EnergyLife: Pervasive Energy Awareness for Households

Christoffer Björkskog¹, Giulio Jacucci¹, Luciano Gamberini³, Tatu Nieminen⁴ Topi Mikkola⁵, Carin Torstensson⁶, Massimo Bertoncini⁷

¹Helsinki Institute for Information Technology HIIT, Aalto University, Finland, name.surname@hiit.fi, name.surname@cs.helsinki.fi, ³HTLab, Department of General Psychology, University of Padova, Padova, Italy, name.surname@unipd.it, ⁴Department of Electrical Engineering, Aalto University School of Science and Technology, Helsinki, Finland, name.surname@tkk.fi, ⁵BaseN, Helsinki, Finland, name.surname@basen.net, ⁶The Interactive Institute, Sweden, name.surname@tii ⁷Engineering Ingegneria Informatica, Rome, Italy, name.surname@eng.it

ABSTRACT
We present Energy Life a system utilizing wireless sensors, mobile and ambient interfaces that turn energy consumers into active players. Energy Life participants play through different levels collecting scores in savings and through advice tip reading and quizzes. We describe principles, logic of the game, implementation and user interfaces providing rationale for design choices. Key principles embodied in Energy Life are: situated and combined feedback including knowledge and consumption information, intuitiveness and non-intrusiveness by utilizing an always at hand solution on a touch enabled smart phone and lighting as an ambient interface, sustained interaction and engagement by using a applied game that connects players within and between households.

Author Keywords	Energy awareness, serious games, mobile interaction, domestic systems, interaction design.

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g., HCI): Miscellaneous.

General Terms
Human Factors, Design, Experimentation

INTRODUCTION
Aspects of energy saving in Human-Computer Interaction have interested firstly energy aware user interfaces on mobile and battery management. Just recently research on ubiquitous computing for energy management in the household has emerged. The work has followed three streams: 1) visualization of detailed data attained through pervasive sensing [3], 2) artistic visualization using novel interfaces [1] 3) theoretically informed implementation of feedback that address behavior change [4] . The problem of these three distinct streams is that they have tackled separately three aspects that should be addressed at the same time respectively: detailed data sensing, engagement through novel user interfaces, and psychological and anthropological approaches to behavior change.

Our project aim at bridging these three streams by implementing an application that addresses detailed information provision, engagement through novel UI and theoretically informed feedback strategies.

ENERGYLIFE SAVING AND AWARENESS GAME
Energy Life bases its persuasive potential on two pillars, awareness tips and consumption feedback. Awareness tips are meant to increase the users’ knowledge of the consequences of their electricity consumption in general and of that of specific devices; consumption feedback makes the actual energy consumption visible to the users in terms of the updated distance from the selected saving goal. The two kinds of information together would help the users to monitor the quality of their conservation practices, and would enable them to know what to change in these practices in order better to achieve their goal. Both types of information are tailored to the actual consumption of individual devices and of the whole household.

In order to create a coherent, familiar, and attractive rationale for the use of EnergyLife, the pursuit of the saving goal follows a game-like rationale: awareness and consumption (saving) are expressed in scores; goals are divided into sub-goals connected to different levels of the game, so that the fulfillment of the objective on one level gives access to a higher level; higher levels have greater difficulty and richer functionalities; the saving activity can be discussed with other people participating in the same program; knowledge is tested through quiz and improved through contextualized tips, all of which contribute to increasing the awareness score.

This interface meets some of the basic usability requirements highlighted above; the system does not need
the user to do anything special in order to access the feedback, since it can be received on the same mobile device s/he uses for telephone calls; or, even s/he does not want to turn on his/her mobile, minimal feedback is provided anyway by the lights in the house, which dim when switched on when the goal is not met. The input system is also very easy, consisting of touching the screen in ways similar to the action one would perform on the actual object: rotations, pressures and ticks.

IMPLEMENTATIONAL BUILDING BLOCKS

Base Station and Smart Sensors
The heart of the system is the BeAware wireless sensor, which has been developed within the project. Compared to the commercially available alternatives, it is both more accurate and consumes less power [5]. It is connected between the wall socket and the appliances and takes its measurements from the line voltage and the current taken up by the appliance. It delivers data such as Apparent Power, Power Factor, Phase angle, Crest factor, Total Harmonic Distortion and Energy. The sensor is constructed in three parts: an analog measurement connection, an analog to digital conversion and a micro controller running the sensor program and a radio communication part, which handles the wireless link.

All household data is processed in the BeAware base station, which handles the communication to all sensors and ambient interfaces and acts as a gateway to the Internet. Any linux/unix-based computer can act as a base station, but as it needs to be on (and preferably also online) all the time, a dedicated low-consumption machine is recommended. As part of the trials some different setups have been tested- current VIA Artigo runs a Debian Linux while consuming 15W. The system is also designed to be such that it can interface with 3rd party products as easily as possible. As example of this, we also uses Plugwise sensors as widely available alternative for BeAware sensors and SchellCount 1- and 3-phase meters as an alternative for main meter reading.

Engaging Web Based User Interface
The application client of Energylife is a standards-based mobile web application. Its main interface consists of a touch controlled 3-dimensional carousel [2]. Each card represents an electrical device whose consumption is monitored by sensors that, when flipped, reveals options to show device specific quiz, advice and consumption history.

Ambient Interface
The ambient interface (AI) consists of electronics that connect to the existing lighting of a household. It communicates wirelessly with the base station. When a light that is dedicated as an AI is switched on, it slowly dims up if the household is consuming too much electricity but immediately lights up if the household is saving energy. It can also, if it is switched on, alert by blinking when a certain condition has been met. With the current setup there is one AI in the household that reacts to the overall consumption. The next version will be several configurable AI’s that respond to consumption regarding specific appliances, areas in the house or just the lighting.

REFERENCES