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Abstract

This paper introduces a proposal of fuzzy functional dependency (FFD) based on conditional probability.
Some properties of conditional probability and its relation with fuzzy sets have been studied. Conditional
probability of two fuzzy sets was proposed as a basis of getting similarity relation of two fuzzy sets. By
using this property, a proposal of FFD is introduced and proved by example that it satisfies classical/crisp

relational database.

1 Introduction

In this paper, we have studied some properties of
conditional probability and its relation with fuzzy sets.
Even when we realize that interpretation of numerical
value between fuzzy sets and probability measures are
philosophically distinct, basic operations such as in-
tersection and union of two fuzzy values can be inter-
preted as maximum intersection and minimum union
of two probabilities. Considering this reason, we de-
fine three approximate conditional probabilities of two
fuzzy sets which are based on minimum, independent
and maximum probability intersection between two
events. Moreover, conditional probability of two fuzzy
sets can be interpreted as probabilistic matching of two
fuzzy sets (Baldwin J.F. and Martin T.P., 1996) [2]
and as a basis of getting similarity of two fuzzy sets
and constructing equivalence classes inside their do-
main attribute.

By using this property, we construct fuzzy func-
tional dependency (FFD) and prove that it satisfies
classical/crisp relational database by example. Con-
sidering the concept of FFD, various definitions and
the notation have been devised since 1988. Among
them are, Raju and Majumdar(1988) [12], defined FFD
base on the membership function of the fuzzy rela-
tion. Tripathy (1990) [13] proposed definition of the
FFD in terms of fuzzy Hamming weight. A. Kiss
(1991) [8], constructed FFD by using weighted tu-
ple. G.Chen(1995) [5], Cubero (1994) [6] and W .Liu
(1992,1993) [11], introduced definition of the FFD
based on the equality of two possibility distributions,
nevertheless they used a different type of implication
and different expression of cut off. S.Liao(1997) [10],
gave design of the FFD by introducing semantic prox-
imity. However, from the technical point of view, we re-
alized that our constructed FFD is different from most
FFD, which generally start with the definition of classi-
cal functional dependency and weaken the equality re-
lation into a (gradual) resemblance relation (and then

choose an appropriate implication) (Bosc, P., Dubois,
D., and Prade, H., 1998) [4].

2 Preliminary

2.1 Conditional Probability

Conditional Probability of an event is the probability
of the event occurring given that another event has
already occurred.

Definition 2.1 Given H and D are two events over
a sample space U. P(H|D) is defined as conditional
probability for H given D. Relation between condi-
tional and unconditional probability satisfy the follow-
ing equation:

P(H N D)

R &

P(H|D) =
where suppose D is an event such that P(D) # 0.
In particular, conditional probability satisfies some ax-
ioms as follows:
1. P(A|B) =0 if A and B are disjoint,
2. P(4|B) +P(A|B) =1,
3. P(B|B) =1.

2.2 Functional Dependency (FD)

Functional dependency(FD) as one type of integrity
constraints has been known and used widely in the de-
sign of database system.

Definition 2.2 Given U is the set of attributes and
R is a relation over U. The functional dependencies
X — Y holds over R(U) iff:

Vi, t; € R, (t:[X] = t;[X] = LY = ;[Y]), (2

where X,Y C U and t;[X] denotes the restriction of
the tuple t; to the attributes belonging to X.
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FDs satisfy some properties, such as (Armstrong’s Ax-
ioms) (1]:

1. Reflexivity: Y C X =2 X oY,

2. Augmentation: (X — Y and Z C U, where U: set
of attributes) = XU Z -7,

3. Transitivity: (X Y andY - Z) = X — Z.

2.3

In the real-world application, data are often impre-
cise. The level of precise data is assigned from total
ignorance(TI) to crisp data, where total ignorance and
crisp express the most imprecise and the most precise
representation of data respectively.

Fuzzy set can be used as a connector to represent
imprecise data from total ignorance to crisp data. The
following definition shows how fuzzy set can be used to
represent total ignorance and crisp data.

Definition 2.3 Let U be universal set, where U =
{u1,uz2,...,un}. Total ignorance(TI) over U and crisp
of u; € U are defined as

Imprecise Data and Fuzzy Sets

Tlover U = {1/ug,.-.,1/un}, 3)
Crisp(ui) = {O/U‘la erey O/U‘i—17 l/uiv (4)
O/ui+1: sy O/“‘ﬂ}:
respectively.

3 Conditional Probability of Two
Fuzzy Sets

Due to Definition 2.1, conditional probability can be
represented by the following formula:

P(H|D) = E(_%g)i).

The problem is how can we interpret P(H N D), if H
and D are two events. We realize that numerical val-
ues of both fuzzy and probability philosophically have
different meaning. In the fuzzy, numerical value can
be interpreted as the level of preference or similarity.
Therefore, intersection of two membership functions is
overlapping between them and it can be treated by us-
ing minimum function.

On the other hand, numerical value of an event in
probability proportionally express the number of ways
that the event might occur. Every way is assumed hav-
ing the same value and provided by a function called
basic probability assignment as follows:

1
Pluy=—, VueU,
W= |
where U is set of all ways. Intersection of two events
can be interpreted as the number of the same ways
belong to both of them that the two events might occur.

In the situation of lack of information, intersection of
two events can be interpreted into three interpretations
as follows:

1. minimum probability of intersection,
P(H 0 D)min = max(0,P(H) + P(D) - 1),
2. independent probability of intersection,
P(HN D)ina = P(H) - P(D),
3. mazimum probability of intersection,
P(H N D)max = min(P(H),P(D)).
Relation among them is shown as follows:
P(H N D)min < P(HN D)ina < P(H N D)max.

Now, we define conditional probability between two
fuzzy sets based on the three interpretations above as
follows.

Definition 3.1 Let f = {x{/u1,..,x{/un} and g =
{x{/u1,....x%/un} are two fuzzy sets over U =
{uy,us,...,un}. P(f|g) is defined as conditional prob-
ability for f given g.

1. Based on minimum probability of intersection :

pIN max(O,x{ +x7-1)

P(flg) = - ()

It can be proved that,
P(f,f) < 1,
P(flg) +P(flg) < L

2. Based on independent probability intersection :
Yie Xi X
= .

P(flg) = =2

(6)
It can be proved that,

P(f,f) £ 1,
P(flg) +P(flg) = 1L

3. Based on maximum probability intersection :

Z?:l mm{X{v Xf}

P(flg) = (7

It can be proved that,

P(f,f)
P(flg) + P(flg)

Conditional probability in (7), principally is the
same as fuzzy relative cardinality(Dubois and Prade,
1982 [7]) as shown in the following equation:

1(F,6) = £261

(8)
|F|
where |F| = 3" up(u) and intersection is defined as
minimum. Kosko [9] has pointed out the analogy be-
tween I(F,G) and a conditional probability P(A}B),
where B and F play the same role.

1,
> 1.

Il
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4  Fuzzy Functional Dependency

This section is the main concern in our paper. In this
section, we introduce the construction of fuzzy func-
tional dependency (FFD) by applying the concepts of
conditional probability of two fuzzy sets as discussed
in Section 3. From the technical point of view, we
realize that our FFD is different from most FFDs as
mentioned in Section 1. Generally, most of FFD start
with the definition of classical functional dependency
(see Definition 2.2) and weaken the equality relation
into a (gradual) resemblance relation (and then choose
an appropriate implication) [4].

Definition 4.1 Given U is the set of attributes and R
is a relation over U. The fuzzy functional dependencies
X ~— Y holds over R(U) iff:

Ve C X, vy CY,

if t(x,y) € R then PR(z|y) <PR(ylz). (9)

Here X,Y C U, t denotes the tuple in relation R and
PR(zly) is called the conditional probability relation for
z given y . If there are n tuples in R, then

2 min(P(zft; (X)), P(y[ti(Y)))
> e Pyiti(Y)) ’

where ¢;(X) and t;(Y") denote the restriction of the
tuple ¢; to the attributes belonging to X and Y, re-
spectively.

Let X = {a;,a2,-yam}, T: = {xi/a1, ..., x'n/am}, and
2k = {x}/a1, . X% am}, then

m mi 'i7 k
P(-’E-L'xl\) — Zl:l 'r:y,n{x]f: X1 },
21 X

where z; and z; are two fuzzy sets over X.

Our consideration to apply minimum function for cal-
culation of conditional probability of two fuzzy sets as
shown in (11) such as P(z{t;(X)) and P(y|t;(Y)) in
(10), with the objective of getting similarity of two
fuzzy sets and developing their equivalence classes in-
side attribute X and Y, respectively.

It can be proved that the FFD satisfies some basic
inference rules such as reflezivity, augmentation, and
transitivity which are similar to Armstrong’s Axioms
as follows.

PR(zly) = (10)

(11)

1. Reflexivity:Y C X = X ~—> Y,

2. Augmentation:(X ~—Y and ZCU) = X UZ ~—
}/

3. Transitivity (X ~= Y and ¥ ~—> Z) = (X ~— Z).
Proof.

1. Y C X, in the sense of number of conditions
or constraints of X is greater or equal to num-
ber of conditions or constraints of ¥, implies that
P(Y) > P(X). Related to Definition 4.1, we have
PR(zly) < PR(y|z) that means X ~— Y.

2. Since from Definition 4.1, if X ~— Y =
PR(zly) < PR(yl|z) is true, then it must be also
true for PR(z and :zly) < PR(ylz and z) =
XUZ ~— Y. The reason is P(X) > P(X U Z),
where X U Z is union of conditions or constraints
of X and Z.

3. Since relation R satisfies X ~— Y and ¥ ~—
Z, PR(zly) < PR(y|z) and PR(y|z) < PR(z]y),
we have PR(z|z) < PR{(z|z). Thus, R satisfies
X~ Z.

Example 4.1 Given a relation R(X,Y), is shown in

Table 4.1.
Table 4.1 Relation R(X,Y)

Rec X Y
1 T1 U1
2 k) Y2
3 z3 (1
4 z 0!
5 To Ya
6 Ta Y2

From Table 4.1, we try to find comparison between
PR(zi}y1) and PR(y;1]z;) as follows.
Table 4.2 Relation R(X =z1,Y =y;)

Rec X=x Y=up X =z and
Y = 1

1| Plzijzy) =1 | Pyafyr) =1 | min(1,1)=1
2 | P{zy|z2) =0 | P(yalyz) =0 | min(0,0)=0
3 | P(z1lzs) =0 | P(y1]ya) =1 | min(0,1)=0
4 | P(zqlzy) =1 | P(yr]yr) =1 | min(1,1)=1
5 | P{zi]z2) =0 | P(yaly2) =0 | min(1,0)=0
6 | P(z1lze) =0 | P(y1ly2) =0 | min(0,0)=0
) ) 3 2

From Table 4.2,

PR(z:1]y1) = 2/3 < PR(y1lz1) = 1.

The result leads to conclusion that by knowing X = z;,
it certainly give ¥ = y,, otherwise by knowing ¥ =y,
the probability to give X = z; is equal to 2/3. By
using the same way, we find that,

PR(z2ys) = 2/3 < PR(yalza) = 1,

PR(z3ly1) = 1/3 < PR{y1]z3) = 1,

PR($4Iy2) = 1/3 < PR(y2|.’E4) =1.

Finally, related to (9), we conclude that X ~— Y.

Example 4.2 Given Table 4.1, relation between two
attributes, X and Y and suppose that we want to know
relation between a given partial area of X and a given
partial area of ¥ which are represented by two fuzzy
sets f and g, respectively. Let suppose that the mem-
bership function of f is,

u(f) = {1/21,0.5/22,0.1/zs},
and membership function of g is,

w(g) = {1/y1,0.2/y2}.

By using both membership functions above, Table 4.1
is transformed into Table 4.3 as follows.
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Table 4.3 Relation R(X = f,Y = g)

Rec | X =f Y = X=f
and
Y=g
T TPz =1 | PGl =1 |1
2 | P(flze) =05 | Plgly:) =0.21]0.2
3 | P(fles) = 0.1 | P(gly) =1 | 0.1
4 | P(fl1)=1 | Plglp)=1 |1
5 | P(flx2) = 0.5 | P(gly2) =02 | 0.2
6 | P(flz) =0 | P(glys) =0.2 | 0
SR 36 2.5

From Table 4.3, it is shown that
PR(flg) = 0.694 < PR(g|f) = 0.806.

We conclude that it is more realistic to say that f ~-+
g than g ~— f.

5 Conclusion

In this paper, we introduced a proposal of fuzzy func-
tional dependency(FFD), where relation between two
attribute domains is based on the concept of condi-
tional probability. From the technical point of view,
the FFD is different from most FFD, which generally
start with the definition of classical functional depen-
dency and weaken the equality relation into a (gradual)
resemblance relation (and then choose an appropriate
implication) [4]. We also proved that inference rules,
which are similar to Armstrong’s Axioms [1} for the
FFD, are both sound and complete.
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