Designing Serious Games for Cognitive Assessment of the Elderly

Tiffany Tong1, Mark Chignell1, Phil Lam1, Mary C. Tierney2 and Jacques Lee2

1Interactive Media Lab, University of Toronto; 2Sunnybrook Health Sciences Centre

The under-diagnosis of cognitive impairments can lead to increased economic burden, hospitalization, and even death (Inouye, Bogardus, Baker, Leo-Summers, & Cooney, 2000). Many of the current cognitive tests have been developed to diagnose specific conditions. However, there is a lack of cognitive tools to assess transitory conditions that occur between normal cognition and cognitive failure such as delirium. In this paper, we discuss the development of a serious game for cognitive assessment of the elderly that can address this gap. We introduce the whack-a-mole game that we have developed and present initial findings concerning its usability and validity in university and elderly populations. We conclude by discussing the role of human factors engineering, and associated design methodologies, in developing serious games of this type.

INTRODUCTION

The demographic transition to increasingly older populations in developed counties is likely to create an explosion in age-related conditions such as mild cognitive impairment and dementia. Health care systems need to adapt to this challenge and one necessary adaptation involves more efficient screening for cognitive health. In this game, we describe the development of a serious game for cognitive assessment and we carry out initial assessments of its usability and validity. A serious game is a game developed other than for primary purpose of entertainment (Charsky, 2010). Based on the research findings, recommendations for further development of serious games for cognitive assessment are made.

BACKGROUND AND MOTIVATION

Cognitive assessments are essential tools used by clinicians and researchers to: assess the cognitive status of a patient, make differential diagnoses, and monitor the course of diseases (Woodford & George, 2007). They can be used to test a variety of cognitive skills including attention, memory, perception, and executive function. Determining a patient’s cognitive strengths and weaknesses allows clinicians to assess and plan ahead for future support of patients, and to estimate their ability to make medical decisions, live independently, and manage their finances (Hall, Shenkin, & Machullich, 2011).

Current cognitive testing methods in the elderly rely on clinical assessments, which can require from 10 minutes to several hours to carry out. In addition, they are costly, and they require highly trained staff (Kueider, Parisi, Gross, & Rebok, 2012). Assessing cognitive health is an important indicator of functional ability, independence, and mortality (Inouye et al., 2000). The under-recognition and misdiagnosis of cognitive impairments such as delirium, can lead to increased economic burden, hospitalization, and even death (Fong, Tulebaev, & Inouye, 2009; Inouye, 1994).

Our interest in game-based cognitive assessment grew out of a perceived need for better ways to detect the risk of delirium onset in hospital wards and emergency departments. Delirium is a syndrome characterized by a sudden deterioration in cognitive function. Inattention and rapidly fluctuating cognitive function are considered key factors in making a diagnosis of delirium (Saxena & Lawley, 2009).

Delirium in a health care setting is a significant problem. Among elderly patients in particular, occurrence rates of 11-42% per admission have been found in the hospital setting (Siddiqi, House, & Holmes, 2006). Prevalence and incidence statistics vary widely depending on a number of factors, including differences in the diagnostic tools used, as well as demographics of the patient samples. Patients most at risk include the elderly, and the critically ill or injured.

Several studies have shown delirium to have harmful effects (Siddiqi et al., 2006). It has also been shown that prevention is a more effective way to manage delirium than is treatment (Inouye, 1999). Finally, delirium caused by an underlying medical condition may require immediate medical attention.

Health care practitioners face practical problems in the recognition of delirium. Surveys of British clinicians have shown that a significant proportion of physicians are ill equipped to recognize delirium effectively (Feldstein et al., 1999). For instance, just 32% of clinicians identified inattention as a key symptom of delirium. 51% of clinicians identified agitation as a key symptom, despite the fact that only a relatively small proportion of delirious patients are agitated. Since changes in mental status during delirium can be subtle, and they fluctuate over time, as many as 85% of delirium cases in one US study (Hustey & Meldon, 2002), and two-thirds of cases in a Canadian study, went undetected (Elie et al., 2000).

The Confusion Assessment Method (CAM) is the accepted standard in delirium diagnosis (Inouye, 2003). However, the CAM requires significant amounts of expertise in its administration, is time consuming in busy clinical settings, and difficulties have been reported in validating it. In particular, the CAM has a low sensitivity when administered by staff who are not highly trained, largely due to under-recognition of particular symptoms of delirium, such as...
inattention (Ely et al., 2001; Lemiengre et al., 2006; Ryan et al., 2009). Thus new methods of cognitive assessment are needed that can improve the efficiency and effectiveness of detecting risk of delirium onset in elderly patients.

The Montreal Cognitive Assessment (MoCA) is a cognitive test used to screen for mild cognitive impairment (MCI) based on eight cognitive items (orientation, attention and concentration, executive function, memory, visual-spatial skills, language, conceptual ability, and calculation) (Sewell, Vigario, & Sano, 2010). Difficulties in completing the MoCA have also been reported due to the inability of some patients to hold a pencil (Cumming, Bernhardt, & Linden, 2011).

The Mini-Mental State Examination (MMSE), also known as the Folstein test, is a questionnaire that examines cognitive functions based on 30 items (Folstein, Folstein, & McHugh, 1975). It evaluates a patient’s memory, orientation to time and location, ability to name objects and follow commands, and motor skills in writing and drawing. Fayers et al., (2005) found that parts of the MMSE were difficult to complete (particularly the writing and drawing tasks that required the use of a pencil) in an elderly population (70–90 years of age) with delirium, but the MMSE is frequently used for cognitive assessment in the elderly (although not for delirium).

Due to concerns with available methods of assessing delirium risk, we examined the possibility of creating an innovative alternative based on an entertaining game that could be played as a form of assessment. Serious games are games that have been designed with a primary focus other than entertainment (Charsky, 2010) and in principle they could be used to construct novel forms of cognitive assessment. Many serious games have been designed for use in health care, such as managing juvenile diabetes (Brown et al., 2009), reducing obesity (Thompson, 2012), and managing asthma (Homer et al., 2000). These serious games vary in their implementation from a role-playing game (Brown et al., 2009) to a puzzle game (Kato, Cole, Bradlyn, & Pollock, 2008). Benefits of using serious games in health care include the ability to design personalized games, promote health-related behavioural change, and educate participants (Tong, 2014).

An alternative way to make cognitive assessment more enjoyable and entertaining is with gamification, the use of game-like elements in non-game contexts to improve user experience and engagement (Deterding, Sicart, Nacke, O’Hara, & Dixon, 2011). Some of the goals of gamification in other applications have included enhancing user participation, and shaping behaviour while increasing knowledge. Introduction of game concepts, such as points (scoring), badges, and leader boards, can motivate users when performing mundane tasks (Deterding et al., 2011). Examples of gamification in health care include managing Type I diabetes (Cafazzo, Casselman, Hamming, Katzman, & Palment, 2012), and chronicling cancer pain (Stinson et al., 2013).

In our research, we chose to design a custom (serious) game with a specific purpose (cognitive assessment) as opposed to gamifying an existing cognitive assessment instrument. Game-like features can be utilized in a non-game context (Gerling & Masuch, 2011), to help encourage repeated use of the tool by patients. However, using a serious game approach allowed us to start with a game that is known to be enjoyable for many users and then assess the cognitive abilities required by the game. Our assumption was that finding an existing game that can be adapted to measure cognitive abilities would be easier than trying to gamify established methods of cognitive assessment so that they would be fun to play repeatedly.

In summary, the most commonly used tests for cognitive assessment of elderly patients (e.g. MoCA, MMSE) require trained staff, and use paper-and-pencil administration. Since they are not designed for self-administration by patients and they are not suitable for repeated testing we sought new methods of cognitive assessment using a serious game approach.

A Framework For Decision Making

Hospitals, and their component parts (such as emergency departments) are complex socio-technical systems. How can a radically different cognitive assessment technology fit within these existing systems? We were fortunate in this case that our research team consisted not only of human factors specialists and engineers (the first three authors of this paper), but also a neuropsychologist and an emergency physician with a research interest in delirium (the fourth and fifth authors). Thus, our research was an instance of participatory design, where two of the researchers and designers were potential users of the system that we sought to develop.

We began by noting issues with current delirium detection methods in hospitals. The diagnosis of delirium is complicated by the frequent inability of clinical staff (nurses, physicians and other clinicians) to recognize delirium. Even when they know what to look for, care staff may miss changes in a patient's cognitive function because the time course of these fluctuations in a delirious patient is shorter than the interval between observations made by staff.

Relatively frequent assessment of cognitive function is needed because evidence of fluctuating cognitive ability is required to make a diagnosis of delirium. Higher frequency of assessment also increases the chances of detecting delirium earlier. This is desirable since undetected delirium has adverse consequences that can be mitigated by prevention or early treatment of the underlying cause.

We began our research on new forms of cognitive assessment by exploring the use of motion sensors to create game interfaces on devices like the Nintendo Wii mote, Apple iPhone and the Xbox Kinect. We initially envisioned a device that would engage the patient in instrumented activities of their choice, such as puzzles, news, or games. The resulting data would then be used for diagnosis (Figure 1). As shown in the diagram, our initial framework also included gait analysis (i.e. a person’s walking ability) to monitor patient activity levels. This could potentially provide critical insight into disturbances in the sleep-wake cycle, a common symptom among delirious patients.

In the framework shown in Figure 1, a diagnostic puzzle test or game is used for cognitive assessment and the results of
this assessment are then combined with EHR data and software reasoning to determine the risk of delirium onset.

![Diagram showing a framework for detection of delirium.]

INITIAL GAME PROTOTYPES

In the first game prototype that we developed, Nintendo Wiimote technology was used to provide a physical interface as well as a rich data source for evaluation of patients through their movements. Patients were presented with a puzzle (inspired by one of the tasks in the MoCA) that assembles into the shape of an animal (i.e. a tangram) (Figure 2), and they were evaluated in terms of whether they completed the puzzle, as well as the manner in which they performed the task.

Providing the patient with a kinematic interface allowed for the evaluation of visuo-spatial ability since the patient had to evaluate the block's current position relative to the puzzle outline and manipulate it by moving the Wiimote. Patient attention was also implicitly measured since successful performance required that the patient focus on the puzzle task.

The puzzle was complete when all the pieces had been properly oriented in the template. Metrics such as part trajectories, and the time taken to complete the puzzle, could be extracted for analysis. Once the puzzle was completed, the patient was asked to identify the animal outlined by the shape.

The task was designed to mimic a physical puzzle as closely as possible. The platform used to implement the cognitive test allowed a rich record of patient performance to be collected. For example, motion interaction data could be digitized at a rate of approximately 100Hz, with spatial and angular resolution in centimeters and degrees, respectively.

The animal assembly game that we developed was strongly motivated by previous work on the MoCA, and by research pointing to the importance of focused attention, and visuo-spatial ability, as diagnostic cues of delirium. Meagher et al., (2007) found that 97%, and 87%, of delirious patients suffered from deficits in focused attention, and visuo-spatial ability, respectively.

However, pilot testing of the animal assembly prototype showed that it was difficult to use for able-bodied people and would be impossible to use for many of the elderly patients who were its target users. The main reason for this difficulty was that the physical ergonomics of operating the Wiimote controller and moving the arm (and associated visual parts of the animal on the display) were too demanding.

After trying the Wiimote controller, our next prototype utilized the Xbox Kinect. By removing the use of the handheld controller, we thought that the ergonomic aspect of the task would be improved. In this prototype, the task was to act as a soccer goalie and move the hands left or right to stop a goal being scored (Figure 3). The development of this prototype was motivated by research that had found that changes in choice reaction time were associated with delirium onset (Lowery, Wesnes, & Ballard, 2007). In this case, there were two choices (move left or move right) and the person could be scored not only in terms of whether they caught the ball or not but also in terms of how quickly they caught the ball.

However, as with the earlier prototype, ergonomic considerations ruled out this prototype. Although the goal keeping game concept was initially interesting to our emergency physician consultant, when the prototype was shown to other clinicians, they felt that many elderly patients would be too frail to perform the task using arm movements with the Kinect interface.

![Figure 2. An animal assembly task.](image2)

Based on our experience with the first two prototypes we decided to focus on a tablet-based solution, as it would require less physical effort on the part of users. Additional benefits are that tablets can be easily sanitized for multiple patient use, and they are relatively inexpensive to purchase and operate.

![Figure 3. Kinect-based goal-keeping prototype.](image3)
WHACK-A-MOLE FOR COGNITIVE ASSESSMENT

Many of the current tests of cognition have been developed to diagnose specific conditions such as the MoCA, which is created to screen for mild cognitive impairment, and the CAM, which assesses a patient for delirium. However, there is a lack of cognitive assessment methods that assess transitory conditions that occur between normal cognition and cognitive failure. Assessing transitory conditions such as delirium with fluctuating levels of cognition requires more frequent testing, and this is typically not feasible with current tests that require administration by physicians or other staff who are already overloaded with duties. Thus, there is a need for more frequent cognitive testing that does not require supervision or administration by health care professionals. Self-administration of cognitive tools should decrease costs and allow for more frequent assessment. But how could we develop a cognitive test that would be easy, and enjoyable enough, to self-administer repeatedly? To address this challenge, we developed a serious game that assesses cognitive status, basing it on a well known, and popular, existing game called whack-a-mole. Using the game, clinicians could then repeatedly collect cognitive assessments in order to observe health trends. This should allow more effective monitoring of cognitive status and permit changes in cognitive status to be detected more quickly.

The whack-a-mole game that we developed (Figure 4) was designed to measure inhibition, which is an executive function (EF) that regulates one’s ability to suppress behaviours and thoughts (Miyake & Friedman, 2012). This EF is important for applying focused attention in tasks where distractors are present, such as driving. A decrease in this EF is associated with age-related changes, thereby acting as a sign of cognitive decline (Fisk & Sharp, 2004; Salthouse, Atkinson, & Berish, 2003). The variant of the whack-a-mole game that we developed was intended to predict inhibition ability through an engaging and enjoyable task modelled on a go/no-go discrimination task (Yechiam et al., 2006).

The design of our screening tool was informed through a requirements gathering analysis (Tong & Chignell, 2013). We met with a team of clinicians, researchers, and occupational therapists experienced in working with elderly patients with cognitive impairments. This process enabled us to understand individual users (e.g. clinicians, patients), and user tasks (e.g. test administration, reviewing results and to design our screening tool accordingly.

The whack-a-mole game that we developed is intended for use on touch-based devices, as they are portable and lightweight. The touch-based interface is potentially more intuitive for elderly users than traditional computer interfaces that require keyboarding skills and/or the use of a pointing device. Our requirements analysis also indicated that a tablet-based game would be suitable in a health care setting such as a hospital emergency department, and long-term care, as the tablet can be easily sanitized for multiple patient use, requires minimal space, and is low-cost.

Our game-based cognitive assessment collects performance data from patients, which can then be provided in an interpreted form to clinicians as a supplement to other cognitive assessment measures. Our assessment method uses a mobile, touch-based interface and assists clinicians in assessing the cognitive health of their patients.

Our initial research on the whack-a-mole game had the following objectives:

- Comparing the game performance to cognitive ability tests, and
- Identifying usability issues associated with using a touch-based tablet device.

Usability Study

To achieve the objectives, a usability study was conducted at the University of Toronto with 24 healthy, non-elderly participants. The experiment consisted of cognitive ability tests, and the tablet-based cognitive assessment game. The computer-based study involved the administration of psychological tests that measure three EFs: inhibition, shifting, and updating (Miyake & Friedman, 2012). The experiment was designed as a within-subjects repeated-measures design. The independent variables were four adjustable game parameters: target size (150, 175, or 200 pixels), grid size (2x2 or 3x3), distractor style (present or absent), and feedback style (present or absent). The distractor was a butterfly image which participants were told not to hit. If feedback was present a checkmark appeared over the hole when a mole was hit and an x-mark appeared over the hole when a butterfly was hit. Figure 4 shows one of the moles appearing in the 3x3 grid. For more details on the conduct of the experiment see (Tong & Chignell, 2014).

![Figure 4. Screen capture of the whack-a-mole game showing a mole ready to be whacked.](image-url)
There was a significant tradeoff in speed and accuracy between participants ($r = 0.82$). We incorporated speed and accuracy into an overall measure of performance by combining z-scores for speed and accuracy as shown in Equation 1:

$$\text{Overall Performance Score} = Z(\text{accuracy}) - Z(\text{time})$$

Note that in this case “accuracy” is actually deviation in pixels between the touch point and the centre of the target. The z-scores in Equation 1 are subtracted (reversed) because lower pixel deviations, and lower response times, indicate better performance.

As shown in Table 1, correlations between the EF abilities and both time and accuracy considered alone were not significant. However, as can be seen in the table, the overall performance score that combined z-scores for speed and accuracy was significantly related to all three EF abilities and to inhibition in particular ($r = 0.60$).

At the end of the experiment, participants were asked to complete an exit questionnaire with nine questions focused on the usability of the game and tablet. Sixteen out of 24 participants either agreed or strongly agreed that their touches were not being registered with the tablet.

A principal component analysis (PCA) was then conducted on the questionnaire data to reduce the questions into related usability themes. The PCA was conducted on the nine items (Table 2) with orthogonal rotation (varimax). The Kaiser-Meyer-Olkin (KMO) measure verified the sampling adequacy for the analysis, KMO = 0.598, and only two KMO values for individual items were not above the acceptable limit of 0.5 (Field, 2013). Bartlett’s test of sphericity $\chi^2(36) = 51.412$, $p < .05$, indicated that correlations between items were sufficiently large for PCA.

Table 1. Overall Game Performance correlated with cognitive ability scores.

<table>
<thead>
<tr>
<th>Inhibition</th>
<th>Shifting</th>
<th>Updating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z(time)</td>
<td>-0.257</td>
<td>0.136</td>
</tr>
<tr>
<td>$-Z(\text{accuracy})$</td>
<td>0.011</td>
<td>-0.113</td>
</tr>
<tr>
<td>$-Z(\text{accuracy}) - Z(\text{time})$</td>
<td>-0.600**</td>
<td>-0.399*</td>
</tr>
</tbody>
</table>

*Note that in this case “accuracy” is actually deviation in pixels between the touch point and the centre of the target. The z-scores in Equation 1 are subtracted (reversed) because lower pixel deviations, and lower response times, indicate better performance.

Table 2. Summary of exploratory factor analysis results for the exit questionnaire using rotated factor loadings ($N = 24$). Factor loadings over .40 appear in bold.
An initial analysis was run to obtain eigenvalues for each component in the data. Three components had eigenvalues over Kaiser’s criterion of 1 and in combination explained 50.32% of the variance. The scree plot showed an inflexion justifying retention of three components. Table 2 shows the factor loadings after rotation. The items that cluster on the same components suggest that component 1 represents tablet setup, component 2 represents text and image readability, and component 3 represents game speed and discriminability.

A reliability analysis was also performed on the three factors, with only the first factor having sufficiently high (Cronbach’s α > 0.7) reliability (with Cronbach’s α < 0.5 for each of the other two factors).

A k-means cluster analysis was performed on the exit questionnaire data to identify subgroups of participants who were similar to each other. Questions 1, 2 and 6 were combined into a single scale as they were related to a reliable factor and they also relate conceptually to tablet setup. Next, questions 4 and 5 were combined into one variable regarding text and image readability. Finally, questions 8 and 9 were combined into one variable as those questions are related to game speed. Overall, there were four variables in the cluster analysis, averaged questions 1/2/6, averaged questions 8/9, question 3, and question 7.

Based on an initial cluster analysis, there were significant differences (p < .05) in the averaged questions 1/2/6 scale and question 3. Another cluster analysis was then conducted (partitioning into two groups) using only these two variables. Figure 6 shows the participants (labeled by the number of the cluster they were in: 1 or 2) in the scatterplot of 1/2/6 scale vs. question 3. The participants labeled with a (cluster) 1 are users who were comfortable with the tablet setup and who felt that their touches were being registered by the tablet, while participants labeled with a (cluster) 2 were uncomfortable with the tablet setup and who felt that some of their touches were not being registered by the tablet.

Our usability study with the non-elderly university sample showed that the whack-a-mole game does measure EF ability (predominantly inhibition ability), consistent with our goal in developing the game. However, there were also usability problems with the touch interface in our game with two thirds of our university (non-elderly) sample indicating that some of their touches were not being registered.

Usability issues identified from the study included problems that some people had in getting their touches registered, and the lack of haptic and audio feedback. To address the need for calibration, we propose using the overall measure of performance (that combines speed and accuracy) to calibrate each user’s game experience by adjusting the overall game difficulty. Based on a university population, the results from our first study suggested that our screening tool could potentially predict changes in EF abilities, but that further refinement of the user interface is needed.

Recommendations

Based on the findings from the usability study, we propose the following guidelines for the design of game-based cognitive assessments for the elderly. These guidelines should apply to game-based cognitive assessment in general, and not just the whack-a-mole game that is the focus of this paper.

1. Conduct a user requirements analysis with your users to determine the needs and constraints of your user population to inform the prototyping process.
2. Design game components to reflect psychometric properties of existing neuropsychological tasks. For instance, in designing a game that intends to measure updating ability (the ability to add and/or remove items from working memory), researchers should look to validated updating tasks such as the Trail Making Task, Part B (Salthouse, 2011), and should incorporate relevant features of those tasks consistent with the goals and aesthetics of the game.
3. Adjust game characteristics based on the capabilities of the user so that a satisfying level of game play can be achieved.
4. If the serious game involves speed and accuracy, use the overall performance metric presented in this paper to provide a global level of performance.
5. Carry out usability testing to identify problems with the serious game that may be a threat to its validity as a measure of the cognitive ability (or abilities) of interest.

Clinical Study

We observed usability problems with the whack-a-mole game in our usability study at the University, but in spite of that the game was able to measure inhibition ability. Could we
also use the game to measure inhibition ability in an elderly population, or would the usability problems existing in the current version of the game be insurmountable for those elderly users?

We carried out an assessment of the whack-a-mole game’s usability at Sunnybrook Health Sciences Centre in Toronto, under the supervision of the fifth author, and consistent with the requirements of a human subjects ethics protocol that was approved by the Sunnybrook Review Ethics Board (and University of Toronto Review Ethics Board). Participants were recruited from the Sunnybrook Health Sciences Centre Emergency Department. The inclusion criteria were that participants were over the age of 70 years, and present in the emergency department for a minimum of four hours. Eligible participants were given the Android tablet and asked to play the whack-a-mole game. We found that the game was not usable by the elderly sample at the hospital and that the problem of registering touches was much more severe for the elderly users. The serious game (and the tablet) registered hits on moles most readily when a quick and light touch was used with the finger in a vertical position as it pointed down to meet the surface of the tablet. This type of touch, while natural for frequent mobile and tablet users, seemed to be unnatural and unusable for the elderly population that we were interested in. Based on this result we are currently looking in to ways to make it easier to register touches made by elderly users when playing whack-a-mole on an Android tablet.

CONCLUSIONS

This paper presented the design of a novel cognitive assessment tool for detection of cognitive changes. With a rapidly aging population, low cost and efficient methods of ongoing cognitive assessment of the elderly are urgently needed. In this paper, we discussed the design of a whack-a-mole game for cognitive assessment and summarized initial results concerning its validation. We also discussed human factors requirements associated with serious games of this type.

Our assessment tool has been designed to take into account the needs of different target users, and of different clinical requirements in health care settings. However, there are significant challenges concerning the usability of our tool with elderly participants. It is clear that further work is needed before the game can be an effective cognitive assessment tool in the kind of clinical setting for which it was designed.

The lessons learned from this research demonstrate that serious games can potentially be designed for use as decision support tools through gathering requirements to gain a better understanding of users, and user tasks. However, the ergonomics of devices are of particular concern with elderly users. Mobile and touch-based interfaces are promising ways to screen for cognitive impairments. However, before their benefits such as improved clinician efficiency can be realized, ergonomic issues with these interfaces need to be addressed.

Our experience with the whack-a-mole game shows that it is necessary to adapt serious games to make them usable by people with different levels of manual dexterity, and it also seems useful, if not necessary, to combine speed and accuracy data into an overall measure of game performance. We found that a standardized performance measure that takes account of both speed and accuracy is a better predictor of EF ability than is either accuracy or response time alone. Currently the emphasis of our research is (1) on improving the psychometric properties of the game in terms of its validity for cognitive assessment, and (2) on calibrating and enhancing the physical touch interface to the game so that it is usable for elderly players.

Once a serious game can be shown to be measuring the construct appropriately, there remains the important issue of refining it so that it is genuinely fun for older people to play (McLaughlin, Gandy, Allaire, & Whitlock, 2012). It is likely that a range of serious games will need to be developed for cognitive assessment in the elderly, not only to measure different elements of cognitive ability, but also to provide appropriate entertainment for people with different skills and interests.

REFERENCES

