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ABSTRACT

We present an application of combinatorial designs and variance analysis
to correlating events in the midst of multiple network faults. Network fault
model is based on the probabilistic dependency graph that accounts for
the uncertainty about the state of network elements. Orthogonal arrays
help reduce the exponential number of failure configurations to a small
subset on which further analysis is performed. The preliminary results
show that statistical analysis can pinpoint the probable causes of the ob-
served symptoms with high accuracy and significant level of confidence.
An example demonstrates how multiple soft link failures are localized in
MIL-STD 188-220’s Datalink layer to explain the end-to-end connectiv-
ity problems in the network layer. This technique can be utilized for the
networks operating in an unreliable environment such as wireless and/or
military networks.

1 INTRODUCTION

To improve the network ability to provide reliable services to end
systems, a management system needs to efficiently and accurately
identify the occurring network failures [13, 25]. A common proce-
dure is to correlate network or service layer symptoms; however,
this process is usually impaired by the large number of a system’s
layers and parameters [1, 8, 22], their interactions, and the uncer-
tainty about their state.

This paper presents a preliminary study of applying statistical
techniques [16, 18] known in the engineering quality control to
cope with the exponential complexity that often hampers the event
correlation process. The concept oforthogonal arrays[10] is used
to select a feasible number of potential failure combinations. Each
combination is evaluated with respect to the expected number of
explained symptoms. The array’s data that correspond to particu-
lar network elements are then statistically analyzed to assess with
some confidence level their impact on the accuracy of symptom
correlation. The elements that account for the highest variations
of the correlation accuracy are selected as probable failure points.

Most of the existing techniques assume that the existence of mul-
tiple simultaneous faults is negligible [13]. Such an assumption
is justified only for networks operating in a reliable environment.
On the other hand, soft link failures due to jamming, misbehaving
nodes, or difficult weather conditions are not likely to be limited
to a single link. Similarly, battlefield or other military applications
are required to function properly in an unreliable environment,
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where localization of multiple faults is essential. The method pre-
sented in this paper admits multiple network failures to occur at
the same time. The preliminary investigation is promising—future
research will further explore applications to specific military sys-
tems and protocols, e.g., MIL-STD 188-220 [7] operating in the
midst of multiple link failures.

2 EVENT CORRELATION

Event correlation [11] is a commonly used technique for isolating
the root cause of a problem from its reported symptoms. Effi-
cient and precise event correlation is essential for reducing net-
work maintenance costs and improving the availability and per-
formance of network services.

The problems typically addressed in the literature are (1) incom-
plete knowledge about the existence of causal relationships be-
tween network events [13], (2) possibility of incomplete symptom
observations or spurious symptoms [9, 25], (3) system adaptabil-
ity to configuration changes [1], (4) ability to learn event correla-
tion patterns [14], and (5) temporal event correlation [15]. Most
of these techniques rely on the assumption that the existence of
multiple simultaneous faults is negligible.

Relationships between network objects are often represented us-
ing a dependency graph [8, 12, 13]. Dependency graph is a di-
rected acyclic graphG(V,E) whose nodesV correspond to net-
work objects (both physical and abstract) and edgesE describe
dependencies between the objects. Edge(vi, vj) ∈ E repre-
sents the fact that objectvi affects objectvj , which we denote
by vi → vj . Every graph node may be in one of its possible
states, e.g., “ok” or “not ok.” In some applications it may be
useful to consider other states, e.g., “transient.” Nodes of de-
pendency graph may be marked asobservationor failure nodes.
Some nodes are neither observation nor failure, while others may
be marked as observation and failure at the same time. Intu-
itively, observation nodes correspond to network objects associ-
ated with observed symptoms, while failure nodes correspond to
objects where unobservable root faults may happen. Let us de-
note byS ⊆ V a set of all observation nodes, and byP ⊆ V a
set of all failure nodes. With everyvi ∈ P we associate a value
pri,l = Prob{vi is in statevi,l}. This value corresponds to our
prior belief that nodevi is in statevi,l, which is independent on
any symptom observations. We define functionb : E → [0, 1]
such thatb(vi,l, vj,k) = Prob{vj = vj,k | vi = vi,l}.

We define problem as an assignmentvi = vi,l, wherevi,l 6= “ok.”
We say that problemvi = vi,l explains eventvj = vj,k if and
only if there exists a path inG from vj to vj . Problemvi = vi,l
is a root cause if there does not exist another problemvj = vj,k
that explainsvi = vi,l. We say that the set of problemsP =
{vi = vi,l, vi ∈ P} explains the set of symptomsS = {vj =
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vj,l, vj ∈ S} if and only if for every symptom inS there exists
its explanation inP. We are interested in a technique that given a
set of observed symptomsS computes the set of problemsP such
thatProb{P|S} is maximum.

Event correlation may be approached as a combinatorial problem.
The following optimal algorithm findsP:

• Generate the set of all possible state assignments to nodes inP .
• For each assignment compute the probability that it explains

the set of observed symptoms.
• Choose asP the assignment with the highest probability.

It may be observed that in the worst case the above algorithm has
exponential complexity. The average computational complexity
may be reduced by generating assignment combinations starting
from those with the smallest number of problems [13]. This tech-
nique would be applicable if the probability of multiple simultane-
ous faults were very small. The approach proposed here addresses
findingP when probability of multiple simultaneous faults is high,
which is the case in, e.g., wireless and/or battlefield networks.

3 NETWORK FAULT SCENARIOS

The presented technique is applicable to correlation of any net-
work events (in data-link, network, transport and application lay-
ers) whose causal relationships may be described using a depen-
dency graph. The dependency graph is typically created by an
expert who assigns values to all required parameters based on the
system specification, history of previous failures, etc.

The example used in this paper considers link failures in data-link
layer observed as a loss of end-to-end connectivity between de-
vices in transport or application layer. LetL be the the set of all
data-link layer links andC be the set of all end-to-end source-
destination pairs. We define dependency graphG(L ∪ C, E),
where the set of all failure nodes,P = L, and the set of all
observation nodes,S = C. The set of edges inG is defined as
E = {(pi, cj) | pi ∈ L, cj = (vk, vl) ∈ C} and there exists
a network path betweenvk and vl that includes linkpi. With
every graph nodepi ∈ P we associate three values: 1 (up), 2
(down), and 3 (intermediate) indicating that linkpi is fully oper-
ational, broken, or in intermediate state (e.g., congested, out-of-
sync, in transient error, etc.), respectively. The probabilities that
the node assumes these values arepri,1, pri,2, andpri,3, where
pri,1 + pri,2 + pri,3 = 1. With every node inS two values are
associated: 1 (no symptom) and 2 (symptom observed).

Functionb(pi,l, cj,2) represents confidence that statepi,l of link pi
results in observation of connectivity problems between the source
and destination denoted bycj . The value ofb(pi,l, cj,2) less than 1
indicates uncertainty if linkpi is used for communication between
source and destination denoted bycj , if such a communication has
been attempted, or if link failure type is severe enough to cause the
high level problem.

To perform root cause analysis of connectivity problems between
nodes A and B one needs to know the path over which packets be-
tween A and B are routed. This information is available in routing
or data-link layer forwarding tables. However, due to automatic
system reconfiguration and high overhead associated with collect-
ing routing tables, it may not be possible to make the most up-to-
date routing information available to the correlation process. To

represent possible causes of connectivity problems between nodes
A and B the graph should include all links that could be used for
transferring packets between A and B. Functionb should differ-
entiate the links with respect to their likelihood of having been
utilized in the communication between the two nodes.

Figure 1 presents dependency graph for a 5-node source routing
wireless network. While in general building a dependency graph
for wireless networks is difficult, source routing makes it possible
to determine which links could have been used for communica-
tion between two nodes when this communication fails. Since the
information is readily available to both communicating nodes, it
may be provided to the correlation system along with the failure
symptom. In addition, it is unnecessary to build the complete de-
pendency graph in advance—it may be dynamically extended by
adding observation nodes only when corresponding symptoms ar-
rive. Some source routing protocols (e.g., MIL-STD 188-220’s
Source Directed Relay [7]) find not only the best route between
two nodes A and B but also include several alternative routes in
a routing tree. All links included in any of the routes are pre-
sented as possible causes of connectivity problems between A and
B. The values assumed by functionb for links included in the pri-
mary route (appear in bold) are greater from the values assumed
by function b for links not included in the primary route. Ta-
ble 1 presents dependency graph parameters for the example in
Figure 1.

pi,l
up intermediate down

primary-route link 0 0.7 1.0
not a primary-route link 0 0.1 0.3

Table 1: Values ofb(pi,l, cj,2) for the dependencies in Figure 1.

4 COMBINATORIAL DESIGNS PARADIGM

Recall from Section 3 that the network environment considered
here is described by a set of links, each being in up, down, or in-
termediate state at a given point in time. In a wireless intranet con-
sisting ofn nodes, there are up ton(n−1)/2 links, which leads to
an enumeration of3n(n−1)/2 possible interconnection configura-
tions. This makes it infeasible to apply any kind of analysis based
on the entire set of configurations as even for small values ofn,
the number of configurations becomes prohibitively large. For ex-
ample, in MIL-STD 188-220B [7] Intranet Layer, there may be as
many asn = 16 nodes yielding up to3120 = 1.8e57 configura-
tions.

To cope with the above problem, we will adopt the combinatorial
design paradigm [4, 6, 10, 16], which has been successfully used
in applications ranging from medicine and biology, to quality en-
gineering [18], to testing network interfaces [24, 23] and software
intensive systems [3, 4, 5].

4.1 Statistical Paradigm

Suppose that a system is described by parametersp1, . . . , pk,
where eachpi assumesqi valuespi,1, . . . , pi,qi . In the statistical
terminology, we say that eachfactor pi has alevel of qi [6, 10].
The number of configurations is therefore equal to

∏k
i=1 qi. A
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A-B A-C A-D B-C C-E D-EC-D

A—E

A—D C—E

A—C

A—B B—EB—C

B—D D—EC—D

Figure 1: Dependency graph for a sample 5-node network. Primary links appear in bold.

variation of the combinatorial design paradigm, calledfactor-
covering designs[6], generates configurations that cover allm-
way interactions of factors such that for anym ≤ k factors
pi1 , . . . , pim and any valuepij ,lj for eachpij , there exists a con-
figuration with the values ofpi1,l1 , . . . , pim,lm . For example, for
k = 10, where eachpi assumes binary values of0 and1, there are
210 possible configurations. However, all 2-way interactions can
optimally be covered by only six configurations of (0000000000),
(0000111111), (0111000111), (1011011001), (1101101010), and
(1110110100) [6]. It can be shown [3] that, for fixedm, the num-
ber of configurations in factor-covering designs grows logarithmi-
cally in the number of factorsk.

If a design satisfies an additional requirement that eachm-way
interactionpi1,l1 , . . . , pim,lm appears the same number of times
in the generated set of configurations, it is called anorthogonal
array (OA) [10, 17]. An OA withN rows,k columns, and each
qi = q, is denoted asOA(N, qk). Orthogonal arrays are the sta-
tistical basis for the Taguchi methods [18] widely used in engi-
neering quality control. The penalty for having a balanced set
of m-way interactions is a larger set of configurations, which no
longer grows logarithmically. For example, some of the standard
OAs areOA(k + 1, 2k) for m = 2 andOA(2k, 2k) for m = 3.

4.2 Applications

In the application to software testing [3, 4, 5], the software under
test is described by a set of test parameters (user inputs, external
events, fields on the screen) such that each interaction of test pa-
rameters’ values gives a different test configuration. The combina-
torial designs offer a methodology for selecting a relatively small
number of test configurations from the infeasibly large number of
possible ones. This approach is used in several commercial prod-
ucts such as Bell Labs CATS system [19] and Telcordia AETG
system [3]. The AETG system implements a variety of configu-
ration generating algorithms, and has been applied for example to
the testing of the Integrated Services Control Point [5].

In the network environment considered in this paper, the number

of interconnections used to compute the model probabilities is re-
duced by applying a combinatorial design withk ≤ n(n − 1)/2
factors. Thei-th link is described by factorpi with valuespi,1 = 1,
pi,2 = 2, andpi,3 = 3 (all levels areqi = q = 3). Since our event
correlation technique makes its decisions based on statistical anal-
ysis of the entire set of configurations, orthogonal arrays are the
preferred one of the two types of designs.

In the applications of the paradigm reported in the computing lit-
erature [3, 5, 23], the values ofm ≥ 4 are rarely used. Typically,
pairwise (m = 2) or triple (m = 3) interaction coverage is con-
sidered sufficient. Empirical studies show that very few additional
system faults can be revealed by increasingm beyond three, at the
expense of the undesirable increase of the number of configura-
tions. Therefore, the network management system considered in
this paper should balance its computing power, the desired fault
identification delay, and the number of network nodes to adap-
tively choose either pairwise or triple interactions. The technique
presented here uses OAs with each column assigned to a single
factor (link), which may confound the effects of a single link with
those of link interactions. Another possibility is to use larger OAs
with additional columns assigned to factor interactions, but such
designs add significant computing complexity.

5 COMBINATORIAL DESIGNS IN EVENT
CORRELATION

An event correlation algorithm evaluates each interconnection
configuration with respect to its ability to explain the set of nodes
where symptomsSobs ⊆ S have been observed. In this process,
eachr-th row of the correlation OA is assigned rankingyr that es-
timates the expected value of the number of explained symptoms:

yr =
∑

cj∈Sobs

(1−
∏
pi∈P

(1− b(pi,lr , cj,2))) (1)

The computation in (1) can be done in advance inO(|S| ∗ k2)
time. Then, the real-time event correlation adopts the well-known
statistical techniques [16, 18] to determine factors (links) whose
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potential failures account for the greatest variations iny across
all rows of the OA. The entire real-time computation can be per-
formed inO(kN) = O(k2) time.

A statistical technique used here is a simple ANOVA [16, 18] per-
formed for each column in the OA. Let us introduce the following
notation:

• yi,l—value ofy under levelpi,l
• Yi,l—sum ofy under levelpi,l
• ni,l—number of rows with levelpi,l (all ni,l = n)
• Ȳi,l—average ofy under levelpi,l
• T—sum ofy across all rows
• T̄—average ofy across all rows =T/N

The total variabilitySST of rankingy can be partitioned into the
links’ main effects (SSi for i-th link) and the residual effect. The
residualSSres contains the estimate of the effects caused by the
link interactions. Let us first compute the sum of squares of the
differences between the effects of the link levels and the grand
average as follows:

SSi = n ∗
q∑
l=1

(Ȳi,l − T̄ )2 (2)

The residual is computed by subtracting the cumulative links’
main effect from the total variability measure:

SSres = SST −
k∑
i=1

SSi (3)

The degrees of freedom forSSi andSSres are equal toν1 = q−1
andν2 = (N − 1)− k ∗ (q − 1), respectively. For each linki, the
value ofMSi = SSi/ν1 estimates the individual variance derived
from the variance of the sample averagesȲi,1, . . . , Ȳi,q. To evalu-
ate the link main effect,MSi is compared with the residual mean
squareMSres = SSres/ν2 using the standardF -test [16, 18],
whereFdata = MSi/MSres. The value ofF can also be ob-
tained from the look up tables [18] asFα,ν1,ν2 based on the de-
sired significance levelα. If Fdata ≥ Fα,ν1,ν2 , we can claim with
confidence (1−α) that factorpi affects rankingy. In this case, the
level ofpi that corresponds to a high value ofy is the statistically
estimated state ofi-th link. If Fdata < Fα,ν1,ν2 , we do not have
enough confidence to draw any conclusion about the state ofpi
from the set of observed symptoms.

It is worth pointing out that the technique presented here does not
currently attempt to produce a set of problemsP explaining all
observed symptomsSobs. Instead, each failure nodepi passing
F -test is assigned statepi,l that is believed to have contributed to
observing symptoms inSobs.

The current rankingy in (1) favors faults that are able to explain
the most observed symptoms. The faults belonging to the first for-
mulated fault hypothesis may be unable to explain all the observed
symptoms. A separate run of the algorithm is necessary to find the
root cause of the symptoms not explained by the first fault hypoth-
esis. While this approach seems reasonable, we believe that fur-
ther research should bring about more versatile ranking scheme
that allows to find explanation for all the observed symptoms in
the first iteration. Such scheme could take into account not only
how well a symptom is explained by a given configuration, but

links configuration y links configuration y
1 3333333333 3.468 2 1311122312 1.470
3 2322211321 4.000 4 3131112231 3.460
5 1112231213 2.610 6 2123323222 4.000
7 3232221132 3.679 8 1213313111 1.800
9 2221132123 3.510 10 3313111223 3.370

11 1321233232 3.868 12 2332322211 3.058
13 3111223121 3.370 14 1122312133 3.544
15 2133131112 2.530 16 3212332322 3.190
17 1223121331 3.433 18 2231213313 3.301
19 3323222113 3.433 20 1331311122 3.460
21 2312133131 2.230 22 3121331311 3.180
23 1132123323 3.460 24 2113212332 3.349
25 3222113212 3.510 26 1233232221 3.853
27 2211321233 3.370

Table 2: Orthogonal array for 10 links—columns correspond to
links (A-B), (A-C), (A-D), (A-E), (B-C), (B-D), (B-E), (C-D), (C-
E), and (D-E).

also how likely it is to find this symptom’s explanation in other
configurations. Another scheme can rank configurations accord-
ing to the likelihood that at least one symptom is left unexplained.
This would put more weight on the faults that can explain few
symptoms, but are the only ones to do so.

In the MIL-STD 188-220 example with 10 links, we use an
OA(27, 313) [10] shown in Table 2, where the last three factors
are removed,N = 27, n = 9, q = 3, ν1 = 2, ν2 = 6, and each
2-way interaction appears three times.

Suppose that the set of observed symptoms isSobs = {(A ↔
D), (C ↔ E), (A ↔ E), (B ↔ D)}. The minimum ac-
ceptable level of confidence is assumed 95%, with the minimum
F0.05,2,6 = 5.14. To perform the analysis of variance, we used
Splus—an interactive environment for data analysis and graph-
ics [2]. As shown in Table 3, we can claim with at least 95% con-
fidence (i.e., our claim may be false with 5% risk) that changes
in the state of links (A-D), (B-C), (C-E), (A-B), and (C-D) pro-
duce the given symptoms. In fact, the values ofFdata for links
(A-D), (B-C), and (C-E) allow us to make this claim with much
higher confidence 99%. The faults in these three links explain all
the symptoms inSobs.

A problem with the above analysis is that single links’ effects are
confounded with the link interactions (2-way, 3-way, and higher),
which may sometimes lead to incorrect conclusions. For exam-
ple, in Table 3, link (A-B)’s effect is significant at 5%, whereas
the high value ofF may in some cases represent the effect of other
links’ interactions that are confounded with (A-B). Additional sta-
tistical analysis is needed to obtain more reliable results [16].

To assign specific states to the three significant links, we first no-
tice that the values of̄Yi,l are higher forl = 2, 3 than forl = 1.
The desired level of confidence that pairwise differences inȲi,l
are meaningful for particular states of the link may be verified by
performing additional statistical tests (e.g., comparison of level
means [16]). In practice, we are primarily interested in (1) se-
lecting links that caused the observed symptoms, which should be
determined with high confidence (1 − α)), and (2) gaining some
confidence that the states other thanl = 1 (link up) have caused
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link Fdata selected confidence
1 (A-B) 5.48 yes ≥95%
2 (A-C) 0.91 no n/a
3 (A-D) 33.10 yes ≥99%
4 (A-E) 0.08 no n/a
5 (B-C) 10.40 yes ≥99%
6 (B-D) 0.86 no n/a
7 (B-E) 0.33 no n/a
8 (C-D) 6.58 yes ≥95%
9 (C-E) 31.59 yes ≥99%

10 (D-E) 1.38 no n/a

Table 3: TheF -test results for the ten links.

the symptoms. The latter confidence may possibly be lower than
(1 − α), since after pinpointing selected links, the management
system usually performs testing. For example, for link (A-D), the
mean values arēY3,1 = 2.71, Ȳ3,2 = 3.60, andȲ3,3 = 3.31, point-
ing to statesp3,2 andp3,3, i.e., link (A-D) down or in intermediate
state, as one of the likely causes of the observed symptoms.

6 CONCLUSIONS AND FUTURE WORK

This paper presents an application of combinatorial designs and
variance analysis to correlating events in the midst of multiple
network faults. Network fault model is based on the probabilis-
tic dependency graph that accounts for the uncertainty about the
state of network elements. Orthogonal arrays help reduce the ex-
ponential number of failure configurations to a small subset on
which further analysis is performed.

Among the advantages of the proposed technique one can list the
ability to define various ranking schemes suitable for different ob-
jectives of the network management system. In this paper we used
a simple ranking based on the expected number of the explained
symptoms. The ranking scheme could be defined so that the re-
sultant fault hypothesis should first propose faults that are easier
to test and/or repair. Alternatively, the preference could be estab-
lished based on fault severity.

The preliminary results show that statistical analysis pinpoints the
probable causes of the observed symptoms with high accuracy and
significant level of confidence. A case study demonstrates how
multiple soft link failures are localized in MIL-STD 188-220’s
Datalink layer to explain the end-to-end connectivity problems in
the network layer.

This technique can be utilized for the networks operating in an
unreliable environment such as wireless and/or military networks.
Further research will investigate more advanced combinatorial de-
signs and statistical analysis techniques, explanation of symptoms
caused by interaction of multiple faults, building the relevant or-
thogonal arrays from the past fault history in the case where a de-
pendency graph is not given, and applications to specific military
systems and protocols.

Current research at the University of Delaware extensively inves-
tigates other probabilistic approaches to event correlation. Re-
cently, several algorithms have been designed and analyzed in-
cluding the most probable explanation in belief networks and iter-
ative hypothesis update [21].1

1The views and conclusions contained in this document are those of the authors
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