Social Networks and the Performance of Individuals and Groups

RAYMOND T. SPARROWE
Cleveland State University
Department of Management and Labor Relations
1860 East 18th Street, Room 433
Cleveland, OH 44114
r.sparrowe@csuohio.edu

ROBERT C. LIDEN and SANDY J. WAYNE
University of Illinois at Chicago
Department of Managerial Studies M/C 243
College of Business Administration
601 South Morgan Street
Chicago, IL 60607-7123
(312) 996-4481 FAX (708) 479-4697
bobliden@uic.edu
sjwayne@uic.edu

MARIA L. KRAIMER
Cleveland State University
Department of Management and Labor Relations
1860 East 18th Street, Room 433
Cleveland, OH 44114
(216) 687-4749
m.kraimer@csuohio.edu

The authors gratefully acknowledge the funding of the Center for Human Resources Management (CHRM) at the University of Illinois for this research. The interpretations, conclusions, and
recommendations are those of the authors and do not necessarily represent those of CHRM. We also thank Timothy Franz and Noah Pinko for their research assistance.
ABSTRACT

Social Networks and the Performance of Individuals and Groups

A field study involving 190 employees in 38 work groups representing 5 diverse organizations provided evidence that social networks, as defined in terms of both positive and negative relations, are related to both individual and group performance. As hypothesized, individual job performance was positively related to centrality in the advice network and negatively related to centrality in the hindrance network. Hindrance network density was significantly and negatively related to group performance.
A growing body of management theory and research takes as its central premise the embeddedness (Granovetter, 1985) of individuals in social networks. The distinctive characteristic of this stream of research lies in how it appeals to the structural properties of social networks in explaining outcomes. From this perspective, individuals enjoy advantages or suffer disadvantages by virtue of their positions within social networks, such as organizational assimilation (Sparrowe & Liden, 1997), promotions (Burt, 1992), and turnover (Krackhardt & Porter, 1986). *Centrality*, the extent to which a given individual is connected to others in a network, is the structural property most often associated with instrumental outcomes, including power (Brass, 1984), influence in decision-making (Friedkin, 1993), and innovation (Ibarra, 1993).

Although previous research has demonstrated a relationship between network structure and instrumental outcomes, relatively few studies have explicitly examined the link between network centrality and job performance. Baldwin, Bedell, and Johnson (1997) found a positive relationship between network centrality of MBA team members and their grades. Brass (1981) found that the centrality of one’s position in a network representing the flow of the work was indirectly related to job performance via job characteristics. Thus, one purpose of the current study is to replicate and extend previous research on the relationship between an individual’s network position within the work group and his or her job performance by examining the role of informal network position in actual work settings.

A related issue is whether group performance is a function of the structure of informal relationships within them. Although the relationship between group interaction and performance has been the subject of considerable previous research, structure has largely been viewed in terms of formal relationships rather than informal interaction patterns (Guzzo & Shea, 1992). An important exception is...
group research conducted during the 1950s that examined the relationship between group
communication structure and performance (Shaw, 1964). More recently, Baldwin et al.’s (1997) MBA
team study found that team interaction patterns consistent with cohesive work groups were positively
related to the team’s final grade. Thus, the second purpose of this paper is to extend this early and more
recent group research by examining group network structure and performance in work settings.

A third contribution of this paper is the examination of the structure of informal relationships that
potentially hinder individual and group performance. Although the majority of research in informal
networks has focused on positive or neutral relations, negative relations – such as an individual who
hinders another person’s work performance – are a recognized possibility (Labianca, Brass, & Gray,
1998). Brass and Labianca’s (1999) concept of “negative asymmetry” in the social ledger holds that
negative relations are important factors in understanding attitudes and behaviors because they are more
salient than positive relations. Recent empirical research supports their contention that negative
relationships may have a negative effect on attitudes and behaviors. Baldwin et al. (1997) found that an
individual MBA team member’s centrality in an “adversarial” network was negatively related to his or
her satisfaction. At the group level, the number of adversarial relations within the team was negatively
related to perceptions of team effectiveness, but positively related to the team grade. Similarly, Labianca
et al. (1998) found that the number of negative (avoidance) relationships individuals have with out-group
members was positively related to perceptions of intergroup conflict, whereas the number of friendship
relations was not related to perceptions of intergroup conflict. Taken together, these studies
demonstrate the importance of negative relationships in relation to attitudes and behaviors.
CONCEPTUAL BACKGROUND AND HYPOTHESES

Among the fundamental explanatory tenets of the social network perspective is the claim that the structure of social interactions enhances or constrains access to valued resources (Brass, 1984; Ibarra, 1993). Resources exchanged through informal networks include work-related resources, such as task advice and strategic information, but informal networks also transmit social identity (norms) and social support (Podolny & Baron, 1997). We focus on the exchange of task advice and information because these resources are likely to be positively related to job performance, and on hindrance relations because of their potentially negative effects on job performance.

Our hypotheses regarding the relationship between network structure and performance are presented first at the individual level of analysis, followed by the group level of analysis. At the individual level of analysis, we focused on network centrality because it captures the extent of an individual’s access to resources, such as task-specific knowledge and confidential information about work-related issues. Central individuals, because of their greater connections to others, have more relationships to draw from in obtaining resources and so are less dependent on any single individual (Cook & Emerson, 1978). Centrality also implies control over resources because central individuals can choose from a greater number of alternative individuals in sharing beneficial resources. Moreover, by focusing on centrality, the results of this study can be interpreted in the context of previous research that has demonstrated relationships between centrality and power (Brass, 1984), influence in decision-making (Friedkin, 1993), and innovation (Ibarra, 1993). However, an important difference between this study and recent research is that we focus on centrality within the work group rather than the organization as a whole.
At the group level of analysis, we examined two structural properties of interaction patterns in relation to performance: network density and network centralization. Density describes the overall level of interaction of various kinds reported by network members. Centralization reflects the extent to which interactions are concentrated in a small number of individuals rather than distributed equally among all members. Density is analogous to the mean number of ties per group member. The more ties each group member enjoys with other group members, the greater the density of the network. Group centralization, in contrast, is analogous to the variance of network ties per group member. When the variance in the number of network ties per group member is low, no group member enjoys substantially more ties than any other group member, and therefore no group member is more central than any other. Conversely, when the variance in the number of network ties per group member is high, some members have proportionately more ties and therefore are more central than other group members. These attributes of network structure are closely related to research conducted in the 1950s (Shaw, 1964) relating communication patterns to group performance, and so enable the results of our study to be interpreted in the context of previous work. Consistent with previous small group research, we examined density and centralization in relation to the work group rather than the organization as a whole.

Advice Network Centrality and Individual Performance

Advice networks are comprised of relations through which individuals share resources such as information, assistance, and guidance that are related to the completion of their work. When the work performed by individuals is enhanced by task information available from others, the advice network represents a means for obtaining resources that are instrumental in facilitating individual job performance. Centrality in the advice network reflects an individual’s involvement in exchanging assistance with coworkers and engaging in mutual problem-solving. An individual who is central in the
advice network is, over time, able to accumulate knowledge about task-related problems and workable solutions (Baldwin et al., 1997). This expertise not only enables the central individual to solve problems readily, but also serves as a valued resource for future exchanges with coworkers. As others become dependent on a central individual for important advice, he or she gains an advantage that can be used in future exchanges for valued resources (Cook & Emerson, 1978). Conversely, those who are in peripheral positions in the advice network should find it much more difficult to develop expertise about task-related problems and solutions, thus being less likely to develop the competencies and expertise necessary for high levels of performance.

(H1) Centrality in the advice network will be positively related to individual job performance.

Hindrance Network Centrality and Individual Performance

Negative exchange relations have been described in behavioral terms, such as interference, threats, sabotage, and rejection (Sahlins, 1972), as well as in relation to the affective responses to such behaviors, including annoyance, emotional upset, and anger (Pagel, Erdly, & Becker, 1987). Given the practical difficulties inherent in obtaining valid data about negative relationships in field studies, researchers have used proxies in identifying network relations characterized by negative exchange such as avoidance (Labianca et al., 1998) or ‘adversarial’ relationships (Baldwin et al., 1997). Because we are interested in performance, we focused on relationships with coworkers that thwart task behaviors, termed the “hindrance” network. Centrality in the hindrance network reflects the extent to which the focal individual is described by coworkers as a person who makes it difficult for them to complete their work by withholding valuable information, resources, and opportunities. To the extent that an
individual’s performance is dependent upon access to valuable resources from coworkers, hindrance relations will be detrimental to performing various aspects of the job.

\[(H2)\] Centrality in the hindrance network will be negatively related to individual job performance.

Advice Network Structure and Group Performance

Just as one’s position in social network structure is expected to be related to individual performance, the social network structure of the group should be associated with group performance. We expect that the density of the advice network will be positively related to group performance. Specifically, when group members exchange advice with a larger (rather than smaller) proportion of other group members, the group should benefit in terms of greater cooperation, greater information sharing, a stronger sense of accountability, greater agreement on expectations, and less tendency to engage in social loafing. A relatively larger number of group members exchanging advice is indicative of greater mutual interdependence between members. As suggested by Molm (1994), mutual interdependence fosters cooperation, which in turn enhances group performance. High density in the advice network also benefits groups through the sharing of information. The more members involved in the exchange of advice, the more pieces of non-redundant information that are likely to be shared. Amount of information sharing is related to the quality of group decisions (Larson, Christensen, Franz, & Abbott, 1998). The exchange of advice by a large proportion of group members should also make each member more aware of other group members’ roles on the team. By advising one another, members learn about the responsibilities of each group member. Knowledge of each group member’s roles makes task behavior more visible and at the same time clarifies expectations and accountability.
Increased visibility and accountability serve to counteract social loafing and thus enhance group performance (Wagner, 1995).

\[(H3a)\]: Advice network density will be positively related to group performance.

Although we expect a positive relationship between advice network density and group performance, we contend that the relationship between advice network centralization and group performance will be negative. Our hypothesis regarding centralization and group performance is consistent with the findings of the experimental research conducted in the 1950s in which groups with decentralized communication networks were more productive at complex tasks than were groups with centralized communication networks (Shaw, 1964). All of the organizations included in the current study had implemented empowerment which had the effect of making respondents’ tasks complex in nature. Even in the manufacturing organization, employees operated complex computer-guided machinery that served to make the jobs relatively complex.

Our theoretical foundation for hypothesizing a negative relation between advice network centralization and group performance is drawn from Molm’s (1994) distinctions among independence, dependence, and interdependence. Based on her arguments, we hold that decentralized networks foster interdependence, which in turn encourages cooperation. Cooperation is encouraged because, in interdependent relations, exchange partners share control over joint outcomes. And, unlike dependence relations in which there is a potential for gain at the expense of another person, in interdependence relations, “no actor can receive benefits without contributing to their production” (Molm, 1994: 165). Because network centralization captures the extent to which exchange relations are concentrated among the few, the greater the centralization in the advice network, the less interdependence, and the less cooperation. As cooperation in the task domain decreases, group performance will suffer.
(H3b): Centralization in advice networks will be negatively related to group performance.

Hindrance Network Structure and Group Performance

Our rationale for the negative effects of hindrance networks on individual performance may be extended to the group level. Although one relatively isolated “hindering” group member may not have much impact on the group, several such persons may adversely affect group performance. Specifically, the more group members whose job-related behaviors are thwarted by a hindering member(s), the greater the harm to group performance. Our logic follows the general finding in group research that although the whole is more than the sum of the parts, the average of individual group member behaviors is consistently related to group behavior (Borman, Hanson, Oppler, Pulakos, & White, 1993). Thus, the greater the proportion of hindrance relations among members (i.e., the higher the density of the hindrance network), the lower the group’s performance will be.

(H4): Hindrance network density will be negatively related to group performance.

METHODS

Participants and Procedures

Participants in this study were drawn from five organizations as part of a larger research project on work group processes: a large public university, a small manufacturing firm in the construction industry, a large distributor of industrial products, and two geographically separate plants that manufacture consumer products. Forty-seven work groups voluntarily participated in the research (96% response rate). Network and general work attitudes surveys were administered on site in work groups.
to 269 participants during work hours. Leaders completed questionnaires to assess individual and group-level performance.

Because network analysis requires a high response rate (Wasserman & Faust, 1994), groups with less than 80% participation were excluded. Analyses were based on the remaining 38 groups: 9 from the university, 5 from the manufacturing firm, 8 from the distributor of industrial products, and 16 from the consumer products manufacturer. Because group leaders provided performance data, they were not included in the network data. The total sample for testing individual level-of-analysis hypotheses was 190. The average group size, excluding leaders, was 5.0. The length of time since the groups had been formed was 20.2 months. Where networks had greater than 80% participation, we replaced missing data with the median value of the network, in order to preserve the maximum amount of information. Median substitutions represented 11.4% of the network data.

The average age of the respondents was 36.4 years. Males comprised 37.8 percent of the sample. In terms of race, 63.6% were Caucasian, 20.9% were African American, 10.7% were Hispanic, 2.7% were Asian, and the remainder were classified as “other.” As for education attainment, 11.1% had not completed high school, 41.6% held a high school diploma, 9.3% had received technical training following high school graduation, 13.3% held an associate’s degree, 21.2% held a bachelor’s degree, and 3.5% held a graduate degree. Participants’ average organizational tenure was 7.6 years. Participants performed a variety of jobs including clerical work, production work, and managerial functions in marketing and customer support.

Measures

Networks and Network Centrality. Network surveys listed the names of each individual in the group. Following the work of Burt (1992) and Ibarra (1993), advice relations were assessed by asking
the respondents two questions: “Do you go to (name) for help or advice on work-related matters?” and “Do you talk to (name) about confidential work-related matters?” The hindrance network was elicited by asking respondents, “Does (name) make it difficult for you to carry out your job responsibilities?” Because we were interested in the strength of the relationships among individuals who knew each other, we elicited valued responses to each network question using a 7-point scale, anchored by “Not at all (1),” “Some (4),” and “Very much (7).”

We computed in-degree centrality scores for each individual, normed within each network (Borgatti, Everett, & Freeman, 1992) to allow for comparisons across groups of different sizes. In-degree centrality is a form of degree centrality that counts only those relations with the focal individual reported by other group members, which avoids the limitations of self-reports (out-degree centrality).

We conducted a factor analysis using centrality scores for our three network measures. Two factors, explaining 89% of the variance in the network measures, had eigenvalues greater than 1.0. The two advice network centrality items showed high (greater than .90) loadings on the first factor, with hindrance centrality loading on the second factor, thus demonstrating convergent and discriminant validity.

Network Density. In binary network data, density is the proportion of actual nominations among the total possible number of nominations (Wasserman & Faust, 1994). Because the relations in our data were valued (measured on a scale from 1 to 7), we computed density as the sum of the actual responses divided by the total possible sum of responses.

Network Centralization. Network centralization was computed following Freeman’s (1979) definition as implemented in the UCINET IV software package (Borgatti et al., 1992). First, the sum of the differences between the largest individual centrality and all the other individuals in the network was
computed. This sum of the observed differences in individual centrality scores was then divided by the maximum possible sum of differences (Wasserman & Faust, 1994).

Individual Job Performance. We examined two aspects of job performance: in-role (performance on required duties and responsibilities) and extra-role (performance on discretionary behaviors that go beyond the formal job description). Group leaders rated each member’s in-role and extra-role performance using 14-items scaled “Strongly Disagree (1)” to “Strongly Agree (7).” We used the 7-item scale developed by Williams and Anderson (1991) to measure in-role performance. Extra-role performance was measured with the 6-item altruism scale developed by Smith, Organ, and Near (1983) and one item (“This employee willingly gives his/her time to help others who have been absent”) from the Podsakoff, MacKenzie, Moorman, and Fetter (1990) scale.

Based on the results of a factor analysis using varimax rotation, one of the in-role performance items (“engaged in activities that will directly affect his/her performance evaluation”) and one of the extra-role performance items (“helps others who have been absent”) were deleted because of low or mixed loadings. After omitting these items, a second analysis resulted in two clean factors. The remaining twelve items (6 items each) comprised the in-role ($\alpha = .94$), and extra-role ($\alpha = .90$) performance scales.

Group Performance. Group performance was assessed by leaders using 7-items developed for this study on a scale from “Very Poor (1)” to “Outstanding (7)” ($\alpha = .99$). Items addressed the quality and quantity of work, the initiative, cooperation, timeliness, and overall performance of the group.

RESULTS

Descriptive statistics and correlations among study variables are reported in Table 1.
Social Networks and Individual Performance. Table 2 presents the results of the regression analyses that test the hypothesized relationships between network centrality and individual performance. We controlled for organizational differences by entering the organization dummy variables in step one followed by the centrality measures in step two. In support of H1, centrality in the advice network was positively related to individual in-role and extra-role performance. Centrality in the hindrance network was negatively related to individual in-role and extra-role performance, supporting H2. Taken together, network centrality variables explained 13% of the variance in in-role performance and 10% of the variance in extra-role performance.

Social Networks and Group Performance. Table 3 presents the results of regression analyses testing the hypothesized relationships between group network structure and group performance. The organization dummy variables were entered in step one, followed by the network measures in step two. Contrary to H3a, the parameter estimate for density in the advice network was not statistically significant. Although the parameter estimate for centralization in the advice network was in the hypothesized direction, its statistical significance was marginal (p = .06), and thus H3b found weak support. Supporting H4, the parameter estimate for hindrance network density was negative and statistically significant.
DISCUSSION

Social Networks and Individual Performance

The results of this study offer support for the hypothesized relationships between social network centrality and individual performance. Individuals who were central in their work group’s advice network had higher levels of in-role and extra-role performance than did individuals who were not central players in that network. Individuals who were central in the hindrance network had lower levels of both in-role and extra-role performance. These results are important because they demonstrate that group members who are central to group advice-sharing are rated more positively on individual performance. That this relationship was found with respect to both in-role and extra-role performance contributed to the research on organizational citizenship. It appears that some of the advice provided by those who are central to the flow of information in work groups extends beyond what is expected as per job descriptions. Additionally, individual job performance traditionally has been evaluated based on behaviors that individuals engage in apart from coworkers. However, with the trend toward greater use of teams in organizations, the extent to which team members are involved in behaviors that assist coworkers has become a salient dimension of job performance. Indeed, our results showed that individuals who were identified by coworkers as being active in providing advice were rated more favorably by leaders than individuals who were not mentioned as often by coworkers as providing such information.

Given the sparseness of research on negative exchanges in work settings, we found it noteworthy that individuals who were identified by coworkers as hindering the work of others were rated by managers as relatively lower on in-role and extra-role performance. It appears that just as
there are networks of individuals engaged in providing useful advice and support, there are also networks of individuals who engage in behaviors that hinder others from completing their tasks. However, neither in the current study nor in the handful of other investigations examining negative exchange relationships have specific hindering behaviors been identified (Labianca et al., 1998). Future research should examine the causes of hindrance behavior and illuminate the ways in which individuals in central positions of hindrance networks slow the work progress of their coworkers. For example, some individuals, due to negative affectivity, could intentionally attempt to withhold effort or sabotage the work of coworkers (Robinson & Bennett, 1995).

Social Networks and Group Performance

The results did not support the hypothesis that advice network density is positively related to group performance. This hypothesis might have been supported had the measure focused specifically on advice in solving work-related problems and assistance with work assignments rather than general information about work, which may or may not have been relevant to group performance. We found marginal support (p = .06) for the hypothesized negative relation between advice network centralization and group performance. An interesting paradox emerged when comparing these results to those for individual performance. Specifically, centrality in the advice network was positively associated with individual performance, whereas at the group level, centralization was negatively associated with group performance. These results parallel those found in pioneering work on group structure and process (Shaw, 1964). In these early studies in which group structure was manipulated, it was found that possessing central positions in the group related positively to individual performance. On the other hand, centralization at the group level was positively related to group performance only for simple tasks. On complex tasks, centralization was not associated with group performance. In the organizations included
in our sample, tasks were complex, suggesting that our group-level results parallel those of the early experimental studies. This indicates that group performance is more than the sum of each member’s individual performance (Molm, 1994).

We found support for the negative relationship between hindrance network density and group performance, suggesting that uncooperative behaviors among group members are just as important as cooperative behaviors in influencing group performance – perhaps even more so. Consistent with the predictions of the “negative asymmetry hypothesis” (Brass & LaBianca, 1999), hindrance density was significantly associated with group performance whereas advice network density was not. Group performance suffers to the extent that coworkers withhold resources or avoid other group members. Future research in this area is warranted, especially designs that can differentiate between different types of hindrance networks. That is, does the hindrance network contain individuals who truly restrict the progress of the group toward completion of group tasks, or do these individuals present positions that conflict with those in the majority, resulting in them being perceived by others as hindering the group? A second area for future research is to examine what causes negative exchanges to develop. The results would have important implications for how to reduce negative exchanges within groups (i.e., reduce hindrance network density), and thus increase group performance.

Limitations

There are several potential limitations to this study. The first concerns the validity of our performance measures. Although common method variance was not an issue due to different sources for the social network and performance ratings data, the subjective evaluation of performance may have been biased by aspects of the social context. Similarly, there may have been a leniency bias in the group performance ratings given that group effectiveness is a reflection of the manager’s own performance.
Thus, an alternative interpretation of our findings is that informal network structure is related to supervisors’ assessments of individual and group performance, rather than to actual performance.

Second, our theoretical perspective implies that network structure precedes individual performance. However, it is possible that the relationship between individual performance and network structure is reciprocal, or, is the reverse of what we have theorized. For example, it is possible that high performers would be sought out for advice by coworkers, thus, enhancing high performers’ central positions within informal networks.

Third, this study employed a single item measure of the hindrance network. Although the use of single-item measures of negative network relations is common in previous research involving large networks (e.g. Baldwin, et al., 1997; LaBianca et al., 1998), small group research does not face the same practical limitations. Although sociometric techniques were used with small groups in experimental research conducted during the 1950s (Shaw, 1964), it should be noted that contemporary research typically studies networks larger in size than the groups studied here.

CONCLUSION

In summary, this study has contributed to several streams of research. First, it has added to the social network and individual performance literatures by demonstrating a relationship between network structure and both in-role and extra-role performance in field settings. These results also suggest that the findings of laboratory experiments on group structure from the 1950s (e.g. Shaw, 1964) generalize to intact work groups in contemporary organizational settings. In addition, the findings enhance the social network literature by revealing that rarely studied hindrance networks are negatively related to individual in-role and extra-role performance, as well as group performance. Taken together, the results of the
current investigation provide a strong rationale for the integration of modern social network analysis and
the social psychology of groups.
ENDNOTE

1. We have not framed a hypothesis regarding hindrance centralization and group performance, paralleling H3b, because it is not justified by Molm’s (1994) concept of interdependence in group exchange. There is no comparable means of describing interdependence in the hindrance network. Negative exchanges do not have the same potential for interdependence as positive exchanges. That is, an interdependent network comprised of coordinated negative exchange relationships is difficult to conceive precisely because negative exchanges preclude the possibility of mutual coordination.
REFERENCES

Table 1: Descriptive Statistics and Correlations for Study Variables

<table>
<thead>
<tr>
<th>Individual Level Variables</th>
<th>Mean</th>
<th>S.D.</th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Organization 1</td>
<td>.20</td>
<td>.40</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Organization 2</td>
<td>.17</td>
<td>.38</td>
<td>-.23**</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Organization 3</td>
<td>.09</td>
<td>.29</td>
<td>-.16*</td>
<td>-.11*</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Organization 4</td>
<td>.34</td>
<td>.48</td>
<td>-.36**</td>
<td>-.33**</td>
<td>-.23**</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>5. Organization 5</td>
<td>.19</td>
<td>.40</td>
<td>-.25**</td>
<td>-.23**</td>
<td>-.15*</td>
<td>-.36**</td>
<td>1.00</td>
</tr>
<tr>
<td>6. In-Role Performance</td>
<td>5.83</td>
<td>.79</td>
<td>.17*</td>
<td>-.10</td>
<td>.24**</td>
<td>-.17*</td>
<td>-.04</td>
</tr>
<tr>
<td>7. Extra-Role Performance</td>
<td>5.53</td>
<td>1.27</td>
<td>.31**</td>
<td>-.21**</td>
<td>.37**</td>
<td>-.19**</td>
<td>-.14*</td>
</tr>
<tr>
<td>8. Advice Centrality</td>
<td>3.52</td>
<td>1.04</td>
<td>.10</td>
<td>.19**</td>
<td>.00</td>
<td>-.27**</td>
<td>.03</td>
</tr>
<tr>
<td>9. Hindrance Centrality</td>
<td>1.49</td>
<td>.66</td>
<td>.02</td>
<td>.13*</td>
<td>-.06</td>
<td>-.01</td>
<td>-.09</td>
</tr>
</tbody>
</table>

6. In-Role Performance	1.00						
7. Extra-Role Performance	.65**	1.00					
8. Advice Centrality	.26**	.22**	1.00				
9. Hindrance Centrality	-.30**	-.27**	-.09	1.00			

N=190
* p < .05; ** p < .01
Table 1 (Continued): Descriptive Statistics for Study Variables

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11. Organization 1</td>
<td>.24</td>
<td>.42</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Organization 2</td>
<td>.16</td>
<td>.42</td>
<td>-.24</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Organization 3</td>
<td>.13</td>
<td>.33</td>
<td>-.22</td>
<td>-.17</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Organization 4</td>
<td>.21</td>
<td>.30</td>
<td>-.29*</td>
<td>-.22</td>
<td>-.20</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>15. Organization 5</td>
<td>.26</td>
<td>.43</td>
<td>-.33*</td>
<td>-.26</td>
<td>-.23</td>
<td>-.31*</td>
<td>1.00</td>
</tr>
<tr>
<td>16. Group Performance</td>
<td>4.66</td>
<td>.90</td>
<td>.26</td>
<td>-.21</td>
<td>.45**</td>
<td>-.09</td>
<td>-.34*</td>
</tr>
<tr>
<td>17. Advice Network Density</td>
<td>1.87</td>
<td>.09</td>
<td>.12</td>
<td>.48**</td>
<td>-.16</td>
<td>-.32*</td>
<td>-.09</td>
</tr>
<tr>
<td>18. Advice Network Centralization</td>
<td>218.17</td>
<td>101.69</td>
<td>.32*</td>
<td>.10</td>
<td>.05</td>
<td>-.11</td>
<td>-.25</td>
</tr>
<tr>
<td>19. Hindrance Network Density</td>
<td>.21</td>
<td>.06</td>
<td>.09</td>
<td>.32*</td>
<td>-.10</td>
<td>-.07</td>
<td>-.21</td>
</tr>
</tbody>
</table>

16. Group Performance	1.00			
17. Advice Network Density	-.05	1.00		
18. Advice Network Centralization	-.15	.12	1.00	
19. Hindrance Network Density	-.36*	.28*	.16	1.00

N = 38
* p < .05; ** p < .01
Table 2: Network Centrality and Individual Performance

<table>
<thead>
<tr>
<th></th>
<th>In-Role Performance</th>
<th>Extra-Role Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>(S.E.)</td>
</tr>
<tr>
<td>Step 1 – Control Variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>5.64</td>
<td>(.09)</td>
</tr>
<tr>
<td>Organization 1</td>
<td>.80**</td>
<td>(.21)</td>
</tr>
<tr>
<td>Organization 2</td>
<td>.45**</td>
<td>(.16)</td>
</tr>
<tr>
<td>Organization 3</td>
<td>.01</td>
<td>(.16)</td>
</tr>
<tr>
<td>Organization 4</td>
<td>.12</td>
<td>(.16)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>.10</td>
<td></td>
</tr>
<tr>
<td>F-Statistic</td>
<td>5.33**</td>
<td></td>
</tr>
<tr>
<td>Step 2 – Centrality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advice Network</td>
<td>.18**</td>
<td>(.05)</td>
</tr>
<tr>
<td>Hindrance Network</td>
<td>-.33**</td>
<td>(.08)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>.13</td>
<td></td>
</tr>
<tr>
<td>F-Statistic (Change)</td>
<td>15.33**</td>
<td></td>
</tr>
<tr>
<td>Overall (R^2) (Adjusted)</td>
<td>.23</td>
<td></td>
</tr>
<tr>
<td>F-Statistic (Overall)</td>
<td>9.22**</td>
<td></td>
</tr>
</tbody>
</table>

\(N = 190 \)

* \(p < .05 \); ** \(p < .01 \)
TABLE 3: Group Network Structure and Performance

<table>
<thead>
<tr>
<th>Controls</th>
<th>Network Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>(S.E.)</td>
</tr>
<tr>
<td></td>
<td>B</td>
</tr>
<tr>
<td>Intercept</td>
<td>4.20</td>
</tr>
<tr>
<td></td>
<td>5.22</td>
</tr>
<tr>
<td>Organization 1</td>
<td>.85*</td>
</tr>
<tr>
<td></td>
<td>1.19*</td>
</tr>
<tr>
<td>Organization 2</td>
<td>.06</td>
</tr>
<tr>
<td></td>
<td>.45</td>
</tr>
<tr>
<td>Organization 3</td>
<td>1.40**</td>
</tr>
<tr>
<td></td>
<td>1.51**</td>
</tr>
<tr>
<td>Organization 4</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>.46</td>
</tr>
</tbody>
</table>

R² = .35
F Statistic = 4.48**

Step 2 – Network Structure

Advice Network Density	.17	(.28)
Hindrance Network Density	-4.97**	(1.74)
Advice Network Centralization	-.02†	(.00)

Change R² = .20
F-Statistic (Change) = 4.35*
Overall R² (Adjusted) = .44
F-Statistic (Overall) = 5.21**

N = 38
† p = .06; * p < .05; ** p < .01
Raymond T. Sparrowe (Ph.D., University of Illinois at Chicago) is an Assistant Professor of Management & Labor Relations at the James J. Nance College of Business Administration, Cleveland State University. His research interests focus on the interplay of interpersonal processes and social structure in relation to work outcomes.

Robert C. Liden (Ph.D., University of Cincinnati) is Professor of Management at the University of Illinois at Chicago. His research focuses on interpersonal processes within the context of such topics as leadership, groups, career progression, and employment interviews.

Sandy J. Wayne (Ph.D., Texas A & M University) is an associate professor of management at the University of Illinois at Chicago and director of the Center for Human Resource Management at the University of Illinois. Her research interests include leadership, perceived organizational support, working relationships, social influence processes, and groups.

Maria L. Kraimer (Ph.D., University of Illinois at Chicago) is an Assistant Professor of Management & Labor Relations at the James J. Nance College of Business Administration, Cleveland State University. Her research interests include career-related issues, employee adjustment, and the employee-employer relationship.