Editorial Message:
Special Track on the Programming Languages

Chang-Hyun Jo (Chair)
Department of Computer Science
California State University
at Fullerton
Fullerton, CA 92834-6870, USA
+1 (714) 278-7255
jo@ecs.fullerton.edu

Marjan Mernik (Co-Chair)
Faculty of Electrical Engineering
and Computer Science
University of Maribor
Maribor 2000, Slovenia
+386 (2) 220-7455
marjan.mernik@uni-mb.si

Barrett R. Bryant (Co-Chair)
Department of Computer and
Information Sciences
University of Alabama at Birmingham
Birmingham, AL 35294-1170, USA
+1 (205) 934-2213
bryant@cis.uab.edu

1. OBJECTIVES OF THE TRACK
Programming languages are programmers' most basic tools. With appropriate programming languages one can drastically reduce the cost of building new applications as well as maintaining existing ones. In the last decades programming languages have made a large shift from procedural and structured programming towards new programming paradigms such as logic, functional and object-oriented programming. The main driving force was and will continue being to better express programmer's ideas. Therefore, research in programming languages is an endless activity and the core of computer science. New language features, new programming paradigms, better compile-time and run-time mechanisms can be foreseen in the future. The PL Track aims at providing researchers and practitioners in the world with opportunities to present their ideas and experience in designing new programming concepts and implementing programming languages.

Original papers and implementation reports were invited in all areas of programming languages. These included: compiling techniques, domain-specific languages, formal semantics and syntax, garbage collection, language design and implementations, new programming language ideas and concepts, new programming paradigms, practical experiences with programming languages, program analysis and verification, program generation and transformation, programming languages from all paradigms (agent-oriented, aspect-oriented, functional, logic, object-oriented, etc.), and visual programming languages.

2. STATISTICAL INFORMATION
The response to the call for papers was better than in the previous years. A total of twenty papers were received, representing thirteen countries (Argentina, Brazil, China, Denmark, France, Greece, Italy, Israel, Korea, Portugal, Spain, UK, USA). Eight regular papers and one poster paper were accepted after a rigorous reviewing process performed by the program committee and additional reviewers. Thus, the acceptance ratio for the track was 40%.

3. THE CONTRIBUTED PAPERS
Michaelson, Hammond, and Serot [1] describe a domain-specific language called FSM-Hume. It is a subset of Hume based on generalized linear bounded automata with statically determinable time and space use.
Gorla and Pugliese [2] present a programming notation (µKLAIM) for mobile processes. Special emphasis is put on security mechanisms of host and agent data.

Alvez, Lucio, and Orejas [3] present an efficient implementation of constructive negation based on Shepherdson's operators.

Mosses [4] shows how the use of labels in Structural Operational Semantics can provide simpler and more modular descriptions of programming languages.

Lima, Lins, and Santos [5] present µΓCMC – an abstract graph reduction machine for the implementation of lazy functional languages. The compilation of Haskell programs into the kernel of the µΓCMC is presented and benchmarked against the GHC (Glasgow Haskell Compiler).

Logozzo [6] present a generic abstract domain for symbolic modular analysis and its soundness with trace semantics. It is shown how it can be used to perform an incremental modular analysis.

Surazksky and Gil [7] present a programming technique based on templates for implementing type safe covariance in C++.

Ancona and Cazzola [8] try to identify the essence of reflection. The minimal set of characteristics that a software system must have to be considered reflective is identified.

Betinni, Bono and Likavec [9] extend the core calculus of classes and mixins with higher-order mixins.

4. ACKNOWLEDGMENTS
We wish to express our gratitude to all authors, program committee members and additional reviewers of the PL Track at SAC 2004, as well as the Symposium General Program Chairs. Without their valuable efforts and contributions it would not have been possible to organize this track. We look forward to meeting with the authors at SAC 2004 and hope to provide a stimulating atmosphere for them to engage in interesting discussions at the conference.

5. REFERENCES