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Review Article

Abstract
Long-range corticocortical connectivity

in mammalian brains possesses an intricate,
nonrandom organization. Specifically, pro-
jections are arranged in ‘small-world’ net-
works, forming clusters of cortical areas,
which are closely linked among each other,
but less frequently with areas in other clus-
ters. In order to delineate the structure of cor-
tical clusters and identify their members, we
developed a computational approach based
on evolutionary optimization. In different
compilations of connectivity data for the cat

and macaque monkey brain, the algorithm
identified a small number of clusters that
broadly agreed with functional cortical sub-
divisions. We propose a simple spatial growth
model for evolving clustered connectivity,
and discuss structural and functional impli-
cations of the clustered, small-world organi-
zation of cortical networks. 

Index Entries:Rhesus macaque monkey; cat;
cluster analysis; neural networks; cortical
development; robustness; vulnerability;
network function; small-world networks;
scale-free networks; spatial growth.
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Investigations of the global structural organ-
ization of neural systems connectivity are a fun-
damental starting point for understanding
structure–function relationships in the brain.
Previous work has demonstrated that cerebral
cortical areas in mammalian brains, for instance
that of the cat or the rhesus macaque monkey,
are neither completely connected nor randomly
interlinked. Instead, they show an intricate

specific organization, and various features of
the cortical network arrangements have been
described. For example, ‘streams’ of visual
cortical areas are segregated functionally
(Ungerleider and Mishkin, 1982) as well as in
terms of their input, output, and mutual con-
nections (Young, 1992). Topological sequences
of areas indicate potential signaling pathways
across the cortical networks (Petroni et al.,
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2001), and sensory cortical networks may also
possess elements of a serial organization
(Young et al., 1995). Alternatively, hierarchies
of cortices can be constructed based on the lam-
inar origin and termination patterns of the
areas’ interconnections (Felleman and Van
Essen, 1991; Hilgetag et al., 1996; Hilgetag et al.,
2000b). Moreover, cortical connectivity may be
characterized by various structural network
indices, such as symmetry, which describes the
proportion of reciprocal connections of an area,
and transmission, that is, the ratio of the num-
ber of local inputs to outputs (Kötter and
Stephan, 2003). Also, a matching index can be
computed that assesses the pairwise similarity
of areas in terms of their specific afferents and
efferents (Hilgetag et al., 2002). These indices
are complemented by functional (entropic)
measures such as ‘segregation’ and ‘integration’
that can be employed to evaluate distributed
system performance (Sporns et al., 2000a). 

In recent years, the field of network analy-
ses has attracted considerable interest. This is
based on the realization that many complex
social, technical, or biological networks share
characteristic features of their general organi-
zation. In particular, two main characteristic
types of systems were identified, scale-free (SF)
and small-world (SW) networks. SF networks
(Barabasi and Albert, 1999) possess more highly
connected nodes, or hubs, than randomly
rewired networks with the same number of
nodes and edges, leading to a power-law
degree (edges per node) distribution. SW net-
works (Watts and Strogatz, 1998), on the other
hand, are characterized by clustering of local
neighborhoods (described by the clustering
coefficient C, indicating the average fraction of
the neighbors of a node that are directly con-
nected), which is substantially higher than that
in randomly wired networks of the same size.
In addition, SW networks possess shorter aver-
age shortest path lengths (ASPs) than seen in
strictly regular networks (e.g., lattices), but sim-
ilar ASPs as in same-size random networks. 

In the following investigations, we focus on
corticocortical connectivity at the systems level,
that is, long-range projections among cortical
areas. There have been pioneering studies
about the interconnections of different types of
neurons at the level of intrinsic neuronal cir-
cuits, for instance, Gupta et al. (2000), and
Kalisman et al. (2003). However, detailed infor-
mation about connectivity at the cellular level,
based on systematic sampling, is still largely
missing. Nonetheless, long-range connections
at the systems level may provide the structural
scaffold for functional and effective connec-
tivity (Friston, 1994) and be partly responsible
for the neural activation patterns observed in
studies of perception and cognition, for exam-
ple, Büchel and Friston (1997).

While the moderate size of known cortico-
cortical networks makes it difficult to decide
directly if their node degrees follow a SF dis-
tribution, the existence of SW attributes in such
networks can be more clearly tested. Indeed,
the analysis of structural as well as functional
connection data for mammalian cortical net-
works has shown that these systems can be
described as SW networks (Hilgetag et al.,
2000a; Sporns et al., 2000b; Stephan et al., 2000)
(see Fig. 1). The SW organization implies the
existence of local clusters, which are infre-
quently linked with each other. In fact, Watts
and Strogatz originally derived the topology
of SW networks from same-size networks with
completely connected neighborhoods, by redis-
tributing some of the links randomly within
the network (Watts and Strogatz, 1998). Even
with the knowledge that cortical connectivity
is highly clustered (Fig. 1B), however, the actual
structure of these clusters is still unknown. In
the following two sections, we present an evo-
lutionary optimization approach that
addresses the problem of identifying the num-
ber and composition of cortical clusters.
Subsequently, we propose a simple biological
model for the generation of cortical network
clusters, and in the last two sections of the paper
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discuss the structural and functional implica-
tions of clustered cortical connectivity.

Identifying Network Clusters

In order to identify the putative clusters in
cortical network data, a computational
approach based on an evolutionary optimiza-
tion algorithm was proposed (Hilgetag et al.,
2000a). This stochastic clustering approach
appeared as a useful strategy, since the data
available in the anatomical literature were high-
dimensional, incomplete, and of an ordinal or

binary nature (listing only existence or absence
of a connection), excluding alternative analyt-
ical approaches. 

The approach was based on the rationale that
in clustered network arrangements, areas
should be more frequently connected within
their respective clusters than with areas in other
clusters. Consequently, a cost function was
designed that consisted of two components
whose sum was minimized. The components
were defined as: C1 (attraction component)—
the integer number of connections existing

Fig. 1. Small-world characteristics of cortical networks in rhesus monkey and cat. Clustering and shortest path
length indices were computed for data sets of monkey visual cortices (32 areas, 319 connections), monkey
somatosensory and motor cortices (15 areas, 66 connections), as well as global compilations of monkey and
cat cortical areas (73 areas, 834 links, and 55 areas, 891 connections, respectively). See Hilgetag et al. (2000a)
for details.The same indices were calculated for data sets in which the connections were randomly redistrib-
uted among the areas (n = 20 for each network type). (A) All-pairs shortest paths (ASP) were similar in the
biological and randomized networks.(B)Average local clustering (clustering coefficient C; Watts and Strogatz,
1998) was much greater in cortical compared with randomized networks.Taken together, the two measures
imply small-world features (Watts and Strogatz, 1998) in cortical systems networks.
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between all different clusters, and C2 (repulsion
component)—the integer number of absent
connections within all clusters. The first com-
ponent can be considered as an attraction force,
since it is zero in the limit case in which only
one global cluster, and no inter-cluster con-
nections, exist. Minimizing the second com-
ponent, on the other hand, tends to break up
clusters, as it can be reduced to zero by an
arrangement that consists of completely sepa-
rate areas. By minimizing both components
simultaneously, their opposing forces produce
a global cluster arrangement, consisting of the
most densely intra-linked groups of areas with
comparatively fewer links to other clusters in
the network. In addition, the cost components
could be weighted to emphasize one or the
other component of the cluster definition, and
to influence the number of resulting clusters. 

The component cost function was employed
in an optimization algorithm that started with
random cluster arrangements and gradually
lowered the cost of candidate solutions through
simple ‘mutations’ (alternatively: placing an
area in a newly created cluster; merging an iso-
lated area with a cluster; swapping two areas
between their respective clusters). These muta-
tions also served to increase or decrease the
number of clusters in the global arrangement.
As a result, an arrangement was obtained that
simultaneously represented an optimal num-
ber of clusters as well as their optimal config-
uration. For further details of the approach,
which may be flexibly employed in a variety of
clustering problems, see Hilgetag et al. (2000a).

Structure of Cortical Clusters 

The analyses delineated a small number of
distinctive clusters in all cortical systems stud-
ied (primate visual, global primate cortical,
global cat cortical, Hilgetag et al., 2000a); clus-
ters could also be identified in the primate pre-
frontal cortex (Hilgetag and Barbas, 2003). By
sufficiently increasing the weight of the 

repulsion cost component during the opti-
mization routine, the algorithm could also be
steered to generate clusters that no longer con-
tained any identified absent connections. These
clusters, which consisted of three to ten areas
were, therefore, maximally dense, and poten-
tially completely connected, depending on the
existence or absence of currently unknown
links. Since they cannot be further decomposed
into smaller clusters, such maximally con-
nected sub-networks may be considered net-
work ‘building blocks’ of cortical systems
(Hilgetag et al., 2000a); cf., Milo et al. (2002) for
an alternative concept of network building
blocks, based on significant circuit patterns. 

The identified area groupings largely agreed
with functional cortical subdivisions (Fig. 2A).
For instance, clusters found in the analysis of
global cortical data consisted predominantly
of visual, auditory, somatosensory-motor, or
frontolimbic areas, respectively (Hilgetag et al.,
2000a). More specifically, the clusters identi-
fied in the primate visual system closely fol-
lowed the previously proposed visual streams.
In agreement with the idea that structural con-
nectivity clusters also correspond to functional
cortical subdivisions, cluster analyses of semi-
functional (neuronographic) connection data
demonstrated the existence of functional pro-
cessing clusters with broadly similar subdivi-
sions (Stephan et al., 2000). 

Development of Clustered
Connectivity

Is the organization and formation of clus-
tered structural and functional connections in
cortical systems shaped by experience-
dependent neural activity? Recent findings
suggest that this may be unlikely, as the basic
architectonic and connectional layout of the brain
can be produced in the absence of neurotrans-
mitter action (Verhage et al., 2000). Moreover,
it would be expected that different individual
experiences lead to the formation of specific
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patterns of connections in individual brains.
However, the labeling of projections to the same
cortical region in different subjects showed no
instances where links (of substantial density)
existed in some individual animals but not oth-
ers, even though the density of corresponding
corticocortical connections appeared to be
highly variable (Hilgetag and Grant, 2000).

To explore alternative developmental mech-
anisms, we created a computational model for
spatial network growth (Kaiser and Hilgetag,
2004c). In order to generate networks with dis-
tributed clusters, and SW properties as found
in mammalian cortical connectivity (Fig. 1), the
growth algorithm imposed limits for network
growth (reflecting internal factors such as apop-
tosis factors or external borders such as the
skull) and set the probability for forming new

connections such that it depended inversely on
the metric distance between areas. Under these
conditions, distant nodes with long-range con-
nections to the existing network could still occur,
though not frequently. These nodes were pio-
neers in so far sparsely populated regions, and
areas placed nearby were likely to establish a
connection to the pioneer nodes. Thus, the model
was able to yield new clusters distant to the pre-
viously existing network (Fig. 2B). Both the clus-
tering coefficient (Watts and Strogatz, 1998) and
the average shortest path of generated networks
were similar to those found in cortical networks
in the monkey and cat. Interestingly, it was
unnecessary to include chemical gradients or
neural activity to generate these structural fea-
tures in the model. However, such factors may
be necessary for the functional differentiation

Fig. 2. Clustered structure of biological and simulated networks of cat corticocortical connectivity, based on
Hilgetag et al. (2000a) and visualized by the Pajek program (http://vlado.fmf.uni-lj.si/pub/networks/pajek/). Bars
indicate borders between nodes in separate clusters. (A) Cortical areas were arranged around a circle by
evolutionary optimization,so that highly inter-linked areas were placed close to each other.The ordering agrees
with the functional and anatomical similarity of visual, auditory, somatosensory-motor, and frontolimbic cor-
tices. (B) A network of 55 areas generated by simulated cortical growth (Kaiser and Hilgetag, 2004b).Areas
with similar connectivity were placed adjacently using the method of Non-Metric Multidimensional Scaling
(NMDS) (Kruskal and Wish, 1978). In the upper and lower part of the diagram, highly connected, clustered
regions can be identified.
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of cortical networks (Sur and Leamey, 2001).
While our model demonstrated principal mech-
anisms by which the clustering of cortical net-
works may be explained, it did not replicate the
specific cortical connectivity patterns found in
mammalian brains. Future work will need to
establish the exact factors that result in the spe-
cific cortical projection systems. 

Structural Implications

Various technical and biological networks,
such as a protein–protein interaction network
(Jeong et al., 2001) were found to be robust
towards random elimination of areas or con-
nections (Barabasi and Albert, 1999). The pre-
sented cortical connectivity networks shared
this feature (Martin et al., 2001) owing to the
availability of many alternative pathways
within clusters.

In networks composed of multiple distrib-
uted clusters, inter-cluster connections take on
an important role. It can be demonstrated that
these are the connections that occur most fre-
quently in all shortest paths linking areas with
one another (Kaiser and Hilgetag, 2004a). Such
projections therefore may be of particular
importance for the structural stability and effi-
cient working of cortical networks, and we sug-
gest that the modeling of essential network
links (e.g., with the help of structural equation
modeling, McIntosh et al., 1994) should focus
on inter-cluster connections.

More generally, the frequency of a particu-
lar connection in all pairs shortest paths across
a network is a useful measure for the impact
of the connection’s removal on network sta-
bility and efficiency. This correlation was much
greater in cortical networks than in other bio-
logical networks (Kaiser and Hilgetag, 2004a).
When connections used frequently in the short-
est paths were removed from the network, a
large impact on the average shortest path arose,
indicating that no alternative paths with lower,
or the same, length existed. This was owing to

both the existence of inter-cluster connections
as well as the arrangement of connectivity
within clusters.

Such an optimal connection placement
ensures a low average shortest path length
despite the existence of separate clusters.
Also, a preliminary analysis of wiring length
in the macaque cortex (Kaiser and Hilgetag,
2004b) suggested that the cortical network is
optimized for low ASPs, rather than for other
factors such as minimal wiring length.

In the absence of reliable structural connec-
tion data for the human brain, studies of mon-
key and other mammalian connectivity can
help to extract essential features which may
apply to both the animal models and human
cortical connectivity. Such analyses may also
help to identify determinants of structural con-
nectivity, depending, for instance, on spatial
proximity (Young, 1992) or architectonic type
(Barbas, 2000; Hilgetag and Barbas, 2003) of
the potentially linked cortical areas.

Functional Implications

Can clusters also be seen as a useful level of
description for analyzing and modeling func-
tional connectivity? Since the connectivity clus-
ters found in several cortical systems tend to
follow functional subdivisions of these systems,
and as they are, moreover, broadly similar to
clusters of semi-functional, neuronographic
interactions (Stephan et al., 2000), it appears
that structural clustering may underlie at least
some cortical activation patterns. However,
given the already very short path lengths
between any two areas (typically, cortical areas
are connected directly or via just one interme-
diate area, e.g., Hilgetag et al., 2000a), one won-
ders what additional benefit the connectional
aggregation within clusters might bring. Sporns
and colleagues (2000a) suggested that the dis-
tributed cluster structure of cortical systems is
ideal for achieving high functional complexity,
that is, an optimal balance between functional
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integration and independence or specialization
of different cortical areas. Alternatively, the
close association of areas within clusters offers
itself to efficient recurrent processing. Closed
feedback loops between areas are very likely
to occur, given the high probability for many
short cycles in the system (Sporns et al., 2000b).
The actual nature of recurrent activations, how-
ever, is still poorly understood. For example,
different cortical projections frequently pos-
sess specialized morphology, and show char-
acteristic patterns of laminar origins and
terminations, arising and terminating in spe-
cific intracortical micro-environments. The
functional role of corticocortical connections,
and their clustered arrangement, therefore may
become clearer once the integration of long-
range projections with specific laminar circuits
is better understood.
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