
Abstract Near infrared (NIR) reflectance and Raman
spectrometry were compared for determination of the oil
and water content of olive pomace, a by-product in olive
oil production. To enable comparison of the spectral tech-
niques the same sample sets were used for calibration
(1.74–3.93% oil, 48.3–67.0% water) and for validation
(1.77–3.74% oil, 50.0–64.5% water). Several partial least
squares (PLS) regression models were optimized by cross-
validation with cancellation groups, including different
spectral pretreatments for each technique. Best models were
achieved with first-derivative spectra for both oil and wa-
ter content. Prediction results for an independent valida-
tion set were similar for both techniques. The values of
root mean square error of prediction (RMSEP) were 0.19
and 0.20–0.21 for oil content and 2.0 and 1.8 for water
content, using Raman and NIR, respectively. The possibil-
ity of improving these results by combining the informa-
tion of both techniques was also tested. The best models
constructed using the appended spectra resulted in slightly
better performance for oil content (RMSEP 0.17) but no
improvement for water content.
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Introduction

Olive pomace is a by-product of the mechanical process-
ing of olives in production of virgin olive oil. The process

of releasing the oil from the plant tissue begins by milling
the olives to tear the flesh cells in order to let the oil run
out of the vacuoles. This is followed by stirring the olive
paste to permit the formation of large drops of oil and to
break up the oil–water emulsion. In so-called “dual-phase
decanters” the oil is then separated by direct continuous
centrifugation from the pomace, which consists of veg-
etable matter and water. The yield of oil varies from 80 to
90% of the total oil content of the olives, because the oil in
the olive paste is only partially free to escape and part of
it remains in the unbroken cells or is trapped in the tissues
of the cytoplasm, or is emulsified in the aqueous phase
[1]. Determination of residual oil in the olive pomace is
regarded as crucial control aspect of quantitative optimiza-
tion of the olive oil production plant. Furthermore, the
olive pomace is sold to other factories, where recovery of
residual oil is carried out by solvent extraction to obtain
the so-called “olive pomace oil”. For this, the olive pom-
ace must be dried, hence oil and water content determine
its economic value.

The need for process control demands analytical meth-
ods capable of rapid analysis of the olive pomace to en-
able adjustment of appropriate operating conditions. Spec-
troscopic methods are well suited for process-control ap-
plications because they are fast and can be easily imple-
mented in-line or at-line, giving better control of the entire
production [2]. Among spectroscopic techniques, near in-
frared (NIR) and Raman spectrometry have the advantage
that they provide direct molecular specific information
and do not require extensive sample preparation. In com-
bination with chemometrics these techniques can success-
fully replace many time-consuming chemical methods.
Thus, for analysis of olive pomace these techniques for de-
termination of oil content can be convenient alternatives
to the traditional Soxhlet method [3], which requires a time-
consuming drying step followed by solvent extraction. This
method has already been substituted in many routine lab-
oratories by nuclear magnetic resonance (NMR) spectros-
copy. But, even the use of this technique lacks rapidness,
because water interferes strongly and, therefore, the olive
pomace sample must be completely dry. Consequently, this
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method is unsuitable for process control. In contrast, both
NIR and Raman spectroscopy can extract useful analytical
information about oil and water content working directly
on the olive pomace without any sample pretreatment.

In recent years NIR spectrometry has frequently been
applied in food industry. NIR spectroscopic analysis of
dairy products such as milk [4, 5], meat [6], butter [7], and
others [8] have been reported. In contrast, few examples
of application of Raman spectroscopy to quantitative analy-
sis and quality control in the food industry have been re-
ported [9, 10]. In previous work we demonstrated the suit-
ability of Fourier transform Raman spectrometry for de-
termination of the water and oil content of olives [11], and
the expected acidity of the oil produced from the analyzed
olives [12]. Here we approach the analysis of olive pomace
using this technique and compare the performance of this
method with a method based on NIR diffuse reflectance
spectrometry. Analysis of olive pomace using an NIR in-
strument equipped with optical filters has previously been
reported. Measurements at four wavenumbers were used
to develop a calibration by multiple linear regression
(MLR) [13]. In this work, we compare the performance of
NIR diffuse reflectance and Raman spectrometry using
Fourier transform spectrometers and partial least squares
(PLS) regression for analysis of olive pomace.

Experimental

Instrumentation

Fourier transform near infrared spectra were measured in diffuse re-
flectance mode using an Antaris near-IR analyzer (Thermo Nicolet
Corporation). The instrument is equipped with an integrating sphere
that contains an internal gold reference.

Fourier transform Raman spectra were obtained by use of an
RFS 100/S spectrometer (Bruker Optics). The 1064 nm line from a
Nd:YAG laser (Coherent) was used for excitation.

Software

TQ Analyst 6.1.1 (Thermo Nicolet Corp.) was used for all PLS
models as well as for all preprocessing techniques. NIR spectra
were used directly in the spectral range from 4000 to 10000 cm–1.
Raman spectra in the spectral range from 20 to 3800 cm–1 were im-
ported.

For combined models the spectra were imported to Microsoft
Excel 2000. With this program the two spectra of each sample
were combined into one.

Samples and reference analysis

A total of 132 olive pomace samples were obtained from different
oil-production plants in the province of Jaén (Spain) in the period
between December 2002 and February 2003.

Reference analyses were performed at CM Europa SA labora-
tory, Martos, (Spain). To determine water content, the sample (45 g)
was dried for 12 h in an oven at 105 °C. The loss of weight gave
the amount (%) of water and volatile matter in the sample [14]. The
dried sample was then used to measure the oil content, by NMR
spectroscopy. Soxhlet extraction was used for calibration and for
quality control. For this the oil was extracted with hexane for 6 h
using the Soxhlet extractor. After evaporation of the solvent the oil
content was determined gravimetrically.

Measurement procedures

Near infrared

Olive pomace samples were placed in a sample cup (diameter 3 cm),
which was placed on top of the integrating sphere optics and ro-
tated at 10 revolutions per minute during measurement. All spectra
were obtained at a resolution of 8 cm–1 and averaged over 50 scans;
this resulted in an acquisition time of 1 min.

Raman

The samples were investigated in a home-made cell comprising a
hollow cylindrical magnet covered inside with a Teflon layer. The
dimensions of the cell were 13 mm inner diameter and 5 mm depth.
The cell was attached to a synchronous motor mounted in the sam-
ple compartment. The motor enabled eccentric rotation of the sam-
ple cell around the horizontal axis of the laser beam at five revolu-
tions per minute. All spectra were obtained with 500-mW laser
power, at a resolution of 8 cm–1 and were averages from 400 scans,
resulting in an acquisition time of 5 min.

Results and discussion

Spectral features

Near Infrared

Figure 1 shows the near Infrared spectra of olive pomace,
oil, and water. Two broad bands at 7500–6150 cm–1 and
5350–4550 cm–1 dominate the spectrum of the olive pom-
ace. These bands are assigned to the first overtone of the
–OH stretching vibration and to combination bands of the
water molecules, respectively. The significant bands from
the pure olive oil are also visible, but far less intense. The
most intense bands in the oil spectra can be found at 4260
and 4370 cm–1, which are characteristic of the combina-
tion of CH-stretching vibrations of –CH3 and –CH2 with
other vibrations. The two bands at 5700 and 5750 cm–1

correspond to the first overtone of the C–H stretching vi-
bration of –CH3, –CH2, and –HC=CH–. In the region be-
tween 7700 and 9100 cm–1 the second overtone of the
C–H stretching vibration of –CH3, –CH2 and –HC=CH–
can be found [15].
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Fig. 1 NIR spectra of (a) oil (transmission, pathlength 5 mm),
(b) olive pomace (diffuse reflectance), and (c) water (transmission,
pathlength 0.5 mm)



Raman

The FT-Raman spectra of olive pomace, oil and water are
presented in Fig. 2. The major bands of the virgin olive oil
can be seen at 1267 (in-planeδ(=C–H) deformation in un-
conjugated cis double bond) 1302 (in-phase methylene twist-
ing motion), 1442 (δ(CH2)), 1655 (ν(C=C)), 1747 cm–1

(ν(C=O)), 2852 (νsym(CH2)), and 2900 cm–1 (νsym(CH3))
[16]. A high fluorescence background characterizes the
spectra of olive pomace. The spectral features of the veg-
etable matter, especially the olive kernel, overlap with 
the oil bands. The most characteristic band is located at
1604 cm–1 and can be assigned to the aromatic ring stretch
of lignin, a major component of the olive kernel. The broad
band centered at 3250 cm–1, which corresponds to the hy-
drogen-bonded OH vibration of water, is also visible.

Calibration

For chemometric evaluation the samples were divided into
a calibration and a validation set. To enable comparison of
the spectral techniques the same sets of samples were used.
The calibration set consisted of 96 samples and the valida-
tion set of 36 samples. The division into sets was done to
obtain similar mean values and standard deviations so that
both sets spanned the full range of oil and water content
(Table 1).

Several pretreatments of the spectra were investigated
for optimization of the calibration model. Mean centering
was used in all models, because this technique removes
the common information from the spectra. Another possi-

bility of pretreatment is variance scaling (VS) in which
each variable is scaled to unit variance. Multiplicative sig-
nal correction (MSC) uses a mathematical function to
compensate for variations in light scattering. First and
second derivatives were calculated because they are use-
ful for extracting band-shift and band-shape features and
in eliminating baseline effects. The influence of smooth-
ing using Savitzky–Golay (SG), five-point third-degree
polynomial fit, and Norris-derivative (Nd) filter, segment
length 5 and a gap between segments 2, was also tested.

The number of factors (latent variables) to be used to
construct the models was chosen by cross-validation (em-
ploying cancellation groups of four samples) by plotting
the number of factors against the root mean square error
of cross validation (RMSECV) and determining the mini-
mum. The so obtained RMSECV, which can be used to
obtain an estimate of the magnitude of prediction errors,
was, furthermore, compared with the root mean square er-
ror of calibration (RMSEC). This comparison helps detec-
tion of overfitting of the calibration model, which occurs
when too many factors are included in the model. This in-
creases the chance that the noise from the calibration data
is drawn into the calibration model, which consequently
reduces the predictive ability. Inspection of the loading
spectra of the factors can also help to exclude factors that
are dominated by noise.

Thorough outlier diagnostics were used to ensure the
quality of the calibration sets by plotting the studentized
residuals against the leverage of the samples. High lever-
age indicates that a sample has an abnormally large influ-
ence on the model because it has spectral features incon-
sistent with most of the spectra. If a high leverage sample
contains errors or other undesired abnormality this sample
may be dangerous and reduce the predictive ability of the
resulting calibration model. Such samples were not de-
tected. Especially in Raman measurements samples with
high leverage but low errors have been found, and can be
attributed to fluorescence, but cannot be considered out-
liers. They just show another source of variation that must
be included in the calibration even if this leads to a more
complex model. If not, the predictive ability of the model
would be seriously damaged. Samples with high error and
low leverage could indicate an error in reference measure-
ment. Such a sample would give bad results in both tech-
niques, Raman and NIR. But this did not occur. We there-
fore decided not to consider as outlier any sample with
high error in only one of the techniques.

Summarizing, the relative performance of a preprocessed
data set was assessed by the required number of factors, the
RMSEC, and the RMSECV. The predictive ability of the
calibration models was evaluated from the root mean square
error of prediction (RMSEP) of the independent validation
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Fig. 2 Raman spectra of (a) oil, (b) olive pomace (intensities am-
plified by a factor of 6), and (c) water (intensities amplified by a
factor of 10)

Table 1 Characteristics of cal-
ibration and validation sets for
oil and water content

aStandard deviation

Samples Water content Mean stdeva Oil content Mean stdev
(%) (%)

Calibration set 96 48.3–67.0 59.3 3.7 1.74–3.93 2.62 0.48
Validation set 36 50.0–64.5 59.4 3.9 1.77–3.74 2.52 0.41



set. RMSEC, RMSECV, and RMSEP are expressed as
weight percentage.

Near infrared

One of the advantages of PLS regression is that it is a
flexible full spectra method. However, the performance of
PLS calibrations can usually be improved by neglecting
regions which are unnecessary, because they contain much
noise or irrelevant information. The important spectral
bands of the analytes (oil and water) can be identified in
Fig. 1. Inspection of the correlation spectrum for each of

the analytes (Fig. 3) can also aid to exclusion of unneces-
sary regions. The correlation spectrum was obtained sim-
ply by calculating the correlation of the intensity at every
wavenumber in the untreated calibration spectra with the
concentrations of the analytes. By combining the spectral
information of the analytes and this mathematical approach
it was possible to determine three important regions 
for the determination of oil content, 8890–7815 cm–1,
6000–5450 cm–1, and 4410–4175 cm–1, and two for the de-
termination of water content, 7460–6125 cm–1 and 5375–
4550 cm–1. For both oil and water content the possibility
of using the full spectra for calibration was tested but re-
sulted in no better models than that using the chosen re-
gions.

The results obtained for oil and water content calibra-
tion in the above given regions are summarized in Table 2.
For oil content, already unprocessed spectra gave good re-
sults, with an RMSECV of 0.21 and an RMSEP of 0.19.
The performance of the calibration models with different
pretreatments was very similar. For smoothing the spec-
tra, the very slight reduction in the RMSEC corresponded
to selection of eight factors rather than seven. The same
tendency was seen in applying MSC. VS, on the other
hand, gave the same results as the raw data but with a
lower number of factors, six. First-derivative preprocess-
ing led to significant minimization of the number of fac-
tors and therefore simplified the models. VS applied to the
first-derivative spectra led to an improvement in RMSEC
(0.14) but not in predictive ability, probably because of
the use of four factors instead of three.

For water content, SG smoothing and VS on the origi-
nal spectra improved the RMSEP only slightly, from 2.1
to 2.0. Applying MSC led to a model with surprisingly
good performance. For this model, ten factors were se-
lected as optimum giving an RMSEC of 1.4, an RMSECV
of 2.2, and an RMSEP of 1.9 (results not shown in Table 2).
Nevertheless, including three more factors than for un-
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Fig. 3 NIR Correlation spectra of oil (above) and water (below).
Dotted lines mark the regions used for oil calibration and dashed
lines the regions for water calibration

Table 2 Calibration and validation results of NIR models using different spectral pretreatments. The results of models with the best per-
formance are marked in bold

1st derivative 2nd derivative

SG MSC VS SG Nd MSC VS SG Nd

Oil content 4175–4410+5450–6000+7815–8890 cm–1

Factors 7 8 8 6 3 3 3 4 1 3
R 0.92 0.93 0.93 0.92 0.92 0.90 0.91 0.96 0.87 0.92
RMSEC 0.19 0.18 0.18 0.19 0.19 0.20 0.20 0.14 0.24 0.19
RMSECV 0.21 0.21 0.20 0.21 0.22 0.21 0.21 0.23 0.25 0.22
RMSEP 0.19 0.19 0.20 0.19 0.21 0.21 0.20 0.20 0.24 0.19

Water content 4550–5375+6125–7460 cm–1

Factors 7 7 7 7 6 6 5 4 4 4
R 0.84 0.84 0.87 0.84 0.95 0.88 0.97 0.94 0.95 0.86
RMSEC 2.2 2.2 2.0 2.2 1.3 1.9 1.0 1.3 1.2 2.0
RMSECV 2.4 2.4 2.6 2.4 2.6 2.4 2.6 2.6 3.5 2.6
RMSEP 2.1 2.0 2.4 2.0 2.1 1.8 2.2 2.0 2.9 2.0

SG=Savitzky–Golay, Nd=Norris derivative, MSC=multiplicative
signal correction, VS=variance scaling; R=correlation coefficient,
RMSEC=root mean square error of calibration, RMSECV=root

mean square error of cross validation, RMSEP=root mean square
error of prediction
RMSEC, RMSECV, and RMSEP are expressed as weight percentage



processed spectra to build the model does not seem to make
sense, because this kind of correction should minimize
scattering effects and not include new variations in the
data set. Closer inspection of the factor loadings showed
that seven factors already explained more than 99.95% of
the spectral variance and 99.9% of the concentration vari-
ance. This was, furthermore, confirmed by looking at the
loading spectra. The eighth, ninth, and tenth had a very
high noise level and a sharp peak at 7186 cm–1, which
took alternating positive and negative sign. Building the
same model on seven factors gave an RMSEC of 2.0, an
RMSECV of 2.6, and an RMSEP of 2.4, results that can
be considered more reliable. First-derivative preprocessing
led to reduction of the number of factors, but not as sig-
nificant as for oil content. Models built with the first de-
rivative gave lower RMSEC values, but the predictive
ability did not improve significantly.

The second-order derivative using the SG smoothing
filter gave a model for oil content with only one factor. It
seems that with this pretreatment the spectral variance was
diminished; this, in addition to a much higher noise level,
resulted in a bad model. The complexity of the calibration
set can impossibly be explained by only one factor, thus
bad results in terms of fitting and prediction ability were
obtained. A similar deficit can be seen in the determina-
tion of water, but other than in oil it seems that correlation
was found with wavenumbers dominated by noise, thus a
minimum in RMSECV was found with four factors. This
results in a clear overfitting of this model, which is ex-
pressed as a low RMSEC value but very high RMSECV
and RMSEP values. In contrast, models built on second-
order derivatives smoothed with the Nd filter did not show
this problem. For oil content this model yielded similar
results, in terms of predictive ability, as the models built
on original and first-derivative spectra. For water content,
fitting and predictive ability were slightly worse.

The overall performance of oil-calibration models was
not significantly affected by the different pretreatments.
Models using the first-derivative used a smaller number of
factors. They are therefore simpler and can be considered
better than those using spectra. Among these the three us-
ing SG, Nd, and MSC showed very similar performance;
they can, therefore, all be regarded as acceptable. For wa-
ter content the best results were obtained by use of first
derivatives and the Norris derivative-smoothing filter. This
model had an RMSECV of 2.4 and an RMSEP of 1.8.

Raman

Again, before any data pretreatment the spectra (Fig. 2)
were inspected as described in the NIR section, to identify
unnecessary regions. The correlation spectrum for oil con-
tent is presented in Fig. 4. For water content, apart from
the region around 3300 cm–1, the correlation spectra did
not have characteristic spectral features, but a strong in-
fluence of the fluorescence background. The regions be-
tween 1800 and 2600 cm–1 and below 760 cm–1 were ne-
glected for both analytes, because they do not contain rel-

evant spectral information. The regions which contain
most information in the oil spectra, 1000–1800 cm–1 and
2800–3035 cm–1, were chosen for calibration. The calibra-
tion models for water content were built on the spectral
regions 760–1800 cm–1 and 2600–3585 cm–1.

The results obtained for oil and water content calibra-
tion in the above given regions using different spectral
pretreatments are summarized in Table 3. Smoothing had
no effect on the error of the model, which suggests that
chemometric modeling is not limited by noise. The mod-
els with original and smoothed spectra for determination
of oil content were built using ten factors. These models
had low RMSEC values but high RMSECV and RMSEP,
which can indicate overfitting of the calibration. VS wors-
ened the model for both oil and water content. The use of
MSC led to models with very limited predictive ability,
showing high RMSECV and RMSEP. MSC is a general
technique for separating multiplicative (scattering) varia-
tions from the additive (chemical) information. The fluo-
rescence background in the Raman spectra, which does not
have a multiplicative origin and strongly differs between
samples, is a possible reason for the poor performance of
the calibration models built on MSC-corrected data. As
occurred for near infrared models, first derivative prepro-
cessing led to significant minimization of the number of
factors improving, in this instance, the predictive ability of
the models. The performance of the smoothing filters was
similar. As happened in NIR models, VS applied to the
first-derivative spectra improved the fitting but worsened
the predictive ability, as can be seen from the RMSECV
and RMSEP values. The models built on second-deriva-
tive spectra had problems similar to those in NIR calibra-
tion, and therefore did not yield better results.

Best results were obtained for models using first deriv-
atives for both oil and water content, probably because the
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Fig. 4 Raman correlation spectra of oil. Dotted lines mark the re-
gions used for oil calibration



use of the first derivative eliminated some of the interfer-
ing effect of the fluorescence background. These models
performed better on the independent validation set, lead-
ing to a lower RMSEP – 0.19 and 2.0–2.1 for oil and water,
respectively. The calibration models using the Nd smooth-
ing filter were more stable, reflected in the lowest values
for RMSECV, 0.25 and 3.0 for oil and water, respectively.

Comparison of Raman and NIR model performance

According to the results presented the predictive ability
for oil and water content of olive pomace is similar for
both techniques. Prediction errors were approximately
0.19–0.20 for oil content and 1.8–2.0 for water content.

The different pretreatments influence the NIR models
less than the Raman models. The use of MSC correc-
tion, in particular, always led to bad results for Raman
models, with high RMSECV and RMSEP values. This
can be attributed to the inability of this preprocessing
technique to deal with the fluorescence background pre-
sent in Raman spectra of olive pomace. For both tech-

niques models constructed using first derivatives yielded
the best results.

There is a general tendency of Raman models to give
higher RMSECV values than NIR models, even if their
performance in external validation is similar. This could
be because of the higher spectral variation in the Raman
data. Characteristics of the samples which are indepen-
dent of analyte concentration, for example the olive ker-
nel and fluorescent compounds, are much more reflected
in the Raman than in the NIR spectra. So, the weight of
some samples with very different spectral characteristics
might be higher in the model. This can cause a problem in
cross validation, when these samples are predicted.

As a general observation, the residual errors for a par-
ticular sample are not well correlated between Raman and
NIR predictions, which indicates that the Raman and NIR
models have substantially different error characteristics.
This observation provided the basis for combining the
spectral information from both techniques to investigate if
better model performance could be achieved by taking ad-
vantage of the complementary information of the two
techniques.
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Table 3 Calibration and validation results of Raman models using different spectral pretreatments. The results of models with the best
performance are marked in bold

1st derivative 2nd derivative

SG MSC VS SG Nd MSC VS SG Nd

Oil content 1000–1800+2800–3035 cm–1

Factors 10 10 10 8 5 7 4 5 2 6
R 0.94 0.94 0.93 0.90 0.93 0.93 0.84 0.95 0.82 0.92
RMSEC 0.17 0.17 0.18 0.21 0.18 0.18 0.26 0.16 0.28 0.19
RMSECV 0.25 0.25 0.30 0.27 0.27 0.25 0.35 0.28 0.31 0.27
RMSEP 0.24 0.25 0.36 0.24 0.19 0.19 0.29 0.23 0.26 0.23

Water content 760–1800+2600–3585 cm–1

Factors 8 8 8 6 5 5 4 4 2 4
R 0.82 0.81 0.79 0.71 0.90 0.85 0.82 0.91 0.77 0.79
RMSEC 2.3 2.4 2.5 2.8 1.8 2.1 2.3 1.7 2.6 2.5
RMSECV 3.0 3.0 3.0 3.2 3.2 3.0 3.5 3.4 3.4 3.2
RMSEP 2.3 2.3 3.0 2.7 2.1 2.0 2.5 2.3 2.3 2.2

SG=Savitzky–Golay, Nd=Norris derivative, MSC=multiplicative
signal correction, VS=variance scaling; R=correlation coefficient,
RMSEC=root mean square error of calibration, RMSECV=root

mean square error of cross validation, RMSEP=root mean square
error of prediction
RMSEC, RMSECV, and RMSEP are expressed as weight percentage

Fig. 5 Reference vs. predicted
concentration of the 36 sam-
ples of the independent valida-
tion set. Oil content (a) and
water content (b) are predicted
by PLS models built on the
joined Raman and NIR spectra



Calibration with combined Raman and NIR spectra

The combined NIR and Raman spectra of each sample were
used for PLS modeling. The models were built on the
same spectral regions, which were identified in the former
calibration processes. Only for oil content were the NIR
regions 6000–5450 cm–1 and 4410–4175 cm–1 disregarded,
because their intensity was very high compared with Ra-
man data. Thus, only the region 7815–8890 cm–1, which
had high correlation with oil content, was used. Again dif-
ferent spectra pretreatments were tested. The best results
for oil content were achieved with variance scaling applied
to the original spectra. This technique estimates the stan-
dard deviation of the intensity values at each wavenumber
in the spectra and divides each data point in each spec-
trum by its estimated standard deviation. This is a simple
way of giving every variable an equal chance to contribute
to the modeling and in this instance was useful for com-
pensating for the differences in intensity between Raman
and NIR signals. The model was built on eight factors and
had an RMSEC of 0.18, an RMSECV of 0.21, and an
RMSEP of 0.17. This model was more stable, reflected in
the lower RMSECV than the Raman model and had a
slightly better predictive ability than both Raman and NIR
models. For humidity there was no improvement compared
with the performance of the models built on the Raman or
NIR spectra. The best model was built with the untreated
spectra using six factors and had an RMSEC of 2.0, an
RMSECV of 2.6, and an RMSEP of 1.9. Figure 5 shows
the oil and water content for the independent validation
set obtained using the reference analysis plotted against
the concentrations predicted by the PLS model based on
the combined Raman and NIR spectra.

Conclusions

This study compared Raman and NIR spectrometry for
determination of the oil and water content in olive pomace
using the same set of samples. Either of the spectral meth-
ods is easier to perform and more expedient than the
Soxhlet or NMR methods. According to the results pre-

sented it seems that both techniques should be able to de-
tect excessive levels of oil in olive pomace, arising as a
result of anomalies in the extraction process, and to esti-
mate the water content. Both techniques could be imple-
mented in-line in the olive production plant as really non-
invasive monitoring techniques, avoiding problems asso-
ciated with sample handling and pretreatment.
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