of type III.3. For any choice of parameters d, e and f there exists a
new basis N ′

1, N ′
2, E′ in which the product E′ · E′ has exactly one of the following

values

• III.3.a) (E′)2 = N ′
1 + fE′, for f 6= 0,

• III.3.b) (E′)2 = 0.

Proposition 15. Let N2
1 = N2

2 = N1N2 = 0, N1E = N2 and N2E = −N1,
i.e. the algebra is of type III.4. For any choice of parameters d, e and f there exists
a new basis N ′

1, N ′
2, E′ in which the product E′ ·E′ has exactly one of the following

values

• III.4.a) (E′)2 = N1 + fE′, for f 6=0,
• III.4.b) (E′)2 = 0.

Proposition 16. Let N2
1 = N2

2 = N1N2 = 0, N1E = N2 and N2E = 0, i.e.
the algebra is of type III.5. For any choice of parameters d, e and f there exists a
new basis N ′

1, N ′
2, E′ in which the product E′ · E′ has exactly one of the following

values

• III.5.a) (E′)2 = E′,
• III.5.b) (E′)2 = N ′

1,
• III.5.c) (E′)2 = 0.
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4.4. Algebras of class IV. In the next two propositions we seek for linear
transformations which take the product E2 = dN1 + eN2 + fE into as simple form
as possible. Of course these isomorphisms must preserve the form of the already
determined products N1E = 0 and N2E ∈ {E,N1, N2, 0} .

Proposition 17. Let N2
1 = N2

2 = N1N2 = 0, N1E = 0 and N2E = N2, i.e.
the algebra is of type IV.2. For any choice of parameters d, e and f there exists a
new basis N ′

1, N ′
2, E′ in which the product E′ · E′ has exactly one of the following

values

• IV.2.a) (E′)2 = fE′, for f 6= 0,
• IV.2.b) (E′)2 = N ′

1 + N ′
2,

• IV.2.c) (E′)2 = N ′
2,

• IV.2.d) (E′)2 = N ′
2 + 2E′.

Proposition 18. Let N2
1 = N2

2 = N1N2 = 0, N1E = 0 and N2E = 0, i.e. the
algebra is of type IV.4. For any choice of parameters d, e and f there exists a new
basis N ′

1, N ′
2, E′ in which the product E′ ·E′ has exactly one of the following values

• IV.4.a) (E′)2 = E′,
• IV.4.b) (E′)2 = N ′

2,
• IV.4.c) (E′)2 = 0.

We summarize the obtained results in the following theorem.
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Theorem 1. Every algebra corresponding to ODEs from the class C is isomor-
phic to one of the followings:

· N1 N2 E

N1 0 0 E
N2 0 0 N1

E E N1 mN1 + nN2 + E
m,n ∈ R

· N1 N2 E

N1 0 0 E
N2 0 0 N1

E E N1 mN1 + N2

m ∈ R

· N1 N2 E

N1 0 0 E
N2 0 0 N1

E E N1 N1

· N1 N2 E

N1 0 0 E
N2 0 0 N1

E E N1 −N1

· N1 N2 E

N1 0 0 E
N2 0 0 N1

E E N1 0

· N1 N2 E

N1 0 0 E
N2 0 0 N2

E E N2 dN1 + N2 + fE
d, f 6=0

· N1 N2 E

N1 0 0 E
N2 0 0 N2

E E N2 2N1 + fE
f 6= 0

· N1 N2 E

N1 0 0 E
N2 0 0 N2

E E N2 dN1

d ∈ R

· N1 N2 E

N1 0 0 E
N2 0 0 N2

E E N2 2N1 + N2

· N1 N2 E

N1 0 0 E
N2 0 0 N2

E E N2 fE
f 6= 0

· N1 N2 E

N1 0 0 E
N2 0 0 N2

E E N2 N2 + 2E

· N1 N2 E

N1 0 0 E
N2 0 0 0
E E 0 mN1 + E

m 6= 0

· N1 N2 E

N1 0 0 E
N2 0 0 0
E E 0 N2 + E

· N1 N2 E

N1 0 0 E
N2 0 0 0
E E 0 E
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· N1 N2 E

N1 0 0 E
N2 0 0 0
E E 0 N1

· N1 N2 E

N1 0 0 E
N2 0 0 0
E E 0 −N1

· N1 N2 E

N1 0 0 E
N2 0 0 0
E E 0 N2

· N1 N2 E

N1 0 0 E
N2 0 0 0
E E 0 0

· N1 N2 E

N1 0 0 N1

N2 0 0 βN2

E N1 βN2 fE
β 6=0, β 6=1, f ∈ R

· N1 N2 E

N1 0 0 N1

N2 0 0 βN2

E N1 βN2 N1 + 2E
β 6=0, β 6=1

· N1 N2 E

N1 0 0 N1

N2 0 0 βN2

E N1 βN2 N2 + 2βE
β 6=0, β 6=1

· N1 N2 E

N1 0 0 N1

N2 0 0 N1 + N2

E N1 N1 + N2 fE
f ∈ R

· N1 N2 E

N1 0 0 N1

N2 0 0 N1 + N2

E N1 N1 + N2 N2 + 2E

· N1 N2 E

N1 0 0 N1

N2 0 0 N1

E N1 N1 fE
f ∈ R

· N1 N2 E

N1 0 0 N1

N2 0 0 N1

E N1 N1 N1 + 2E

· N1 N2 E

N1 0 0 N1

N2 0 0 N1

E N1 N1 N2

· N1 N2 E

N1 0 0 N1

N2 0 0 kN1 + N2

E N1 kN1 + N2 fE

f 6= 0, k 6= f2−2f
4

· N1 N2 E

N1 0 0 N1

N2 0 0 kN1 + N2

E N1 kN1 + N2 N1 + fE

f 6= 0, k = f2−2f
4

· N1 N2 E

N1 0 0 N2

N2 0 0 kN1 + N2

E N2 kN1 + N2 N1

· N1 N2 E

N1 0 0 N2

N2 0 0 kN1 + N2

E N2 kN1 + N2 0
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· N1 N2 E

N1 0 0 N2

N2 0 0 N1

E N2 N1 N1 + fE
f 6= 0

· N1 N2 E

N1 0 0 N2

N2 0 0 N1

E N2 N1 0

· N1 N2 E

N1 0 0 N2

N2 0 0 −N1

E N2 −N1 N1 + fE
f 6= 0

· N1 N2 E

N1 0 0 N2

N2 0 0 −N1

E N2 −N1 0

· N1 N2 E

N1 0 0 N2

N2 0 0 0
E N2 0 E

· N1 N2 E

N1 0 0 N2

N2 0 0 0
E N2 0 N1

· N1 N2 E

N1 0 0 N2

N2 0 0 0
E N2 0 0

· N1 N2 E

N1 0 0 0
N2 0 0 N2

E 0 N2 fE
f 6= 0

· N1 N2 E

N1 0 0 0
N2 0 0 N2

E 0 N2 N1 + N2

· N1 N2 E

N1 0 0 0
N2 0 0 N2

E 0 N2 N2

· N1 N2 E

N1 0 0 0
N2 0 0 N2

E 0 N2 N2 + 2E

· N1 N2 E

N1 0 0 0
N2 0 0 0
E 0 0 E

· N1 N2 E

N1 0 0 0
N2 0 0 0
E 0 0 N2

· N1 N2 E

N1 0 0 0
N2 0 0 0
E 0 0 0

5. Analysis of nilpotents and idempotents and applications to ODEs

The systems of ODEs which correspond to the algebras treated in the present
paper were treated in [10] and [11]. First of all, we want to emphasize that the
present classification was used in [10] to make a systematic case-by-case analysis of
stability of the origin in the corresponding quadratic systems. The origin is namely
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a nonhyperbolic critical point in quadratic systems thus the stability is not trivial
to determine. The result on the stability of the origin in homogeneous quadratic
systems from [10] is resumed in the following theorem.

Theorem 2. Every three-dimensional system of quadratic ODEs with a plane
of critical points in which the origin is stable is equivalent to one of the following:

ẋ = mz2 + 2yz
ẏ = 0
ż = 2xz + z2

m < − 1
8

ẋ = −z2 + 2yz
ẏ = 0
ż = 2xz

ẋ = dz2

ẏ = z2 + 2yz
ż = fz2 + 2xz
f2 + 8d < 0

ẋ = dz2

ẏ = 2yz
ż = 2xz

ẋ = mz2

ẏ = 0
ż = 2xz + z2

m < − 1
8

ẋ = −z2

ẏ = 0
ż = 2xz

ẋ = −2yz
ẏ = 2xz
ż = 0

ẋ = 0
ẏ = 0
ż = 0

.

The above result was obtained also using the fact (see [5, Proposition 3.4]) that
the presence of idempotents in the corresponding algebra implies the instability of
the origin in a homogeneous quadratic system of ODEs. Note also, that every real
finite dimensional algebra either has a nonzero idempotent or a nonzero nilpotent
of index two (see [4, Theorem 1]). It is known that the absence of idempotents is
not sufficient to guarantee stability which depends on the nature of nilpotents (see
for example [5, Corollary 3.8], [10] and [8]).

For this reason we want to check which algebras from the above classification
contains nonzero idempotents and also nilpotents outside of the plane generated by
N1 and N2. In order to compute the nilpotents (of rank two) and idempotents in an
algebra of class C we have to solve two (quadratic) systems of algebraic equations:

• x2 = x · x = 0, where x ∈ R3 and
• x2 = x · x = x, where x ∈ R3,

respectively. The result below we actually used in [10] in order to prove The-
orem 2.

Let us denote the (families of) algebras from I.1.a to IV.4.c by integers: 1 to
44. For algebra no. 1 the computing of nilpotents (of rank two) and idempotents
means actually to solve the following equation:

(x1N1 + x2N2 + x3E)2 = x2
3 (mN1 + nN2 + E) + 2x1x3E + 2x2x3N1

=
(
mx2

3 + 2x2x3

)
N1 + nx2

3N2 +
(
x2

3 + 2x1x3

)
E

= 0

or

(x1N1 + x2N2 + x3E)2 = x2
3 (mN1 + nN2 + E) + 2x1x3E + 2x2x3N1

=
(
mx2

3 + 2x2x3

)
N1 + nx2

3N2 +
(
x2

3 + 2x1x3

)
E

= x1N1 + x2N2 + x3E,

respectively.
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A case-by-case treatment yields a result given in the following tables.

Alg. no. Conditions Idempotents Nilpotents
I.1.a n 6= 0, D < 0 w1,2,3 −
I.1.a n = − 9m+1±(6m+1)

3
2

54 6= 0
m 6= − 1

6

w1,2 −
I.1.a n = 1

108 ,m = − 1
6 w1 −

I.1.a n 6= 0, D > 0 w1 −
I.1.a n = 0, 1 + 8m > 0 w1,2 −
I.1.a n = m = 0 E −
I.1.a n = 0, 1 + 8m ≤ 0 − −
I.1.b m > 3

3√2
P1,2,3 −

I.1.b m < 3
3√2

P1 −
I.1.b m = 3

3√2
P1,2 −

I.1.c − N1 +
√

2E N2 − 2E
I.1.d − − N2 + 2E
I.1.e − − −
I.2.a f2 + 8d > 0 Q1,2 −
I.2.a f2 + 8d = 0, f 6= 4 Q1 −
I.2.a f2 + 8d = 0, f = 4 − −
I.2.a f2 + 8d < 0 − −
I.2.b − R −
I.2.c δ > 0 1

2N1 ± 1√
2δ

E −
I.2.c δ ≤ 0 − −
I.2.d − 1

2N1 + 1
8N2 − 1

2E −
I.2.e − 1

f E N1 − 2
f E

I.2.f − − N1 + 1
2N2 − E

I.3.a 1 + 8m > 0 S1,2 −
I.3.a 1 + 8m = 0 S1 −
I.3.a 1 + 8m < 0 − −
I.3.b − N2 + E −
I.3.c − E N1 − 2E
I.3.d − 1

2N1 ± 1√
2
E −

I.3.e − − −
I.3.f − − −
I.3.g − − E

Remark 2. In the above table (as well as in the sequel) in the column Nilpo-
tents there are nilpotents of rank two which are not in the span of N1 and N2.

In the above table we also have:

w = ρ2 (m + 2nρ)N1 + nρ2N2 + ρE

where ρ is a root of 4nZ3 + 2mZ2 + Z − 1 = 0. Substituting M = Z + 2m
12n

we obtain the canonical form M3 + 3pM + 2q = 0 where q = −9nm−54n2+2m3

432n3 and
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p = 3n−m2

36n2 . The discriminant equals

D = q2 + p3 = −m2 − 36nm− 108n2 + 8m3 − 4n

6912n4

The subcases for D = 0 :

• p = q = 0 ⇔ m = − 1
6 , n = 1

108

• p3 = −q2 6= 0 ⇔ n 6= 1
108 ,m 6= − 1

6

For algebra I.1.b we obtain:

P = ρ2 (m + 2ρ)N1 + ρ2N2 + ρE

where ρ is a root of 4Z3 + 2mZ2 − 1 = 0. Substituting M = Z + m
6 we obtain

the canonical form: M3 − 1
12Mm2 + 1

108m3 − 1
4 = 0. Thus, p = − 1

36m2 and
q = 1

216m3 − 1
8 . The discriminant equals D = q2 + p3 = − 1

864m3 + 1
64 .

For algebra I.2.a we get:

Q =
1− fρ

2
N1 +

1− fρ

2d (1− 2ρ)
N2 + ρE

where

ρ =
−f ±

√
f2 + 8d

4d
.

For algebra I.2.b we obtain:

R =
(

1
2

+
1
16

f2 ± 1
16

f
√

f2 + 16
)

N1 − f ±
√

f2 + 16
8

E

For algebra I.3.a we obtain:

S =
4m + 1∓√1 + 8m

8m
N1 +

−1±√1 + 8m

4m
E

Alg. no. Conditions Idempotents Nilpotents
II.2.a f 6= 0 1

f E −
II.2.a f = 0 − −
II.2.b − − −
II.2.c − − −
II.3.a f 6= 0 1

f E −
II.3.a f = 0 − −
II.3.b − − −
II.4.a f 6= 0 1

f E −
II.4.a f = 0 − E
II.4.b − − −
II.4.c − − −
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Alg. no. Conditions Idempotents Nilpotents
III.2.a − 1

f E −
III.2.b − − −
III.2.c − − N1 −N2 + 2kE
III.2.d − − −
III.3.a f2 6= 4 T −
III.3.a f2 = 4 − −
III.3.b − − E
III.4.a − U −
III.4.b − − −
III.5.a − E −
III.5.b − − −
III.5.c − − E
IV.2.a − 1

f E −
IV.2.b − − −
IV.2.c − − N2 − 2E
IV.2.d − − −
IV.4.a − E −
IV.4.b − − −
IV.4.c − − E

For algebra III.3.a we obtain:

T =
1

f2 − 4
N1 +

2
(f2 − 4) f

N2 +
1
f

E

For algebra III.4.a we obtain:

U =
1

f2 + 4
N1 +

2
(f2 + 4) f

N2 +
1
f

E.

Since, by the work of Kinyon and Sagle, we know that stable origin can only appear
in algebras with no nontrivial idempotents, the above calculations finally give us a
result which was directly applied to differential equations in [10].

Theorem 3. Every algebra corresponding to ODEs from the class C without
nonzero idempotents is isomorphic to one of the following:

· N1 N2 E

N1 0 0 E
N2 0 0 N1

E E N1 mN1 + nN2 + E
n = 0, 1 + 8m < 0

· N1 N2 E

N1 0 0 E
N2 0 0 N1

E E N1 −N1

· N1 N2 E

N1 0 0 E
N2 0 0 N1

E E N1 0

· N1 N2 E

N1 0 0 E
N2 0 0 N2

E E N2 dN1 + N2 + fE
f2 + 8d < 0 or (f = 4, d = −2)
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· N1 N2 E

N1 0 0 E
N2 0 0 N2

E E N2 dN1

d ≤ 0

· N1 N2 E

N1 0 0 E
N2 0 0 N2

E E N2 N2 + 2E

· N1 N2 E

N1 0 0 E
N2 0 0 0
E E 0 mN1 + E

1 + 8m < 0

· N1 N2 E

N1 0 0 E
N2 0 0 0
E E 0 −N1

· N1 N2 E

N1 0 0 E
N2 0 0 0
E E 0 N2

· N1 N2 E

N1 0 0 E
N2 0 0 0
E E 0 0

· N1 N2 E

N1 0 0 N1

N2 0 0 βN2

E N1 βN2 0
β 6=0, β 6=1

· N1 N2 E

N1 0 0 N1

N2 0 0 βN2

E N1 βN2 N1 + 2E
β 6=0, β 6=1

· N1 N2 E

N1 0 0 N1

N2 0 0 βN2

E N1 βN2 N2 + 2βE
β 6=0, β 6=1

· N1 N2 E

N1 0 0 N1

N2 0 0 N1 + N2

E N1 N1 + N2 0

· N1 N2 E

N1 0 0 N1

N2 0 0 N1 + N2

E N1 N1 + N2 N2 + 2E

· N1 N2 E

N1 0 0 N1

N2 0 0 N1

E N1 N1 0

· N1 N2 E

N1 0 0 N1

N2 0 0 N1

E N1 N1 N1 + 2E

· N1 N2 E

N1 0 0 N1

N2 0 0 N1

E N1 N1 N2

· N1 N2 E

N1 0 0 N1

N2 0 0 kN1 + N2

E N1 kN1 + N2 N1 + fE

f 6= 0, k = f2−2f
4

· N1 N2 E

N1 0 0 N2

N2 0 0 kN1 + N2

E N2 kN1 + N2 N1
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· N1 N2 E

N1 0 0 N2

N2 0 0 kN1 + N2

E N2 kN1 + N2 0

· N1 N2 E

N1 0 0 N2

N2 0 0 N1

E N2 N1 N1 + fE
f2 = 4

· N1 N2 E

N1 0 0 N2

N2 0 0 N1

E N2 N1 0

· N1 N2 E

N1 0 0 N2

N2 0 0 −N1

E N2 −N1 0

· N1 N2 E

N1 0 0 N2

N2 0 0 0
E N2 0 N1

· N1 N2 E

N1 0 0 N2

N2 0 0 0
E N2 0 0

· N1 N2 E

N1 0 0 0
N2 0 0 N2

E 0 N2 N1 + N2

· N1 N2 E

N1 0 0 0
N2 0 0 N2

E 0 N2 N2

· N1 N2 E

N1 0 0 0
N2 0 0 N2

E 0 N2 N2 + 2E

· N1 N2 E

N1 0 0 0
N2 0 0 0
E 0 0 N2

· N1 N2 E

N1 0 0 0
N2 0 0 0
E 0 0 0
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