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Abstract-The purpose of this paper was to assess and monitor water pollution using satellite images, orthophotos, analytical data, and 
fieldwork in a group of Spanish wetlands located in central Spain. The increase in large-scale irrigation schemes, intensive 
exploitation of water resources, and the water pollution in this area has seriously impacted these habitats. 

A multi-temporal analysis carried out from 1989 to 2013 showed the improvement or deterioration in water quality of seven of these 
wetlands. The water quality was determined using analytical and remote sensing data (vegetation index, and spectral and spatial 
profiles). Two case studies were presented: one wetland showed a remarkable improvement in water quality, with high 
eutrophication levels reduced as part of a clear decontamination process; the waters of the other wetland remained unaffected by 
eutrophication processes throughout the study period.  

Remote sensing techniques only detect the presence of algae in wetlands, and analysis of the water is needed to confirm pollution. 
The integrated use of both methods would enable consultants and wetland managers to manage these areas more effectively and 
mitigate pollution problems. 

Key words- Monitoring wetlands; Water pollution; Remote sensing; NDVI. 

I. INTRODUCTION 

Small, shallow water bodies are less stable than larger lakes, and are thus very sensitive to human intervention. Pollution 
from agriculture and wastewater has a significant negative impact on water quality and aquatic biota in wetlands. It causes 
eutrophication problems that entail harmful algal blooms, kills fish, and causes many related problems in fresh waters that are 
adjacent to areas with large human populations1. Traditionally, these ecosystems have been studied using analytic data and 
multi-temporal aerial photographs. Remote sensing techniques currently offer suitable methods for the identification, 
demarcation, and monitoring of wetlands, and have been discussed in prominent papers and projects 2, 3, 4, 5, 6, 7, 8, 9. 

The wetlands of La Mancha Húmeda Biosphere Reserve (MHBR, UNESCO, 1981) in central Spain have reached high 
levels of urban pollution due to contamination by untreated wastewater from neighboring towns 10, 11. Although wetlands 
are known to act as filters in hydrologic systems and retain and transfer nitrogen and phosphorus from water systems, 
increased added nutrients modify biological communities and ecosystem functions12, 13, 14. Nitrogen and phosphate 
nutrient intakes in wetlands also produce excessive algae growth, causing eutrophication of their waters. Algae growth in 
wetlands can be analyzed using remote sensing techniques 15, 16, 17. 

The water bodies investigated in this study are situated in an area that has recently undergone sudden agricultural 
development; the use of irrigation on nearby farmland has proved detrimental to the groundwater, causing temporary water 
pollution from fertilizers and groundwater exploitation. The extent of the problem is so great that the excessive groundwater 
extraction has rendered the drainage aquifers of La Mancha unsustainable, and their subsequent disconnection from the fluvial 
aquifer network has altered the natural balance between surface and ground water, as well as the wetland ecology 18, 19, 20. 

As more wetlands deteriorate in La Mancha, increasing pressure is put on plant and animal life. Direct drainage and 
eutrophication of the water bodies are factors that most affect the growth of flora and vegetation associated with wetlands 21. 
Meanwhile, untreated wastewater is currently a serious threat to the local waterfowl population with botulism, endemic in La 
Mancha, and frequent bird mortality episodes resulting from tuberculosis. 

Since the early 1990s, municipal wastewater treatment plants have been installed, and the water quality has improved. 
However, low surface water mobility in the wetlands and seasonal agricultural run-off prevent the complete recovery of the 
water quality. 

To date, most water eutrophication studies in the MHBR wetlands have been carried out using field data and satellite 
imagery. However, there are no studies in the literature that have combined the two techniques. 

The interpretation of high spatial and spectral resolution satellite images, information provided by the infrared channels of 
the electromagnetic spectrum, allows detection of water quality indicator parameters (color, turbidity, chlorophyll activity, 
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spatial resolution (10m), but spectral resolution is reduced to 4 bands (green, red, near infrared, and short-wave infrared). The 
main characteristics of Landsat and Spot images are summarized in Table 1.  

TABLE 1. CHARACTERISTICS OF LANDSAT AND SPOT SATELLITES: SPECTRAL RANGE AND WAVELENGTH, SPATIAL RESOLUTION, AND NUMBER OF SPECTRAL 

BANDS 

 

 

 

 

 

 

 

 

More than 60 images from different years, dates, and seasons were analysed to know the greatest inter- and intra-annual 
variability of the water layer. Most of the images were chosen from summer seasons because it was the most suitable period to 
detect pollutants in the wetland basin due to the water level being the lowest in this season26. Spring images were also 
included to detect possible pollution in the wetlands as a result of leaching of the irrigated fields. Eight Landsat and three 
SPOT images from various dates in different seasons were selected because they ensured maximum variability of water 
content and solute concentration (Table 2). They were compared to carry out a multi-temporal analysis of the wetlands, 
covering a period of more than twenty years (1989-2013) with similar rainfall characteristics. The current status of the 
wetlands was assessed based on the latest satellite images (2011 and 2013) and field data. 

TABLE 2. SATELLITE IMAGES USED27, 28 

Satellite Sensor  Date Scene 
 
 

LANDSAT  
 

5-TM 
5-TM 

7-ETM 
5-TM 
5-TM 
5-TM 

L8 

05-05-1989 
08-26-1995 
04-25-2000 
06-18-2005 
05-28-2009 
07-28-2010 
08-11-2013 

 
 

200/032 

SPOT  
5-HRV 

08-24-2010 
05-29-2009 
15-04-2011 

271/036 
 

201/032 
 

The images were processed with ERDAS Imagine 10 and the mapping was geo-referenced to UTM coordinates with 17 
control points (error <0.07). All images were cropped to fit the study area of approximately 267,830 ha.  

Visual and digital processing was carried out to study possible eutrophication in the wetlands and to assess the extent. In 
the visual analysis, different bands of the electromagnetic spectrum in all Landsat images were combined to obtain the aquatic 
biomass response of the vegetation mass. These bands were assigned and displayed in red, green, and blue, thus creating a 
RGB composite. E.g., ‘Natural color’ Red-Green-Blue shows objects in the colors normally perceived by the human eye; 
‘False color’ Near Infrared-Red-Green colors are assigned to any three bands with different wavelengths that the human eye 
may not distinguish 29. The normalized difference vegetation index (NDVI) was also obtained from Landsat images of 
contaminated wetlands, and maximum values were measured where the highest reflectivity was observed in the water bodies. 
This index, often used to assess vegetation and its relationship with different environmental variables 15, 30, 31, 32, was 
calculated from the NIR – RED/NIR + RED quotient spectral channels. Positive NDVI values usually correspond to terrestrial 
vegetation and negative values to an aquatic environment. 

Using digital analysis, spectral profiles of the wetlands were generated in all images at the point of maximum NDVI value. 

Spectral L5 & L7 L8

 Range  Wavelength  Bands Bands Spatial Resol. Bands Spatial Resol. 

(0.43 - 0.45) Coastal aerosol 1 30
(0.45 - 0.52) Blue 1 2 30
(0.52 - 0.60) Green 2 3 30 1 10 
(0.63 - 0.69) Red 3 4 30 2 10 
(0.76 - 0.90) Near Infrared 1 (NIR 1) 4 5 30 3 10 
(1.55 - 1.75) Short-wave infrared (SWIR 1) 5 6 30 4 10 
(2.08 - 2.35) Short-wave infrared (SWIR 2) 7 7 30
(10.4 - 12.5) Thermic Infrared (TIRS) 6&8 10&11 120/60

Landsat SPOT 
5 HRV 
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Spatial profiles were studied in each wetland on every study date, with longitudinal sections of the wetland basin for Near 
Infrared (Channel 4), since this discriminated the vegetation best. For Landsat 8 images, Near Infrared corresponds to Band 5. 

Finally, visual and digital processing were completed with spectral, spatial, and radiometric enhancement(Principal 
Components, Kernel 3x3 High Pass,3x3 Low Pass, and Histogram Equalization, respectively) to enhance the physical 
characteristics of the wetlands and detect their spatial-temporal variability, which is not possible with conventional aerial 
photography.  

The SPOT images and orthophotos were analysed visually to detect possible anthropogenic waste fed into the wetlands 
through drains or irrigation ditches, as well as changes in environmental characteristics. 

As a necessary complement to remote sensing studies, a monitoring study of water pollution was conducted in two 
wetlands in the MHBR (Figure 1).Two lakes were selected, one saline (Laguna del Camino de Villafranca) and the other 
brackish (Laguna Grande de Villafranca). The wetland water quality was analysed in situ in May 2011 and readings were 
obtained for ammonium, nitrate, nitrite, phosphate, pH, salinity, conductivity, total dissolved solids, and temperature. 
VISOCOLOR colorimetric test kits were used to obtain results of the nutrients in the samples (ammonium, nitrate, nitrite, 
and phosphate) and determined by a method described by Rodier33. HI929898, HANNA Instruments®, multi-parameter 
probe was used to measure the other parameters (pH, salinity, conductivity, total dissolved solids, and temperature)by 
immersing electrodes directly into the samples 33. Analytical methods, ranges, and sensitivity are shown in Table 3. Water 
analysis conducted in all the study dates were carried out with the same techniques. 

TABLE 3. ANALYTICAL METHODS, RANGE, AND SENSITIVITY33 

 

 

 

 

 

 

 

 

The type of natural vegetation border and the presence of algae and/or hygro-halophyte vegetation within each wetland 
were detected in situ, to compare actual information with that obtained from satellite images. 

The water quality of the wetlands analysed in situ was compared with the data obtained more than twenty years ago by 
Peinado (1994) and Pérez (1995). These results were then contrasted with the hydrogeological and environmental studies 
available to date 18, 20and with recent satellite images, to find possible groundwater inputs into the wetlands and their 
conservation status. 

IV. RESULTS 

The wetland water quality and possible eutrophication were analysed by processing and interpreting the images both 
visually and digitally, and by testing water samples. For all dates studied, the best combinations of spectral channels in Landsat 
images were ‘natural’ color and ‘false’ color near- Infrared-Red-Green2, 3. The false color image was selected as it offered 
better enhancement of aquatic surfaces with high vegetation density8. 

Using the independent channels of the electromagnetic spectrum also allowed the authors to distinguish the presence of 
vegetation (green algae) on the surface wetland water, mainly using near-infrared in high-medium resolution satellite 
imagery4. Once green algae were detected in the satellite imagery, in situ analysis was used to confirm the pollution. 

The wetlands in these case studies that do not receive additional nutrients maintained negative or very low NDVI values 
and had unpolluted waters. Nevertheless, when the water sheet of shallow wetlands contained natural green algae and/or 
organic matter due to excess nutrients, the near-infrared reflectivity values increased and the NDVI index was positive. 

Two case studies were presented where the evolution of water quality in the wetland area was clearly detectable. The first 
wetland was in the process of decontamination (Laguna del Camino de Villafranca, Figure 2a),and the second was an 

Analytical methods Range Sensitivity 

Ammonium colorimetric 0.03 - 2.5 (mg/l) 0.03

Nitrate colorimetric 0.30 - 3.5 (mg/l) 0.3 

Nitrite colorimetric 0.04 - 1.1 (mg/l) 0.04

Phosphate colorimetric 0.05 - 5.0 (mg/l) 0.05

pH multi-parameter probe 0.00 - 14.00 0.01

Salinity multi-parameter probe 0 -70.00 PSU 1

Conductivity multi-parameter probe 0 - 200 mS/cm 1

Total dissolved solids multi-parameter probe 0 - 400000 ppm 1

Temperature multi-parameter probe "-5º to 55ºC" 0.1 
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unpolluted wetland surrounded by natural vegetation(Laguna Grande de Villafranca, Figure 2b). 

 

Fig.2.Orthophoto of Laguna del Camino de Villafranca with detail of drainage channels marked in yellow ellipses (top) and Laguna Grande de Villafranca 
(bottom)34 

A. Laguna del Camino de Villafranca 

The false color image showed a uniform pink spot covering the wetland basin from a large invasion of vegetation at the 
water surface in 2005(Figure 3). The pink (NIRed-Red-Green combination) was due to the spectral response of the infrared 
channel, which differentiated the vegetation perfectly. The spatial profile and spectral response indicated that virtually all of 
the wetland had been invaded and algae were present. Nevertheless, on the edge of the wetland there were typical 
Mediterranean emergent plants associated with this ecosystem, such as Cladiummariscus, Phragmitesaustralis, 
Shoenusnigricans, Carexhispida, Scirpuslacustris, and Scirpuslittoralis, which unlike algae, do not invade the wetland basin. 

 

Fig. 3. False color images of Laguna del Camino with the same water level. In 2005 (above left) markedly eutrophicated (pink color shows the large expanse 

Laguna del 
Camino

Laguna Grande
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of algae); in 2009 (above right) and 2011 (below) with less pollution (black color indicates water free of algae and a sharp decrease in pink is observed) 

The images from 2009 and 2011, using the same NIRed-Red-Green combination, showed a decrease in algae mass and a 
resulting improvement in water quality. These algae, located on the surface of the water, were easily identifiable in satellite 
images because the water in these wetlands was shallow. In August 2013, this wetland presented more water than in previous 
years, which complicated the visual interpretation. Nevertheless, the image showed a reduced extension of the algae. 

The images obtained using the NDVI index for the same dates showed how the area covered by hydrophytic vegetation had 
changed. The pale shades and positive high values typical of eutrophicated waters covered the whole basin in 2005.However, 
in the 2009 and 2011 images, there was a sudden reduction of NDVI values, characteristic of cleaner waters (Figure 4). 

The sample NDVI values from1989 - 2011 illustrated the reduction in algae mass, with high positive values until 2005, and 
current values showed a sharp decrease, which is typical of clean waters (Table 4). The image from the summer of 1995 gave 
negative NDVI values because the wetland bed was dry and covered by saline efflorescence23. 

 

 

Fig. 4. NDVI of Laguna del Camino:2005 (above left) shows high chlorophyll activity throughout the whole wetland basin (white shades);2009 (below) and 
2011 (above right) show high absorption of spectral values, typical of water (very dark shades) 

 

TABLE 4.MAXIMUM VALUES OF NDVI INDEX INSIDE THE WETLANDS (A: LAGUNA DEL CAMINO; B: LAGUNA GRANDE). POSITIVE VALUES (IN BOLD) INDICATE 

VEGETATION AND NEGATIVE VALUES OR NEAR 0 INDICATE ONLY WATER 

NDVI maximum values inside the wetland  
A: Laguna del Camino 

B: Laguna Grande 

Year April May June August 

Wetland A B A B A B A B 

1989   0.43 0.14     

1995       -0.13 -0.03 

2005     0.32 0.38   

2009   -0.2 0.04   -0.064 0.28 

2011 -0.3 0.2       

The spatial profiles of the wetland in 2005, 2009, and 2013 with Landsat Channel 4 and 5 (sensor TM and L8, respectively) 
allowed the surface area occupied by algae to be distinguished(Figure 5a), as well as those areas not containing algae. The 
peak spectral values corresponded to the salts that were present around the edge of the wetland, with a high reflectivity rate in 
all the channels. In the 2013 spatial profile, the very high near-infrared values indicated that the algae cover had decreased in 
size, covering only a small central portion of the lake. 



Journal of Water Resource and Hydraulic Engineering    Jan. 2015, Vol. 4, Iss. 1-4, PP. 57-69  

63 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5a.Spatial profiles of Landsat for near-infrared in 2005, 2009, and 2013 of Laguna del Camino(left) in which algae, clean water, and salts from the edge of the 
wetland are differentiated. The algae peak in 2013 was due to the presence of the irrigation channel. The sudden reduction of eutrophicated water should be noted.  

Fig. 5b. Spatial profile of Landsat for near-infrared in 2009 and 2011 of Laguna Grande(right)with specific hygrophile vegetation and widely flooded area free of algae 

In the SPOT image from 2011, several existing channels used for recharging and discharging water into nearby wetlands 
were shown in red (Fig. 3). These channels, currently used as green filters, showed high NDVI values (white colors in Figure 
4)and peaks in NIR values (Figure 5a). This behavior suggests the presence of organic pollution; therefore, water should be 
analysed to determine their effectiveness in removing pollutants. 

The water analyses defined the wetlands in 1989 and 1990 as saline10, and in 2011 as brackish as a result of increased 
water volume with a high alkaline pH(Table 5). Currently, nitrite and ammonium values remain below the normal limits, 
although nitrate and phosphate concentrations (2 mg/l) continue to be above the normal limits established for natural 
waters(1mg/l for nitrates and 0.1 mg/l for phosphates). Additionally, wastewater dumping has caused a gradual decrease in 
salinity. This situation is reflected in the obtained values of salinity, conductivity, and total dissolved solids, which fall with in 
the brackish water range (Table 6).Therefore, although the images showed a remarkable reduction of algae extension, after the 
implementation of municipal wastewater treatment in 1986, the wetland still contained significant levels of pollutants 
associated with springtime irrigation. As such, analytical data of water in 2011 showed high nitrate and phosphate values, 
which were above normal values for natural waters (2mg/l)(see Table 5). 

B. Laguna Grande de Villafranca 

The second case study focused on the other wetland in the MHBR, which maintains a large border of natural vegetation 
(emergent plants) and has not shown any signs of water contamination to date. This wetland has a permanent water table 
containing brackish water and is artificially regulated with river water, which alters its natural hydroperiod. The wetland also 
suffers considerable human impact from recreational bathing and fishing activities10, 20. 

TABLE 5.AQUATIC ANALYSIS IN 1989 10AND 2011 IN LAGUNA DEL CAMINO (A) AND LAGUNA GRANDE (B). VALUES IN BOLD REPRESENT VALUES ABOVE 

THE NORMAL LIMITS ESTABLISHED FOR NATURAL WATERS 

 

 

 

 

 

5a. Laguna del Camino 5b. Laguna Grande 

Parameters 
A: Laguna del

Camino
B: Laguna 

Grande
A: Laguna del

Camino
B: Laguna 

Grande 
Limit (mg/l)

Ammonium (mg/l) - - 0.20 0.30  2 

Nitrates (mg/l) 0.08 0.08 2.00 0.00  1 

Nitrites (mg/l) 0.00 0.01 0.03 0.00  0.1 

Phosphates (mg/l) 1.80 0.00 2.00 0.00  0.1 

pH  8.70 7.80 8.57 8.20 

Salinity PSU - - 11.73 4.80 

Conductivity (µS/cm) - - 19,630 8,636 

Total dissolved solids (ppm) 62,312 7,772 9,815 4,318 

Temperature (º C) 15.50 17.00 20.44 25.28 

1989 2011
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TABLE 6. SPECIFIC RANGES OF SALINITY, CONDUCTIVITY, AND TOTAL DISSOLVED SOLIDS33 

 

 

 

 

Satellite images failed to show the presence of algae, although the natural color (Figure 6) and spatial profiles allowed a 
large amount of organic matter to be discerned on the wetland bed. 

 

Fig. 6. Uncontaminated Laguna Grande, with a wide border of natural vegetation that slows and filters the seasonal agricultural pollutants. SPOT images in 
false color in 2008 and 2011 (above left and right, respectively) and Landsat image in natural color in 2009 (below) 

The NDVI values for different dates, mainly in 2005, 2009, and 2011, show very pale shades, limited to the shore area of 
the wetland, due to the border of natural vegetation (Figure 7). Overall, there was no response to chlorophyll activity seen 
inside the wetland. 

 

 Name 
Fresh 
water Brackish water Saline water  Brine 

Salinity (PSU) < 0.5  0.5-30 30 - 50 > 50 

Conductivity (µS/cm) 100 - 2,000 2,000 - 50,000 > 55,000 > 55,000 

Total disolved solids (ppm) < 1,000 1,000 - 10,000 10,000 - 100,000 > 100,000 
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Fig. 7. NDVI index of Laguna Grande. In 2005 (above left), 2009 (below left), and 2011 (above right), clean waters are seen throughout the entire basin and 
significant presence of hygrophile vegetation on the flood edges from the northern section (white shades) 

The maximum value of the NDVI index was tracked to determine whether the surface area contained the presence of algae 
(Table 2). The values obtained at different dates were positive and very high in 2005, 2009, and 2011, confirming the existence 
of chlorophyll activity within the wetland itself, except in 1995 when it was almost completely dry. Nevertheless, the different 
spatial pattern of the profile in the near-infrared channel highlighted the presence of specific natural vegetation masses (mainly 
Phragmitesaustralis and Cladiummariscus), but not algae in the wetland basin, with a wide flooded area free of them in both 
2009 and 2013(Figure 5b). In 2013, the peak spectral values corresponded to the land adjacent to the edge of the wetland, with 
a high reflectivity rate in all the channels. 

The water analysis from 2010 (Table 5) showed brackish water with an alkaline pH. The nutrient values were very low or 
insignificant, as they were in 1990; hence, it could be deduced that these may be a limiting factor for the growth of aquatic life. 
The results obtained in 2011 for the parameters of salinity, conductivity, and total dissolved solids confirmed this wetland as 
brackish. 

Increases in temperature were observed in both wetlands between 1989 and 2011 since they were years with contrasting 
meteorological conditions, 1989 being colder than the average and 2011 warmer than the average. Differences in salinity 
between both wetlands were due to their own origin and nature. 

The use of various remote sensing techniques, along with aquatic analysis, allows this wetland to be classified as non-
polluted. However, monitoring of the wetland is recommended since it receives water effluents from the Gigüela River and is 
surrounded by a developed area that uses septic tanks instead of a sewage system. 

The study of the two wetlands, comparing satellite imagery, field work, and water analysis confirmed that one of these 
wetlands is not currently polluted (Laguna Grande de Villafranca) and the other shows a notable improvement following the 
installation of waste water treatment plants (Laguna del Camino de Villafranca).  

V. DISCUSSION 

The results of this study showed that visual and digital interpretation of satellite imagery can be very useful in detecting 
specific characteristics of inland wetlands in Spain including water extension and seasonality, turbidity, salinity, hydrophytic 
vegetation, artificial channel drainage, and the surrounding land use. These features were highlighted by Herrero and 
Castañeda36: “Remotely-sensed data were the primary, and in most cases the only available, source of consistent 
information, …and this technique can help planning and surveying for the implementation of wetlands protection measures in 
harmony with the conterminous agricultural areas.” Therefore, wetland assessment using remote sensing facilitates the 
monitoring of improvement and conservation measures implemented in the wetlands (vegetation regeneration, green filters, 
waste water treatment, etc.)4. 

Spot and Landsat images also facilitate an understanding of how the aquatic vegetation masses in wetlands evolve. This 
result agrees with previous studies in which Landsat images were used to develop long-term records of eutrophication levels to 
identify trends22, 30. 

Of the different forms of spectral, spatial, and radiometric analysis, the NDVI index best demonstrates eutrophication in the 
shallow wetlands and is normally used to evaluate aerial vegetation and its correlation with different environmental 
variables15, 30, 31, 32. NDVI detects the presence of green algae masses in shallow wetlands that frequently produce 
eutrophication. This phenomenon takes place mainly in Mediterranean wetlands with very dry summers and drastic reductions 
in the water sheet (unless there are urban additions). Furthermore, these results are consistent with those obtained by Rivera,et 
al. (2013) in the monitoring of macrophytes in Utah Lake using Landsat imagery9. NDVI can also be used to identify the 
accumulation of organic matter in shallow wetlands. However, as in the second wetland case study here, the NDVI index 
results must be interpreted with caution. Positive and high NDVI values and very pale colors in the images confirm the 
existence of chlorophyll activity, which may mean the presence of algae mass or hygrophilous vegetation. Therefore, the 
spatial profile pattern is needed to differentiate between the two. 

This spatial profile also enables comparisons between red and near-infrared in the electromagnetic spectrum, which 
allowed the researchers to locate and differentiate algae, natural vegetation, salts, and organic matter in the wetland basin. 

Detection of algae masses and anthropogenic discharges(urban and agricultural) are indicators of possible water 
contamination. However, only analytical data can identify water pollution, intensity, and pollutant type.  

This study demonstrated the effective potential use of remote sensing tools to describe and evaluate spatial changes in 
macrophytic vegetation in wetlands. This corresponds to the results reported by Marcus, et al.4.  

VI. CONCLUSIONS 

The application of remote sensing in the study of wetlands facilitated the detection of water pollution and eutrophication; 
the summer satellite images were found to be the most suitable for detection due to the Mediterranean climate. The images in 
false and natural colors turned out to be very useful for differentiating the algae from natural hygro-halophytic vegetation. 
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Studies of multi-temporal images, together with water analysis, allowed the evolution of water quality in the wetlands to be 
determined, classifying them as eutrophicated or non-polluted. 

NDVI index analysis, more commonly used in forestry and agricultural studies, proved very useful in shallow water bodies 
in detecting the presence of algae, always supported by spatial profile patterns. Positive values in the vegetation index may 
indicate a probable eutrophication. 

However, it should be noted that although remote sensing techniques detect the presence of algae in the wetlands, water 
pollution can only be confirmed by chemical analysis of the water.  

Currently, out of the two wetlands studied in MHBR, one shows eutrophicated water and the other shows no signs of water 
contamination. 

Remote sensing tools, combined with field work, provide a permanent geographically located image database as a baseline 
for future comparisons. They also enable consultants and wetland managers to improve the management of these areas and 
mitigate their pollution problems. 

It would be interesting to include remote sensing techniques in the surveying and monitoring of wetlands water quality data, 
instead of using both methods separately. The integration of both methods, along with future improvements in remote sensing 
data tools and availability and in methods for the use of current information, will result in a better understanding of wetland 
problems such as organic pollution. 
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