Fault Prediction at the Network Layer using Intelligent Agents

M. Thottan, C. Ji
Department of Electrical, Computer, and Systems Engineering
Rensselaer Polytechnic Institute, Troy, NY 12180
e-mail: thottm,chuanyi@ecse.rpi.edu

Abstract

Prediction of network failures at the router level has been achieved using an Intelligent Agent. The intelligent agent gathers relevant MIB data from the router and provides temporally and spatially correlated predictive alarms. The time correlated abnormal changes in the individual MIB variables are spatially correlated using a novel combining scheme. The agent was implemented on a real network and seven out of nine faults were predicted. Two typical case studies are presented. The prediction time was in the order of minutes.

Research Paper with Case Studies

Key Words: intelligent agent, adaptive learning, MIB variables, Fault prediction

I. INTRODUCTION

Routers form the primary nodes of a Wide Area Network (WAN). The ability to predict abnormal or faulty conditions at a router [13] is vital to providing Quality of Service (QoS) guarantees for real time services. Prediction of impending faults will allow for control measures to be taken which will result in traffic being routed away from a problem zone. The ability to predict router level failures could avert large scale network outages.

The challenge presented in the prediction of router level faults is to achieve accurate prediction with very low false alarm rate at the appropriate time scale. The occurrence of false alarms could add to instability in the network. Furthermore, since the agent is implemented at the router, the processing overhead due to the agent must be kept to a minimum. The agent implemented in this work addresses these issues and is capable of fault prediction.

Current commercial network management packages do not provide online fault prediction. Earlier work focused on fault identification using fault models described by Finite State Machine models [16] [3] and using graph-based identification techniques [12]. A review of network fault detection and identification can be found in [14]. As described in [11] these methods assumed that the alarms pertaining to fault events were provided along with accurate temporal information. However, the generation of predictive and reliable time correlated alarms still remained an open problem.

A new approach was proposed and implemented by Maxion and others [15] [7] which described faults as deviations from normal behavior. This method required feature vec-

Supported by DARPA under contract number F30602-97-C-0274 and the National Science Foundation ((CAREER) IRI-9502518)
tors which describe the faults. A promising approach employing Management Information Base (MIB) variables was introduced in our previous work [9]; a segmentation algorithm for online feature extraction and a combining scheme using Bayesian belief networks was implemented. As an improvement on this method we recently developed a change detection algorithm based on the Generalized Likelihood Ratio (GLR) test to generate feature vectors from a select set of MIB variables. These vectors were combined using a simple duration filter to get node level alarms [17][18].

In this work, an intelligent agent which provides temporally and spatially correlated predictive alarms was developed for the router. The new distributed architecture is scalable to any number of routers and is amenable for online implementation. The agent was implemented on real network data. Two case studies are presented to illustrate the capability of the agent. The approach used here provides a theoretical framework to the problem of fault prediction. The operator matrices introduced provide a geometric interpretation of the fault domain.

II. INTELLIGENT AGENT: THE MODEL

The intelligent agent implemented at a router should pose minimal computational overload. Hence the agent was developed in a distributed framework as shown in Figure 1, where the agent uses the local MIB data to generate predictive alarms. Such a scheme was motivated by the work done on management by delegation [8]. The lo-

![Fig. 1. Distributed Processing](image)

cal processing done by the agent allows it to scale easily for any number of routers in the network. The information obtained at the router is the aggregate of the information from all the subnets. The router, which is primarily a network layer device, processes the ip layer information which is a multiplexing of traffic from all of the interfaces. This distributed scheme allows for problem isolation to a specific subnetwork.

The Intelligent Agent is a processing algorithm much like a software entity that has as its inputs the MIB variables that are specific to the router and its output provides a parameter that is a predictive indicator of network health.
The implementation of the agent consists of two stages as shown in Figure 2. The first stage detects abnormal changes at the variable level using the differenced MIB data. A time-correlated indicator of the abnormality level is produced for each of the variables. These indicators, which are computed based on the Generalized Likelihood Ratio (GLR) test and scaled between $[0,1]$, correspond to variable level probabilities of abnormality. The variable level indicators are used to construct an input vector which is fed into the second stage, called the combiner. The combiner incorporates spatial correlation from the variable level to compute a scalar indicator of abnormality for the network node. This indicator, which is also bounded between $[0,1]$, is interpreted as a measure of the probability of abnormality in the network node.

A. Choice of Variables

The Management Information Base variables (MIB II), which are standardized for the Simple Network Management Protocol (SNMP) version 1, fall into different groups. The Internet Protocol (ip) group variables were determined sufficient to describe the functionality of the router [17][18].

The variables used in the intelligent agent represent cross sections of the traffic at different points in the ip layer. The variables $ipIR$ (In Receives) represents the total number of datagrams received from all interfaces of the router, $ipDel$ (In Delivers) represents the number of datagrams correctly delivered to the higher layers, as this node was their final destination, and $ipOR$ (Out Requests) represents the number of datagrams passed on from the higher layers of the node to be forwarded by the ip layer. The MIB variables chosen, although non-redundant, are not strictly independent and the relationships between them have been incorporated at the combination stage described in Section IV.
III. STAGE 1: TEMPORALLY CORRELATED VARIABLE LEVEL DETECTION

The increments in the MIB variable data constitutes a time series. The time series data for each variable was processed independently using a sequential change detection algorithm [2]. The underlying premise is that the statistical properties of the MIB variables change in response to impending fault conditions [10][7][15]. Since these changes are subtle they cannot be captured by conventional adaptive thresholding schemes that use only the mean and variance of the raw data [10]. Figure 3 shows a typical data trace of a MIB variable during normal functioning of the network and during a fault period (the asterisks denote the fault period as identified by syslog messages). At first glance, the two data series seem indistinguishable. Our challenge was to detect the subtle changes that precede the fault in the presence of intrinsically non-stationary behavior in the variables. To achieve this, the Auto-Regressive (AR) model was used. The AR parameters go beyond the mean and variance by including the dependency structure in the underlying time series over a short range.

Piecewise stationary AR models are commonly used to describe non-stationary stochastic time series signals [4]. The input MIB data were sequentially processed by considering the time series of each of the variables over piecewise stationary windows. Within a given window the MIB data were linearly modelled using a first order AR process. Using two adjacent piecewise stationary windows, the learning window $L(t)$ and the test window $T(t)$, a sequential hypothesis test was performed using the Generalized Likelihood Ratio (GLR) test [1] [6]. The complete derivation of the test statistic can be found in [17] [18].

![Representative trace of ipIR variable](image-url)
The joint likelihood \(l \) of the residual errors in the two windows \(L(t) \) and \(T(t) \) of length \(N_L \) and \(N_T \) respectively is given as,

\[
l = \left(\frac{1}{\sqrt{2\pi \sigma^2_L}} \right)^{N_L} \left(\frac{1}{\sqrt{2\pi \sigma^2_T}} \right)^{N_T} \exp \left(-\frac{N_L \hat{\sigma}^2_L}{2\sigma^2_L} \right) \exp \left(-\frac{N_T \hat{\sigma}^2_T}{2\sigma^2_T} \right),
\]

where \(\sigma^2_L \) and \(\sigma^2_T \) are the variance of the residuals in windows \(L(t) \) and \(T(t) \), \(\hat{\sigma}^2_L \) and \(\hat{\sigma}^2_T \) are the covariance estimates of \(\sigma^2_L \) and \(\sigma^2_T \). [6].

The expression for \(l \) is a sufficient statistic and is used to perform a binary hypothesis test. Under the hypothesis \(H_0 \), implying that no change is observed between the two windows, we have the likelihood \(l_0 \):

\[
l_0 = \left(\frac{1}{\sqrt{2\pi \sigma^2_P}} \right)^{N_L+N_T} \exp \left(-\frac{(N_L + N_T) \hat{\sigma}^2_P}{2\sigma^2_P} \right)
\]

where \(\sigma^2_P \) is the pooled variance. Under hypothesis \(H_1 \), implying that a change is observed between the two windows we have, \(l_1 = l \). In order to obtain a value for the likelihood ratio \(\eta \) that is bounded between \([0 \ 1]\), we define \(\eta \) as follows,

\[
\eta = \frac{l_1}{l_1 + l_0}
\]

Furthermore, on using the maximum likelihood estimates for the variance terms in equations (1) and (2) we get:

\[
\eta = \frac{\hat{\sigma}^2_T - N_L \hat{\sigma}^2_L - N_T \hat{\sigma}^2_T - \hat{\sigma}^2_P}{\hat{\sigma}^2_L - N_L \hat{\sigma}^2_T - N_T \hat{\sigma}^2_T + \hat{\sigma}^2_P}
\]

Using this approach, we obtain a sequential measure of abnormality for each of the MIB variables as the output of the first stage. These indicators, which are functions of system time, are updated every \(N_T \) lags.

The implementation of stage (1) depends on the choice of the test window size \(N_T \), and the order of the AR process \(p \). A trade off study on these issues was done in [18]. A study on the statistical properties of the residuals of the adjacent windows can be found in [17]. The length of the learning window \(N_L \) was experimentally optimised for the MIB variables, \(ip\)De, and \(ip\)OR to be 120 mins. The variable \(ip\)IR had an optimal learning window of 5 mins. We believe that this difference can be attributed to the bursty behavior of the \(ip\)IR variable.

IV. Stage 2: Spatial Correlation Using a Combiner

The goal of the combiner is to incorporate the spatial dependencies into the time correlated variable level indicators in order to compute a single scalar value that is predictive and represents the probability of node level abnormality. In most alarm correlation
and fault identification schemes [12][16] some type of fault model is required to incorporate spatial dependencies. When predicting a fault, no models exist that capture the MIB variable behavior before the fault occurs. In this work we attempt to provide a combining scheme that is independent of specific fault descriptions and amenable for online implementation.

Our combining scheme consisted of an operator matrix to incorporate the spatial dependencies. In analogy to quantum mechanics [5] the observable of this operator was interpreted as the abnormality of the network and the expectation of the observable was the scalar quantity λ used to indicate the abnormality of the network node.

First a $(1 \times n)$ input vector ψ was constructed with components:

$$\psi = [\eta_1 \ldots \eta_n]$$

Each component of this vector corresponds to the probability of abnormality associated with each of the MIB variables. In order to complete the basis set so that all possible states of the system are included, an additional component η_0 that corresponds to the probability of normal functioning of the network was created. The final component allows for proper normalization of the input vector. The new input ψ vector,

$$\psi = \alpha [\eta_1 \ldots \eta_n \eta_0]$$

was normalised with α as the normalisation constant. By normalising the input vector, we obtain a value between [0 1] for the expectation of the observable λ, which we interpreted as the probability of node level abnormality.

The operator matrix A was designed to be Hermetian. The entries of the matrix show how the operator causes the components of the input vector to interact with each other. Since matrix A is Hermetian, its eigenvectors ϕ_i are orthogonal. Once normalized, these eigenvectors were used to form an orthonormal basis set. Therefore any input vector ψ can be decomposed onto its eigenvector basis as follows:

$$\psi^T \phi_i = \sum_{i=1}^{n} c_i \phi_i$$

The input vector ψ^T that is transformed by the operator A can be written as

$$A \psi^T = \sum_{i=1}^{n} c_i \phi_i$$

$$= \sum_{i=1}^{n} c_i \lambda_i \phi_i$$

where λ_i are the eigenvalues of A. In order to obtain a scalar value of the measure of the transformation we perform the following operation:

$$\psi A \psi^T = \sum_{i=1}^{n} c_i^2 \lambda_i$$

$$= E(\lambda)$$
where c_i is the amplitude of the projection of any input vector ψ onto the i-th eigenvector. This quantity $\psi A \psi^T$ provides the scalar value that corresponds to the expectation of the eigenvalue $E(\lambda)$.

A. Design and Interpretation of The Operator Matrix

At the router three variables (viz) $ipIR$, $ipIDe$, and $ipOR$ were considered. Including the normal probability, a 1×4 input vector was required:

$$\psi_{ip} = \alpha_R \left[\begin{array}{c} \eta_{IR} \\ \eta_{IDe} \\ \eta_{OR} \\ \eta_{ip,normal} \end{array} \right].$$ \hspace{1cm} (12)

The input vector corresponding to a completely faulty probability is $\psi = \alpha_R \left[\begin{array}{c} 1 \\ 1 \\ 1 \\ 0 \end{array} \right]$ (the fourth component is 0, since the system is completely faulty). Using this vector the normalization constant α_R for the router was calculated to be $\frac{1}{\sqrt{3}}$.

The appropriate operator matrix A_{ip} will be 4×4. We design the operator matrix to be Hermetian. Taking the normal state to be uncoupled to abnormal states we get a block diagonal matrix with a 3×3 upper block $A_{ip,upper}$ and a 1×1 lower block:

$$A_{ip} = \left[\begin{array}{cccc} a_{11} & a_{12} & a_{13} & 0 \\ a_{21} & a_{22} & a_{23} & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ 0 & 0 & 0 & a_{44} \end{array} \right]$$

The a_{44} element indicates the contribution of the healthy state to the indicator of abnormality for the network node ($E[\lambda]$). Since the healthy state should not contribute to the abnormality indicator, we assigned $a_{44} = 0$.

The elements in the upper block $A_{ip,upper}$ represent the interaction between the abnormal states of the MIB variables under the action of the operator (the element a_{mn} is the projection of $A_{ip,upper} \psi_n$ onto the basis vector ψ_m). The elements a_{mn} of $A_{ip,upper}$ were assigned based on the spatial correlation between the variables. The coupling of the $ipIR$ variable with $ipOR$ and $ipIDe$ variables (a_{12} and a_{13}) were assigned values 0.08 and 0.05 respectively. This was because the majority of packets received by the router are forwarded at the ip layer and not sent to the higher layers. The coupling between $ipIDe$ and $ipOR$ (a_{23}) is significantly higher since both variables relate to router processing which is performed at the higher layer. These assignments were based on the flow of traffic and the statistical correlations between the variables. By symmetry: $a_{21} = a_{12}$, $a_{31} = a_{13}$, and $a_{23} = a_{32}$. The main diagonal terms are assigned such that the rows and columns sum to 1. Thus our $A_{ip,upper}$ matrix becomes:

$$A_{ip,upper} = \left[\begin{array}{ccc} 0.87 & 0.08 & 0.05 \\ 0.08 & 0.6 & 0.32 \\ 0.05 & 0.32 & 0.63 \end{array} \right]$$

Note that the lower block does not affect the indicator of network abnormality. Hence our computation only uses the upper block. Therefore equation(11) becomes:

$$E[\lambda] = \psi_{upper} A_{ip,upper} \psi_{upper}^T$$ \hspace{1cm} (13)

where $\psi_{upper} = \alpha_R \left[\begin{array}{c} \eta_{IR} \\ \eta_{IDe} \\ \eta_{OR} \end{array} \right]$.

Geometric Interpretation
The eigenvalues of the upper block matrix $A_{ip,upper}$ are $\lambda_1 = 0.2937$, $\lambda_2 = 0.8063$, and $\lambda_3 = 1$. The corresponding eigenvectors are $\phi_1 = \begin{bmatrix} -0.0414 & 0.7269 & -0.6855 \end{bmatrix}$, $\phi_2 = \begin{bmatrix} 0.8154 & -0.3718 & -0.4436 \end{bmatrix}$, and $\phi_3 = \begin{bmatrix} 0.5774 & 0.5774 & 0.5774 \end{bmatrix}$. These vectors are shown in Figure 4. The fourth eigenvector, which is not shown is $\phi_4 = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$ with eigenvalue $\lambda_4 = 0$. The cube shown in the first sector of the three dimensional space in Figure 4 represents the problem domain. This is because the input variables to the combiner range from $[0, 1]$. The eigenvector ϕ_3 corresponds to the total fault vector (all input components abnormal) and is present at the center of the cube. Eigenvectors ϕ_1 and ϕ_2 are necessarily outside the problem domain since they must be orthogonal to ϕ_3. Thus in our problem, unlike in Quantum Mechanics, two of the eigenvectors are outside the problem domain: however projections of ψ onto ϕ_1 and ϕ_2 are allowed.

Suppose the input vectors were only composed of ϕ_2 and ϕ_3, then

$$\psi = c_2\phi_2 + c_3\phi_3$$

(14)

Since ψ was normalised,

$$c_2^2 + c_3^2 = 1$$

(15)

Substituting ψ into Equation (11) we get the abnormality indicator:

$$E[\lambda] = c_2^2\lambda_2 + c_3^2\lambda_3.$$

(16)

In this case $E[\lambda]$ is bounded by $\lambda_2 = 0.8063$ and $\lambda_3 = 1$. This result led us to use λ_2 as the threshold to indicate node level alarms. Note that input vectors which are not composed exclusively by ϕ_2 and ϕ_3 could still yield an $E[\lambda] > \lambda_2$, but these vectors would necessarily have large projections on ϕ_2 and/or ϕ_3. The abnormal region is defined as:

$$\lambda_2 < E[\lambda] \leq \lambda_3 \Rightarrow \text{abnormal region}$$

(17)

V. EXPERIMENTAL WORK

The experiments were conducted on the Local Area Network (LAN) of the Computer Science (CS) Department at Rensselaer Polytechnic Institute. The network topology is
as shown in Figure 5. The CS network forms one subnet of the main campus network. Within the CS network there are seven smaller subnets and two routers. One router is used for internal routing and the other serves mainly as a gateway to the campus backbone. The internal router has 6 interfaces with the CS subnets. The majority of the traffic is file transfers or web traffic which involves the workstations accessing the file servers. The internal router is an SNMP agent. The Management Information Base on this agent was polled (using a PERL script) every 15 seconds to obtain the measurement variables. Data was collected from the internal router.

There were no network management measures in place on this network. Each machine on the network ran the UNIX syslog function. This function generated messages that related to problems associated with the network, applications, or the specific machine itself. These syslog messages were used to identify the network problems. One of the most common network problems was NFS server not responding. The syslog messages only reported that the file server was not responding, but was unable to identify the cause of the problem. Possible reasons for this problem are unavailability of network path or that the server was down. Although not all problems could be associated with syslog messages, those problems which were identified by syslog messages were accurately correlated with fault incidents. A description of the data sets used is provided in the Table (I). In most cases the agent was able to predict the occurrence of a fault significantly ahead of the syslog message reports.

A. Case Study (1):

Here we describe a fault scenario corresponding to a file server failure on subnet 2 (data set 2 fault 1 in Table I). 12 machines on subnet 2 and 24 machines outside subnet 2 reported the problem via syslog messages. The duration of the fault was from 11.10am to 11.17am (7mins) as determined by the syslog messages. The cause of the fault was confirmed to be excessive number of ftp requests to the specific file server. Figure 6 shows the output of the agent at the router and at the ip layer variable level.
The indicators provide the trends in abnormality. The variable level abnormality indicator contains the temporal information. The fault period is shown by the vertical dotted lines. In Figure 6 for router health, the ’x’ denotes the alarms that correspond to input vectors that are faulty. Note that there are very few such alarms at the router level. The mean time between false alarms in this case was found to be 98 mins. The fault was predicted 29 mins before the crash occurred. The persistence in the abnormal behavior of the router is also captured by the indicator. The on-off nature of the ipIDE and ipOR indicators was attributed to the less bursty behavior of those variables. Note also that the router shows abnormal behavior soon after the fault. This was attributed to the hysteresis. In our present scheme no measures are taken to combat this effect.

B. Case Study (2):

This case corresponds to a file server failure on subnet 3 (data set 6 fault 2 in Table I). 8 machines on subnet 3 and 3 machines outside subnet 3 reported the problem. The duration of the fault was from 3.22pm to 3.26am (4 mins). Figure 7 shows the output of the agent. In this case the mean time between false alarms was found to be 34 mins. The fault was predicted less than 1 minute before the crash occurred. However the persistence in abnormal behavior of the router was observed several minutes before the actual crash.

In the above two cases we have shown that the agent is capable of predicting faults at different times of the day. Regardless of the number of machines that are affected (24 in the first case and 3 in the second case) outside the subnet, the agent is able to predict the problem as long as there is some traffic that affects the network layer variables.

<table>
<thead>
<tr>
<th>Data set no</th>
<th>No of faults in data set</th>
<th>Fault location (subnet)</th>
<th>Time and/ duration of faults</th>
<th>Number of machines outside fault subnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4.19 - 4.21pm</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>11.10 - 11.17am</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>8.23 - 8.26pm</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1.23 - 1.25am</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>9.48 - 9.52am</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>6.33 - 6.36am</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>9.36 - 9.41pm</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>3</td>
<td>11.17 - 11.21pm</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>11.28 - 11.30pm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.22 - 3.26pm</td>
<td>3</td>
</tr>
</tbody>
</table>
VI. PERFORMANCE OF THE AGENT AND COMPOSITE RESULTS

The performance of the algorithm is expressed in terms of the probability of prediction P_p, prediction time T_p, and the mean time between false alarms T_f.

$$P_p = \frac{\text{Total Number of True Alarms}}{\text{Total Number of Known Faults}}$$ \hspace{1cm} (18)

We distinguished between a true alarm and a false alarm as follows: a true alarm corresponds to a set of one or more consecutive alarms subject to the following constraints:

$$\tau < 15\text{mins}$$ \hspace{1cm} (19)
where τ, is the time between any two consecutive alarms and corresponds to 3 lags. These quantities are depicted in Figure 8. The composite results for the data obtained from the internal router are compiled in Table (II). Note the average prediction time (23 mins) is less than half the mean time between false alarms (52 mins). The time scale of prediction is large enough to allow time for potential corrective measures. Seven out of nine faults were predicted making the average probability of prediction $P_p = 0.78$. In data set 3, fault 2 was reported by only two machines on the same subnet on which the faulty file server was located. This suggests that for this fault there was minimal impact on the ip level traffic which resulted in no prediction.
The algorithm is based on a linear model, rendering it feasible for online implementation. The complexity as a function of the number of model parameters is $O(4N)$, where N is the number of input MIB variables. For the work discussed here we have $N = 3$. The computational complexity expressed in terms of the number of floating point operations performed is approximately 9 per sec.

VII. DISCUSSION AND CONCLUSION

The intelligent agent was shown to be capable of predicting network problems with a very high probability. The agent captures most of the salient features of fault behavior. The time scale of prediction is sufficient to allow for triggering corrective mechanisms to alleviate the impending problem. The agent has been implemented in an online fashion.

The current architecture allows the agent to scale easily to multiple nodes. The variable level detection was done using sequential testing. The variable level indicators were designed to maximize information by avoiding thresholds. Since strict modelling of the signal was not required but rather accurate prediction and simplicity, an AR(1) model was used. The new combination scheme incorporates the spatial dependencies more naturally than the duration filter used previously [17] and as expected performed
better under the stricter criteria for prediction used in this paper. The idea of fault vectors provides a structure for understanding the multivariable input vectors as well as a good criteria for declaring node level alarms.

Future efforts will be made in adapting the agent to gateways and switches. A similar agent has already been developed for the interface level traffic. Using information from both the interface if and the network ip layers we were able to isolate the problem to the subnet level and locate the possible origin of the problem. Work is under way to combine the information from the ip and the if layers to reduce false alarms and obtain the average abnormality of the entire network. Efforts will also be concentrated on finding better time series models for the bursty variable(ipIR). We are also working on fault simulations to aid the benchmarking of the agent. Currently data obtained from a larger enterprise network is being used to test the scalability of the agent.

VIII. ACKNOWLEDGMENTS

The authors would like to thank Dave Hollinger, Nathan Schimke, Roddy Collins and Cindy Hood for their generous help with the data collection. We also thank Ashok Malaiakal and Ken Vastola for helpful discussions on the topic. The support of the National Science Foundation ((CAREER) IRI-9502518) and DARPA (F30602-97-C-0274) is gratefully acknowledged.

REFERENCES

IX. BIOGRAPHY

Marina Thottan received her M.S. in Physics at P.S.G. College of Arts and Science, Coimbatore, India. She received her M.S. in Biomedical Engineering at Rensselaer Polytechnic Institute where she is currently working towards a Ph.D in Electrical and Computer Systems engineering. (http://www.rpi.edu/~thottm)

Chuanyi Ji received the BS (with honors) from Tshinghua University, Beijing, China in 1983, an MS from University of Pennsylvania, Philadelphia in 1986, and a Ph.D from California Institute of Technology, Pasadena, in 1992, all in Electrical Engineering. In November 1991, she joined the faculty at Rensselaer Polytechnic Institute, Troy, where she is now an Associate Professor of Electrical, Computer and Systems Engineering. Her research interests are in the areas of stochastic modeling, analysis and control of multi-media traffic, management of hybrid computer communication networks, and adaptive learning systems. Dr. Ji is a recipient of NSF CAREER award in 1995. (http://www.ecse.rpi.edu/homepages/chuanyi)