
SOA: Testing and Self-Checking

Gerardo Canfora and Massimiliano Di Penta1

RCOST - Research Centre on Software Technology - University ofSannio
Palazzo ex Poste, Via Traiano - 82100 Benevento, Italy

Abstract

The dynamic nature of service-oriented architectures poses new challenges to system
validation. Traditional testing is unable to cope with certain aspects of a service–oriented
system validation, essentially because of the impossibility to test all (often unforeseen)
system’s configurations. On the other hand, run–time monitoring, while able to deal with
the intrinsic dynamism and adaptiveness of a service–oriented system, are unable to provide
confidence that a system will behave correctly before it is actually deployed.

In this paper we discuss the role of testing and monitoring tovalidate a service–oriented
system and how they can be combined to increase the confidenceand reduce the cost of
validation.

Key words: Web Services, Service–Oriented Architecture, Service
Testing, Service Monitoring

1 Emails: {canfora, dipenta}@unisannio.it

International Workshop on Web Services Modeling and Testing (WS-MaTe 2006)



1 Introduction

Testing software has long been recognized as a key and challenging activity of sys-
tem development. Service–Oriented Architectures (SOA), for example as imple-
mented by web services, present unique features, includingdynamic and ultra–late
binding, that add much complexity to the testing burden. A few notable examples
are such features are:

• systems based on web services are intrinsically distributed, and this requires that
Quality of Service (QoS) be ensured for different deployment configurations;

• web services in a system change independently from each other;
• systems implement adaptive behaviors, either by replacingindividual services or

adding new ones;
• ownership over the system parts is shared among different stakeholders.

Many consolidated testing approaches, applied for years over traditional sys-
tems, apply over service–oriented systems as well. Primarily, the idea that a com-
bination of unit, integration, system, and regression testing is needed to gain con-
fidence that a system will deliver the expected functionality. Nevertheless, the
dynamic and adaptive nature of SOA makes most testing techniques not directly
applicable to test services and service–oriented systems.As an example, most tra-
ditional testing approaches assume that one is always able to precisely identify
the actual piece of code that is invoked at a given call-site.Or, as in the case of
object-oriented programming languages, that all the possible (finite) bindings of a
polymorphic component be known. These assumptions my not betrue anymore
for SOA, which exhibit run-time discovery in an open marketplace of services and
ultra–late binding.

The adoption of SOA, in addition to changing the architecture of a system,
brings changes in the process of building the system and using it, and this has
effects on testing too. Services are used, not owned: they are not physically inte-
grated into the systems that use them and run on a provider’s infrastructure. This
has several implications for testing: code is not availableto system integrators; the
evolution strategy of a service (that is, of the software that sits behind the service)
is not under the control of the system owner; and, system managers cannot use
capacity planning to prevent QoS failures.

Key issues that limit the testability of service–oriented systems include [6]:

(i) lack of observability of the service code and structure:for users and system
integrators services are just interfaces, and this prevents white–box testing
approaches that require knowledge of the structure of code and flow of data.

(ii) dynamicity and adaptiveness:for traditional systems one is always able to
determine the component invoked in a given call–site, or, atleast, the set of
possible targets [9]. This is not true anymore for SOA, where a system can
be described by means of a workflow of abstract services that are automati-
cally bound to concrete services retrieved by one or more registries during the

4



execution of a workflow instance.

(iii) lack of control:while components/libraries are physically integrated in asoft-
ware system, this is not the case for services, which run on anindependent
infrastructure and evolve under the sole control of the provider. The combina-
tion of these two characteristics implies that system integrators cannot decide
the strategy to migrate to a new version of a service and, consequently, to
regression testing the system [5].

(iv) cost of testing:invoking actual services on the provider’s machine has effects
on the cost of testing, too, if services are charged on aper–usebasis. Also,
service providers could experience denial–of–service phenomena in case of
massive testing, and repeated invocation of a service for testing may not be
applicable whenever the service produces side effects other than a response,
as in the case of a hotel booking service [6].

An alternative to testing is continuous self-checking of a service–oriented sys-
tem by monitoring it during execution [2]. Runtime monitors can check both the
functional correctness and the satisfaction of QoS expectations, thus realizing the
idea of continuous testing [11]. Being performed at run-time, that is, on the ac-
tual running configuration of the system, monitoring can naturally accommodate
the intrinsic dynamicity and adaptability of SOA. It does not have cost problems,
or undesired side effects on real world, as the service invocation issued are those
actually needed to run the system. Of course, there is some run–time overhead, but
this is acceptable in most cases and, in addition, modern monitoring infrastructures
allow for setting the amount of monitoring at run–time [2].

However, self–checking has limitations, too. The system ischecked during
actual execution, and this may entail that exceptional conditions remain unchecked,
including peak usage and scarcely recurrent function or combinations of input data.
More importantly, problems are discovered too late, when the system is executing.
Whilst several recovery actions are possible [2, 7, 8], it is not always possible to
rely solely on these actions, as in the case of dependable applications. There are
many cases when a system needs to be validated before deployment, and in these
cases monitoring does not apply.

Thus, on the one side traditional testing has limitation to deal with the dynamic
nature of SOA, primarily because of its inability to foreseechanges, and on the
other side self–checking does not help to assess the qualityof a system prior of
its use. We believe that testing and monitoring are two complementary facets for
validating a service–oriented system and, in this paper, wediscuss how they com-
plement each other in the process of gaining confidence of thecorrectness of a
system over time.

The rest of this paper is organized as follows: Section2 discusses the different
roles played by testing and monitoring in SOA. Section3 highlights the need for
having both testing and monitoring and discusses how each one can benefit from
the other. Finally, Section4 summarizes the paper and outline directions for future
research.

5



2 The Role of Testing and of Monitoring

As mentioned in the introduction, service functional and non functional character-
istics can be either tested before making the service operational, or monitored at
run–time. As it will be described below, the roles of testingand monitoring are
different.

To better understand how things work in the practice, let us consider a service–
oriented system – realized for example as a BPEL process – that performs image
processing. The process (see Figure1) comprises several services realizing differ-
ent tasks, i.e. image scaling, posterizing, sharpening, orreduction of colors to a
gray scale.

Fig. 1. Running example: image transformation process

The remainder of this section describes how different service characteristics –
namely functional aspects, dynamic aspects, and, finally, the way a service evolves
– can be tested or monitored, highlighting the role of testing and monitoring.

2.1 Checking the service functional properties

2.1.1 The role of testing
Except when a service is tested by its developer, that has thesource code available
(whilst the configuration could be far from those where the service will be actually
deployed) black box testing is the only viable solution. A possibility is to perturbate
SOAP messages to check whether the service is robust to theseperturbations, or if

6



the effect of the perturbation is observable from the service response [10]. For
the image processing service, perturbation of parameters –e.g., differentnsharpen
or posterizevalues – should be observable from the different image produced as
output or from the error message possibly generated.

Another possibility is to rely on types defined as XML schema within the
WSDL to generate test cases [1, 12]. For example, inputs for our example would
lead to equivalence classes proper of image processing option parameters (e.g.,
true or false for posterize, and six classes fornsharpen, i.e. nsharpen = 0,
nsharpen = 1, 1 < nsharpen < max_nsharpen−1, nsharpen = max_nsharpen−

1, nsharpen = max_nsharpen andnsharpen > max_nsharpen).

2.1.2 The role of monitoring
Instead of testing the services, some monitoring approaches aims at checking whether
some post-conditions are met after the service execution [2, 8]. If this does not
happen, proper recovery actions are taken. Monitoring rules are often weaved as
crosscutting concerns across the system source code (or across its BPEL process).
For example, if a image scaling service is not able to handle an image over a given
size, either the process execution must be aborted or a different binding has to be
chosen.

2.2 Checking the service QoS

2.2.1 The role of testing
When a service is acquired by a consumer s/he stipulates a Service Level Agree-
ment (SLA) with the provider, which comprises the specification for the QoS level
that the provider will ensure to the consumer. At run time, QoS constraint violation
can be due to the environment (high network traffic, high number of requests), but
also to unexpected inputs. For example, let us suppose that the provider of thePos-
terizeservice states that images below 2 MB can be processed within10s. It might
happen that, for some posterizing preferences, such a constraint cannot be met.
Things get worse when the service under test is composite, and different bindings
can lead to different QoS.

The role of testing is therefore to generate combinations ofinputs and bindings
that cause a violation of QoS constraints. The example in Figure 1 shows how
for the imageimg1.bmp, posterize = true, nsharpen = 5 and the abstract
servicesScale, PosterizeandSharpenbound toScaleA, PosterizeCandSharpenB
the constraintcost < 35$ is violated.

2.2.2 The role of monitoring
QoS violations can also be handled at run–time using a monitoring mechanism
that triggers service re–binding actions. After the (near)optimal set of binding
has been determined, the service oriented system starts itsexecution. New QoS
estimates made at run–time, or the lack of availability of a service, can trigger
the re–planning of services still to be executed [7]. This will allow to meet QoS

7



Fig. 2. The role of testing, of monitoring and their interaction

constraints that would have been otherwise violated, and toimprove the overall
QoS objectives as well (e.g., minimizing the cost or the response time).

Let us assume that, during the execution of the image processing service, the ac-
tual, monitored response time for the scaling service is higher than what previously
estimated. This causes an increase of the overall service response time, leading
to a potential constraint violation. To avoid this, the services still to be executed
(i.e., posterizeandsharpening) will be bound to faster (even if more expensive)
concretizations that allow response time constraints to besatisfied.

2.3 Checking service interoperability

2.3.1 The role of testing
Interoperability check can vary from the simple check of thecompliance to WS-I2

to the integration testing of services composed in a processor service–oriented sys-
tem. To test service interoperability, the UDDI registriescan change their role from
a passive role of service directory to an active role of accredited testing organism
[4].

As described in reference [6], dynamic binding makes interoperability issues
more and more complex. In such a context, integration testing becomes very ex-
pensive, since any service invocation within a process or system should be tested
against any possible binding. Problems due to polymorphismin object–oriented
systems [9] tend to explode here, even because, very often, bindings are not known

2 http://www.ws-i.org

8



a priori.
Ideally, the process in our example should be tested for3 ·3 ·3 ·3 = 81 possible

combinations of concretizations. In the practice, it wouldsuffice to only test those
combinations that are compatible with our global QoS constraints.

2.3.2 The role of monitoring
Integration problems can be checked at run–time using monitoring mechanisms.
When a binding changes, the new end–point should preserve the post–condition
held for the old end–point. If this does not happen, an alternative service should be
chosen. For example, if re–binding chooses a newPosterizingservice that produces
an image violating some post–conditions met before – e.g., color depth> 24 bits –
then this service should be discarded in favor of an another.

2.4 Checking the service evolution

2.4.1 The role of testing
Regression testing is essential for service–oriented systems, since integrators are
out of control of the service being used. When a service evolves, its functionality
or QoS can vary, impacting over the systems using it. This raises the need for
service regression testing: as proposed by Brunoet al. [5], services needs to be
accompanied with a facet, containing test suites that the integrator can use for the
regression testing of the service functional and non functional properties, either
periodically or when a new release of the service has been issued.

For example, theSharpenservice implementation can change: either the re-
sulting image can be different, or the response time can be larger than the one
experienced when the service was acquired and the SLA negotiated.

2.4.2 The role of monitoring
Monitoring assumes an important role for checking the evolution of a service–
oriented system. Once again, a post–condition checking mechanism can be used to
check whether the service, while evolving, continues to preserve the functional and
non functional properties the integrator is expecting.

3 Combining Testing and Monitoring

The previous section described benefits of different testing and monitoring ap-
proaches. One can argue whether it could be possible to avoidtesting service–
oriented systems and just perform run–time monitoring, followed by proper recov-
ery actions. On the other hand, it can be decided that if a system has been properly
tested, monitoring is not needed.

Nevertheless, due to the different roles assumed by testingand monitoring (see
Figure2), we often need both:

(i) Testing is a preventive activity, to be performed beforedelivering (or before

9



using) the service. Also, testing exercises the service with the objective of
discovering faults. This goes beyond from checking the correctness of the
regular service usage, addressed by monitoring.

(ii) Monitoring is performed at a different time, i.e., after the service has been
executed. Whilst monitoring can trigger recovery actions,in some cases it
may be too late to do anything useful. If the image processingservice has just
violated its response time constraints, nothing can be doneto recover such a
violation; the service should have been tested before to check its ability to
guarantee a given response time for any allowed input configuration.

As the figure shows, there are many weaknesses of monitoring that suggest to
perform testing, andvice versa(see the arrows between the monitoring and testing
boxes). Also, there are many cases where monitoring strategies can be combined
with testing (double arrow). For example, other than using test cases made avail-
able with the service, regression testing can be performed using capture–replay
strategies. The service inputs and outputs can be monitoredand, after the service
has evolved, inputs are replayed and outputs observed.

The cost of regression testing can be reduced by using monitoring data for
building service stubs that simulate the response to requests equal or similar to
those recently made by other users [6].

Service QoS testing strongly relies on monitoring mechanisms that, at mini-
mum, are used to measure the QoS related to a service execution during testing
activities. Once again, stubs built upon monitoring data can be used to limit the
number of service invocations required during the testing phase.

When replacing the end–point of an abstract service, data monitored from the
previous end–point can be used to test the new one, to ensure that it properly in-
teroperates with our system. For example, if thePosterizeAend point is replaced
by PosterizeB, it is worth using monitoring data fromPosterizeAto testPosterizeB
and check whether the new end point preserves the current behavior.

Finally, service functional testing can benefit of monitoring mechanisms. Mon-
itors can be used to implement oracles (i.e., by checking post–conditions).

4 Summary

The paper has discussed the complementary roles of testing and run–time monitor-
ing in the process of validating service–oriented systems.On the one hand, run–
time monitoring is needed to deals with systems configurations that change in an
unforeseen way; on the other hand, testing is still indispensable to gain confidence
on the correctness of service–oriented systems before theyare actually deployed
for use.

Of course, both testing and monitoring of service–orientedsystems present
open problems that need further research. A key issue of monitoring is to balance
the degree of run-time checking and the impact on the performances of the system.
Ideally, monitors should allow for setting the amount of monitoring at run–time

10



based on the needs of single users [2]. Also, it is needed that monitors be able to
work with existing standard technologies, such us standardBPEL engines.

The idea itself of integration testing is challenged by SOA unique features, pri-
marily automated search on services in an open space and ultra–late binding. These
features implies that the actual configuration of services involved in a system’s run
for a given user be known only at execution time. In many cases, however, how-
ever, searching is limited to a bounded space, as for examplewhen it is required
that a contract be signed before a service can be used. In these cases, conservative
approaches that test possible system configurations while minimising the number
of test runs are needed.

QoS testing poses new challenge, too. Services run on the (foreign) infrastruc-
tures of providers and payment may be on a per-use basis, which makes stress test-
ing prohibitively costly. Monitoring data from past execution could help reducing
the cost of testing by minimising the needs for actual calls to services.

5 Acknowledgments

This work is framed within the European Commission VI Framework IP Project
SeCSE (Service Centric System Engineering) (http://secse.eng.it), Contract No.
511680.

References

[1] X. Bai, W. Dong, W.-T. Tsai, and Y. Chen. InWSDL-Based Automatic Test Case
Generation for Web Services Testing, pages 215–220, Los Alamitos, CA, USA, 2005.
IEEE Computer Society.

[2] L. Baresi and S. Guinea. Towards dynamic monitoring of WS-BPEL processes. In
Benatallah et al. [3], pages 269–282.

[3] B. Benatallah, F. Casati, and P. Traverso, editors.Service-Oriented Computing
- ICSOC 2005, Third International Conference, Amsterdam, The Netherlands,
December 12-15, 2005, Proceedings, volume 3826 ofLecture Notes in Computer
Science. Springer, 2005.

[4] A. Bertolino and A. Polini. The audition framework for testing Web services
interoperability. InEUROMICRO-SEAA, pages 134–142. IEEE Computer Society,
2005.

[5] M. Bruno, G. Canfora, M. Di Penta, G. Esposito, and V. Mazza. Using test cases as
contract to ensure service compliance across releases. In Benatallah et al. [3], pages
87–100.

[6] G. Canfora and M. Di Penta. Testing services and service-centric systems: Challenges
and opportunities.IT Professional, 8(2):10–17, 2006.

[7] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani. QoS-Aware Replanning of
Composite Web Services. Inin Proc. of the International Conference on Web Services
(ICWS 2005), Orlando, FL, USA, July 2005.

[8] K. Mahbub and G. Spanoudakis. A framework for requirentsmonitoring of service
based systems. In M. Aiello, M. Aoyama, F. Curbera, and M. P. Papazoglou, editors,
ICSOC, pages 84–93. ACM, 2004.

11



[9] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object sensitivity for points-
to analysis for java.ACM Trans. Softw. Eng. Methodol., 14(1):1–41, 2005.

[10] J. Offutt and W. Xu. Generating test cases for web services using data perturbation.
SIGSOFT Softw. Eng. Notes - SECTION: Workshop on testing, analysis and
verification of web services (TAV-WEB), 29(5):1–10, 2004.

[11] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst. Automatic test factoring for java. In
ASE ’05: Proceedings of the 20th IEEE/ACM international Conference on Automated
software engineering, pages 114–123, New York, NY, USA, 2005. ACM Press.

[12] W. T. Tsai, X. Wei, Y. Chen, and R. Paul. A robust testing framework for verifying web
services by completeness and consistency analysis. InIEEE International Workshop
on Service-Oriented System Engineering (SOSE), pages 159–166, Los Alamitos, CA,
USA, 2005. IEEE Computer Society.

12


