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Abstract: This review focuses on the short and bewil-
dered history of Brazilian scientist Carlos Chagas’s
discovery and subsequent developments, the anatomo-
pathological features of chronic Chagas cardiomyopathy
(CCC), an overview on the controversies surrounding
theories concerning its pathogenesis, and studies that
support the microvascular hypothesis to further explain
the pathological features and clinical course of CCC. It is
our belief that knowledge of this particular and remark-
able cardiomyopathy will shed light not only on the
microvascular involvement of its pathogenesis, but also
on the pathogenetic processes of other cardiomyopa-
thies, which will hopefully provide a better understanding
of the various changes that may lead to an end-stage
heart disease with similar features. This review is written
to celebrate the 100th anniversary of the discovery of
Chagas disease.

Introduction

Abnormalities of microcirculation have been demonstrated in

several different cardiomyopathies [1,2], and microvascular spasm

was proposed as a common pathogenic mechanism for the

development of the characteristic focal myocytolytic necrosis in

these cardiomyopathies [3–6].

We suggested that alterations in the microvasculature contrib-

uted to the pathogenesis of experimental chronic Chagas

cardiomyopathy (CCC) [7,8]. Mice infected with Trypanosoma cruzi

(T. cruzi) developed a chronic cardiomyopathy similar to that

observed in the chronic phase of Chagas disease in humans.

Aggregated platelets forming transient occlusive thrombi were

found in small epicardial and intramyocardial vessels associated

with foci of myocytolytic necrosis and degeneration with an

inflammatory mononuclear infiltrate and interstitial fibrosis. Soon

afterwards, areas of focal vascular constrictions, microaneurysm

formation, and dilatation were demonstrated in mice acutely

infected with T. cruzi [9]. In 1990, we proposed the participation of

microcirculation via transient ischemia in the pathogenesis of

CCC [10]. At that time, two hypotheses regarding the pathogen-

esis of CCC were being intensely investigated: parasympathetic

intrinsic denervation as the mechanism of cardioneuropathy

[11–13] and the participation of autoimmune mechanisms in the

genesis of chronic fibrosing myocarditis [14–16].

This review focuses on the short and bewildered history of

Chagas’s discovery and subsequent developments, the anatomo-

pathological features of CCC, an overview of the controversies

surrounding theories concerning the pathogenesis of CCC, and

studies that support the microvascular hypothesis that further

explains the pathology and clinical course of CCC. It is our belief

that knowledge of this particular and remarkable cardiomyopathy

will shed light not only on the microvascular involvement of its

pathogenesis, but also on the pathogenetic processes of other

cardiomyopathies, which will hopefully provide a better under-

standing of the various changes that may lead to an end-stage

heart disease with similar features. As stressed by Factor [17], ‘‘…

the similarity of Chagas disease to other dilated congestive

cardiomyopathies, particularly those due to viral etiology, should

make awareness of the South and Central American disease

relevant to investigators outside endemic areas’’. Moreover, as a

consequence of increased global migration due to socioeconomic

reasons and facilitated by international travel, Chagas disease may

expand exponentially from rural and endemic areas to urban and

nonendemic areas, respectively. Furthermore, this review marks

the 100th anniversary of the discovery of the disease by the

Brazilian scientist Carlos Chagas. Simultaneously, 2009 marked a

hundred years of negligence concerning Chagas disease, which is

endemic in the most impoverished populations in Latin America

that are still living in poor quality housing with substandard

conditions, i.e., the primary habitat for T. cruzi vectors and mode

of transmission besides blood transfusion, oral, and congenital T.

cruzi infection transmission.

Carlos Chagas’s Discovery

In 1908, the Brazilian government, when building a railroad

from Rio de Janeiro (the capital of Brazil at the time) to Belem (in

the north of the Amazon Basin), a task that was never completed,
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had to halt construction in Minas Gerais, not too far from Rio de

Janeiro, because of a severe malaria outbreak involving the

railroad workers [11,18,19]. Oswaldo Cruz, director of Manguin-

hos Institute in Rio de Janeiro (currently known as Oswaldo Cruz

Institute), commissioned Carlos Chagas and Belisario Pena to that

region in an attempt to control the outbreak. They settled their

headquarters in Lassance in a railroad car, which served as the

consultation room, laboratory, and quarters. After one year of

intensive work, Chagas was told by a railroad engineer about the

existence of hematophagous bugs, which were known as

‘‘barbeiros’’ (barbers) or ‘‘kissing bugs’’ due to their typical

behavior of biting sleeping human beings at night on the

uncovered face. Chagas became interested in investigating the

possibility of this bug transmitting parasites to humans or other

vertebrates. He soon detected flagellates resembling crithidiae in

the bugs’ hindgut. Intrigued by the possibility that this parasite

could represent an evolutionary stage of Trypanosoma minasense,

which he had previously described infesting marmosets, he sent

some bugs to Manguinhos to be fed to primates that were free of

infection. After some weeks, the same flagellates seen in the

hindgut of the bugs were recovered from the bloodstream of the

animals, and a new species different from T. minasense or ‘‘any

other species of the same genus’’ was recognized. The parasite was

first named as Schyzotrypanum cruzi in honor of Oswaldo Cruz, but it

was subsequently renamed Trypanosoma cruzi.

Chagas returned to Lassance looking for the presence of

vertebrate hosts of this newly discovered parasite. After several

tests in humans and animals, he found a cat with parasites in the

bloodstream. A few weeks later, he was asked to investigate the

possibility of an acute malarial episode in a two-year-old girl

named Berenice living in the same house where the cat was found.

He had clinically examined this girl before and now parasites were

detected in the blood, suggesting the acute phase of a new disease.

Further examinations demonstrated that the flagellates disap-

peared as the symptoms vanished, thus raising the possibility of a

chronic phase of the new disease. On April 15, 1909, Oswaldo

Cruz reported Chagas’s discovery to the Brazilian National

Academy of Medicine. A complete study on the evolutive cycle

of the T. cruzi was published in the first volume of the Maguinhos

Institute journal, Memórias do Instituto Oswaldo Cruz, in August 1909

[20]. On October 26 of the same year, Chagas presented his first

lecture on American trypanosomiasis in the Brazilian National

Academy of Medicine, calling his discovery ‘‘a new realm in

Pathology’’. The genius of Carlos Chagas enabled him to describe

the agent, vectors, and main mechanism of disease transmission,

clinical signs in humans and animals, and the existence of animal

reservoirs. The merit of his research, the circumstances surround-

ing it, and the subsequent development of the field represent one

of the most important pages in the history of medical science.

Never before or since has a single scientist, a clinician and clinical

investigator, fully characterized a new disease in all its aspects in

this manner.

After some time, this important discovery by Chagas resulted in

violent arguments and also led to denials, probably because it was

beyond the comprehension of many of the physicians and scientists

of those days and because his contemporaries envied him. In 1915,

the campaign directed against Chagas intensified when Kraus, a

German bacteriologist from the Buenos Aires Bacteriology

Institute in Argentina, could not find any human cases of Chagas

disease in northern Argentina, although a great number of infected

bugs were found in hut dwellings. Chagas rejected Kraus’s report,

but the attacks and doubts against his discovery continued, and he

was called ‘‘a man who searches in the jungle for diseases which do

not exist’’. After 1920, Chagas disease was simply forgotten and

disappeared from nosology as an infectious disease of public health

importance. The rediscovery of Chagas disease was made by

Salvador Mazza, an Argentine physician, in 1934, just before

Chagas’s death, on November 8 of that year. He reported many

acute cases found in northern Argentina, exactly where Kraus

failed to find any human case of the disease. Like Chagas, Mazza

was criticized for ‘‘discovering new diseases instead of treating the

many already existing ones’’. Due to Mazza’s research, investiga-

tions on once forgotten Chagas disease were reinstated in South

America, now recognized just as a cardiopathy. Only two decades

later, the now well-known late manifestations of Chagas disease

mega-syndromes, usually megaesophagus and megacolon, conjec-

tured by Chagas [21], in which the pathogenic mechanism is the

intrinsic denervation of the viscera, were only recognized as of

chagasic etiology through the works of Köberle [22], an Austrian-

born pathologist, founder of the Department of Pathology of the

Faculty of Medicine of Ribeirão Preto, University of São Paulo. In

his thesis for the position of full professor, Köberle states that ‘‘…

The knowledge of the high incidence of Chagas disease in

Ribeirão Preto and surroundings, associated with the verification

of a large number of megas in the same region, led us to

suspect of the chagasic etiology of the megas in Brazil and to

study its pathogenic mechanism, particularly that of the

megaesophagus ….’’

Pathology of Chronic Chagas Cardiomyopathy

By the early 1990s, the World Health Organization (WHO)

considered Chagas disease the most serious parasitic disease in

Latin America [23] and as having the greatest economic impact.

The number of estimated infected people was approximately 18

million, with a further 100 million under risk. Now, the revised

numbers are much reduced, with an estimate of about 10–13

million [24] or, even less, 8–10 million infected people [25,26].

Large-scale local initiatives to halt vector-borne transmission

together with the improvement of blood-donor screening tests to

control blood transfusion and congenital T. cruzi infection

transmission, such as the ‘‘Southern Cone Initiative’’, explain

most of this success [27]. Notwithstanding, Chagas disease is still

classified as one of the most neglected diseases in the world [28],

since there are still 200,000 new cases of Chagas disease notified

each year and some rural communities in Latin America with

seroprevalence rates as high as 40% [29]. Although primary

infection continues to endanger the lives of countless people in

Latin America, the real challenge concerning the millions of

chronic chagasic patients is the control and treatment of the

chronic manifestations of the disease. For this it is essential to

understand the pathogenesis of the late manifestations of the

disease.

Chagas disease is characterized by three phases: acute,

indeterminate or latent, and chronic. The heart is the most

severely and frequently involved organ. The cardiac involvement

during the acute phase varies from mild (asymptomatic or

olygosymptomatic) to severe. The latter may be fatal, occurring

in 3%–5% of cases. The indeterminate or latent phase, between

the acute and chronic phases, usually of long duration (up to 10–

30 years), is characterized by the absence of clinicopathological

evidence and is usually accompanied by either a normal

electrocardiogram or one with minor disturbances of cardiac

rhythm. Approximately 30% of the infected individuals eventually

develop late manifestations. The symptomatic disease affects the

heart in 94.5% of patients that are considered to have CCC,

usually between 15 and 50 years of age. Congestive heart failure is

the cause of death in 58% of these patients, whereas cardiac
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arrhythmias and unexpected death affects 36.5%. The remaining

manifests as mega-syndromes of hollow viscera, usually mega-

esophagus and megacolon.

Three stages are seen in CCC. In the initial stage the patient has

a few symptoms, usually related to disturbances of rhythm. In the

intermediate stage the clinical signs usually correlate with a mildly

to moderately enlarged heart. In the final stage, the most

significant clinical manifestation includes congestive heart failure,

thromboembolic phenomena, severe arrhythmias, and sudden

death [11,30–33]. Alterations in cardiac function, severe conduc-

tion abnormalities, and episodes of ventricular arrhythmias or

syncope are considered to predispose chagasic patients to sudden

unexpected death, a significant risk at any stage of the disease

[11,33,34].

The main pathological changes reflect the importance of the

involvement of the heart in Chagas disease [11,18,30,33,35]. In

the acute phase, the heart is globular and flabby. Foci of

myocytolytic necrosis and degeneration are observed microscop-

ically with an intense mononuclear inflammatory infiltrate and

intense parasitism of myofibers (Figure 1A). Most of the hearts

with CCC show a marked alteration in size and form, although

some hearts appear to be normal in size and form (Figure 2). All

degrees of enlargement of the heart may be found, mainly

affecting the right-sided chambers of the heart, with dilatation

being more pronounced than hypertrophy. More than 50% of

chagasic hearts show a peculiar lesion of the apex of the heart,

mainly the left ventricle apex, consisting of thinning and bulging of

the apical region, the so-called apical aneurysm. Similar localized

parietal thinning may occur in the left and right ventricular free

walls. Fibroadipose or adipose replacement of the right ventricular

myocardium, particularly at the apical area of the right ventricle,

may be observed, occasionally associated with a bulging of the

apex. This attenuation of the myocardium implicates mainly the

apical region, although the entire right ventricular free wall can be

involved. Thrombosis of the aneurysm is common. Even without

aneurysm, extensive mural thombosis in the lower part of the left

ventricle and in the dilated right auricle may be seen [36]. The

presence of thrombi explains the frequent occurrence of

thromboembolic phenomena in the pulmonary and systemic

circulation. In CCC, micropathology reveals focal and diffuse

chronic fibrosing myocarditis (Figure 1C and 1D). Diffuse foci of

myocardial micronecrosis are present and associated with an

inflammatory infiltrate composed predominantly of lymphomono-

nuclear cells and interstitial fibrosis, one of the most prominent

features (Figure 1B) [37–40]. This remodeling of the collagenous

matrix leads to progressive myocardial decompensation by

decreased cardiac output, combined with an increased workload

due to myocardial stiffness. The conduction system shows

inflammatory and fibrotic lesions similar to those found in the

myocardium [34,41]. Myofibers containing parasites are virtually

never found in the chronic phase of the disease. Destruction of the

intrinsic cardiac and enteric nervous system (chiefly parasympa-

thetic ganglion cells) and mediastinal paraganglia has been

demonstrated [11,42,43].

Theories on the Pathogenesis of CCC

The pathogenesis of chronic chagasic cardiopathy is still not

fully understood. Different mechanisms have been proposed.

Direct Tissue Destruction by Trypanosoma cruzi
The existence of different clinical forms of the disease was soon

identified, which was at first thought to be associated with

differences in the parasites implicated. Indeed, even Chagas

noticed a peculiar dimorphism, the so-called slender and stout

forms of the parasite in the bloodstream, observations later

confirmed by many others [44,45]. Today, these two morpholog-

ical forms are believed to emerge from epigenetic phenomena and

their pathological relevance is obscure [46]. At a very early stage,

the idea of a major role of differential tissue tropism in the

pathogenesis of Chagas disease was proposed [47,48]. This idea

has persisted in spite of only tenuous evidence based mainly on the

parasite distribution in different tissues in the acute phase of

experimentally infected animals [49–51].

In chronic Chagas disease, parasites are rarely found in tissues

examined by routine techniques [11,52]. However, parasite

antigens were disclosed in the myocardial tissue by application

of immunohistochemical techniques [53] and sensitive polymerase

chain reaction (PCR) [54–56]. These observations support a role

for persistent antigenic stimulation throughout the chronic phase

in the pathogenesis of myocardial changes. New studies may

highlight the primary role of T. cruzi in the pathogenesis of Chagas

disease and set the stage for establishing the notion that genomic

variation of T. cruzi might influence the course of the disease.

Autonomic Abnormalities
The autonomic nervous system of patients with Chagas disease

has been extensively studied [11,13]. CCC could be a neurogenic

form of heart disease promoted by the destruction of the

parasympathetic ganglions cells in the heart. Early morphological

investigations revealed a conspicuous reduction in the number of

cardiac parasympathetic neurons of patients who had died from

intractable congestive heart failure. The extent of heart denerva-

tion seen in Chagas disease has not been detected in any other

cardiopathy so far studied, though a number of cardioneuropa-

thies have been described [57]. Abnormalities of autonomic heart

rate control were also described in clinical studies of asymptomatic

patients with cardiac enlargement on chest X-rays [58,59].

Malignant ventricular tachyarrhythmias (ventricular tachycardia,

ventricular fibrillation) are major causes of sudden death among

patients with CCC. The destruction of the parasympathetic

innervation could induce an increased sympathetic tone with

either a direct effect in arrhythmogenesis via altering the

electrophysiologic properties of the heart or an indirect effect via

other mechanisms, such as increased oxygen demand by

catecholamines, increased coronary vasomotor tone, and aug-

mented platelet adhesiveness [60]. It is now well established that

the intrinsic denervation of organs occurs in the acute phase of the

disease because of IFN-c-elicited nitric oxide (NO) production

resulting from inducible nitric oxide synthase (iNOS) activation of

the inflammatory foci [43]. The main dilemma of the neurogenic

theory remains in the uncertainty about its physiopathologic

mechanism, i.e., its implication in the pathogenesis of the chronic

fibrosing myocarditis.

Role of Autoimmune Mechanisms
The participation of autoimmune mechanisms in the genesis of

the chronic myocarditis of Chagas disease has been postulated

[14–16]. The relative lack of parasites in the myocardium during

the chronic phase was the origin of many autoimmune theories,

including both a humoral and cellular origin. The establishment of

an organ-specific autoimmune nature for Chagas disease chronic

fibrosing myocarditis has been waiting on an experimental model

that could provide evidence in support of the hypothesis and allow

specific manipulations by which different sets of lymphocytes could

be implicated in the generation of the disease. Perhaps the most

compelling evidence supporting the role for autoimmunity comes

from the demonstration that anti-CD4 abrogates rejection and
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reestablishes long-term tolerance to syngeneic newborn hearts

grafted in mice chronically infected with T. cruzi [61], although

this does not happen when different strains of parasites and mice

are employed [62].

Two criticisms are often used against the hypothesis that CCC is

an autoimmune disease. The first is that immunosuppressants,

which generally relieve symptoms of autoimmune diseases,

exacerbate mortality in individuals with Chagas disease, and the

second is that therapy directed at the parasite often ameliorates the

clinical disease in humans and experimental animals [63].

It has been assumed that autoimmunity is triggered after the

initial contact with the parasite and that immunological processes

continue during the chronic phase of the disease [64]. This,

however, has not been proven. Most of the inference on the

alleged immunological mechanisms implicated in the chronic

phase of cardiac disease pathogenesis, when rarely a parasitic

pseudocyst can be detected, is based on experiments with animals

acutely infected with T. cruzi in which the acute myocarditis is

directly related to the presence of the parasite.

Studies Involving Microcirculation and Chagas Disease
Studies in mice and rats. In mice first immunized with

several inoculations with epimastigote forms of the avirulent PF

strain of T. cruzi and then challenged with trypomastigotes of the

virulent Colombian strain of T. cruzi, isogenic BALB/c mice

developed a cardiomyopathy very similar to that observed in the

chronic phase of human Chagas disease [7]. Macroscopically,

there was cardiomegaly with hypertrophy and dilatation of the

ventricular chambers associated with thinning of the left ventricle

apex in 46% of the hearts (apical aneurysm) (Figure 3A). The

microscopic findings revealed focal areas of myocytolytic necrosis

and myocardial degeneration associated with a lymphomo-

nonuclear inflammatory infiltrate accompanied by interstitial

fibrosis and occasional pseudocysts. In addition, platelet

aggregates, forming transient occlusive thrombi, were detected in

small epicardial and intramyocardial vessels, direct evidence of

microcirculatory disease (Figures 3B and 3D). Moreover, the focal

nature of the myocardial lesion and the type of myonecrosis

represent the indirect evidence for the involvement of the

microcirculation in this model (Figure 3C). The release of

vasoconstrictor substances, such as thromboxane A2 (TXA2) and

platelet activating factor (PAF) by macrophages, which are the

predominant inflammatory cells, was proposed to cause transient

ischemia and myocytolytic necrosis [8].

A/J mice infected with the Brazil strain and perfused with

silicone rubber (Microfil) 15–17 days post-infection revealed

numerous areas of focal vascular constriction, microaneurysm

formation, dilatation, and proliferation of microvessels (Figure 4A),

which is similar to the results described for other congestive

cardiomyopathies [4]. These microvascular changes, observed

prior to the onset of significant myocardial degeneration or

fibrosis, were reduced to a minimum by long-term administration

of verapamil [65]. These observations were corroborated by direct

in vivo visualization utilizing a surrogate murine model, i.e., the

cremaster microvascular bed [66]. Direct observation of the effects

of T. cruzi infection on microcirculatory flow in vivo and

quantitative measurement of parameters like velocity of red blood

cell flow (Vrbc) and vessel diameter were provided. When the

cremaster model was examined 20–25 days post-infection in male

CD-1 mice infected with the Brazil strain, a significant decrease in

Vrbc, reversed by verapamil treatment, was observed in the first-

and third-order arterioles and venules. In addition, the marked

inflammatory response attenuated was by verapamil treatment.

The arterioles of the infected mice exhibited segmental areas of

vasospasm and dilatation, possibly the initiating event in

microaneurysm formation (Figure 4B) [67].

The exact mechanism of such vascular lesions has not been fully

clarified. In addition to spastic phenomena, the observation of

platelet thrombi in the coronary microcirculation of infected mice

led to an investigation of the possible mechanisms involved.

Toward this end, a study using A/J mice and human umbilical

vein endothelial cells (HUVECs) infected with the Tulahuen strain

of T. cruzi showed an increased aggregation of platelets during the

early stage, a factor that may contribute to the development of

thrombosis. In addition, increased levels of TXA2 were observed.

This finding could contribute to the increased intravascular

platelet aggregation and focal microvascular spasm [68]. Recently,

Ashton and colleagues [69] demonstrated that all three life forms

of the parasite are capable of synthesizing TXA2, but it was most

dramatic in amastigotes. These observations suggest that TXA2

could contribute to the pathogenesis of CCC and its clinical

manifestations.

Early in the course of infection, parasites are evident in the

coronary microvascular endothelial cells (ECs) before parasit-

emia can be detected, suggesting that the coronary endothelium

could be an initial, if not primary, target of T. cruzi infection.

Acutely infected rats developed changes in the endothelial layer

characterized by EC swelling and a few points of cytoplasmic

discontinuity that appeared as holes exposing the subendothelial

collagen that is usually associated with platelet-fibrin aggregates,

which might affect the generation of vasoactive substances, and

impairs the equilibrium between opposing forces [70]. In vitro

and in vivo studies indicate that infection of the endothelium

results in expression of both pro-inflammatory cytokines and

vascular adhesion molecules, which are both important compo-

nents of the inflammatory response [71–73] T. cruzi infection of

ECs was demonstrated to cause activation of the NF-kB

pathway, likely contributing to the induction of cytokine and

adhesion molecular expression in the endothelium [72].

Furthermore, in the myocardium obtained from T. cruzi–infected

humans and experimental animals, increased expression of

cytokines, iNOS, and adhesion molecules has been reported

[73–75].

Endothelial cells are the major source of endothelin 1 (ET-1), a

potent vasoconstrictor, and its role in the pathogenesis of chagasic

heart disease has been demonstrated. The infection of CD1 mice

with the Brazil strain and C57BL/6 mice with the Tulahuen strain

caused an intense vasculitis, high plasma ET-1 levels, and

Figure 1. Micropathology of Chagas heart disease. (A) Acute myocarditis with foci of myocytolytic necrosis and degeneration are seen with an
intense inflammatory infiltrate around ruptured pseudocysts of parasite (arrows, in the inset). Intact intramyocyte parasite nest without inflammatory
response (arrow heads, in the inset). Hematoxylin and eosin staining. Bar = 100 mm; inset bar = 50 mm. (B) Chronic fibrosing myocarditis. Foci of
myocytolytic necrosis associated with mononuclear inflammatory infiltrate and incipient interstitial fibrosis appearing in light blue (arrows). Gomori
trichrome staining. Bar = 100 mm. (C) Chronic fibrosing myocarditis. Predominantly perimysial interstitial fibrosis extending to the endomysium (arrow
heads) appearing in light blue associated with mononuclear inflammatory infiltrate. Gomori trichrome staining. Bar = 500 mm. (D) Chronic fibrosing
myocarditis. Interstitial and diffuse fibrosis manifested by increased amount of thick collagen fibers surrounding muscle fiber bundles (perimysial
matrix) and around intramural coronary vessels, combined with a less pronounced increase in the endomysial matrix. Picrosirius red staining.
Bar = 500 mm.
doi:10.1371/journal.pntd.0000674.g001
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increased expression of mRNAs for the precursor molecule

preproET-1, endothelin converting enzyme (ECE), and ET-1 in

the myocardium [76]. It has been hypothesized that T. cruzi–

derived molecules provoke overexpression of ET-1 [77]. Elevated

levels of plasmatic ET-1 have been demonstrated in patients with

CCC [78]. To further test the hypothesis that ET-1 contributes to

the pathogenesis of murine chagasic cardiomyopathy, mice with a

deletion of the gene for ET-1 in either cardiomyocytes or ECs

were used to distinguish between ET-1 derived from both cell

types. In infected mice in which the gene for ET-1 was deleted in

cardiomyocytes, there was a reduction in myocardial inflammation

and fibrosis [79]. In addition, these mice displayed a reduction in

cardiac enlargement as revealed by cardiac magnetic resonance

imaging and echocardiography. This data provided further

evidence of a role for ET-1, particularly myocyte-derived ET-1,

in the pathogenesis of CCC.

Figure 2. Gross pathology of chronic Chagas cardiomyopathy (four-chamber frontal view). (A) Cardiomegaly with a left apical aneurysm
(arrow). Myocardium hypertrophy. Marked thinning can be noted in the obtuse border of the heart at the submitral area (arrow head). At the apex of
the right ventricle, distinct replacement of myocardial tissue by adipose tissue can be seen. (B) Cardiomegaly. Thinning and thrombosis at apices of
both ventricles (arrow heads). Dilatation of cardiac ventricular chambers, mainly the right one. Fibrofatty substitution at the apex of the left ventricle
and major part of the right ventricular free wall. (C) Normal-sized heart showing an enormous aneurysm at the apex of the left ventricle. Hypertrophy
of the right ventricle free wall except for a marked thinned apex can be clearly seen. (D) Mildly enlarged heart showing dilatation of the four
chambers. Giant left apical aneurysm. Thinning of left border of the heart immediately below the mitral valve. (E) Globally enlarged chronic chagasic
heart with dilatation mainly affecting the right-sided chambers. Adipose replacement of the right ventricular myocardium, particularly at the apical
region, associated with bulging can be seen (arrow heads). (F) Transillumination of a chagasic heart showing thinning of the muscle wall ‘‘cor
bifidum’’ with aneurysm at the left apex (arrow heads), and marked thinning of the anteroapical region of the right ventricle. RV, right ventricle; LF,
left ventricle. All bars = 3 cm.
doi:10.1371/journal.pntd.0000674.g002
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Figure 3. Study in mice chronically infected with T. cruzi demonstrating involvement of microcirculation. (A) Enlarged heart of a mouse
infected with T. cruzi 100 days post-infection showing marked thinning of the apex of the left ventricle (apical aneurism). Bar = 2 mm. (B) Myocardium
of an infected mouse stained by the Carstairs method for demonstration of platelets. An occlusive platelet thrombus is seen in a small epicardial
vessel (arrowhead). Bar = 50 mm. Mononuclear cell infiltration, interstitial edema and fibrosis, and foci of myocytolytic necrosis. (C) Schematic
representation of coronal sections through mice hearts infected with T. cruzi 100 days post-infection without (upper panel) and with (lower panel)
apical aneurism, showing the extent of foci of myocytolytic necrosis. These areas are scattered throughout the ventricular and atrial myocardium, but
are more numerous in the subendocardial and subepicardial regions in the apex, papillary muscles, and base of the ventricles. (D) Electron
micrograph showing complete dissolution of myofibrils within a myofiber (*) of an infected mouse with characteristic myocytolysis or myocytolytic
necrosis. Bar = 10 mm.
doi:10.1371/journal.pntd.0000674.g003
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Studies in dogs. Hearts from dogs sacrificed 18 to 26 days

after intraperitoneal inoculation with trypomastigote forms of the

12SF strain of T. cruzi/kg body weight were studied. This study

demonstrated that myocarditis characterized by small focal areas

of lesion and myocytic necrosis associated with interstitial

mononuclear infiltration. Ultrastructurally, degenerative changes

were observed in ECs in contact with T lymphocytes, as well as

platelet aggregates and fibrin thrombi in the intramyocardial

capillaries. These alterations suggested that a possible interaction

between ECs and effector immune cells might play an important

role in the pathogenesis of the myocellular lesion and of the

microangiopathy observed in this model [80].

In vitro studies. Direct infection of human endothelial

cells in culture with T. cruzi resulted in the alteration of various

critical biochemical processes responsible for the maintenance of

microvascular perfusion, such as Ca2+ homeostasis and generation

of inositol trisphosphate and prostaglandin I2 [81,82]. T. cruzi

infection of HUVECs results in an alteration of cyclic AMP

metabolism, which plays a protective role against the direct and/

or indirect lesion caused by the adhesion and aggregation of

circulating platelets to ECs [83]. However, inflammatory cells may

contribute to a state of microvascular hypoperfusion by secreting

cytokines and other factors known to affect platelets and ECs.

Cytokines contribute to the pathogenesis of various parasitic

infections, and their roles in the pathogenesis of T. cruzi infection

have been extensively studied. The increase of interleukin-1b (IL-

1b), IL-6, and colony stimulating factor 1 (CSF-1) in infected ECs

may lead to alterations in their function [83]. IL-1b is elaborated

by activated macrophages and by peripheral blood mononuclear

cells, including those infected with T. cruzi, and by a variety of

other cell types, such as ECs [84,85]. The antithrombotic

properties of ECs may be altered by IL-1b. This cytokine may

reduce tissue production of the plasminogen activator and increase

production of the inhibitor of this activator, an event that may

result in thrombus formation [86,87]. Although the products of IL-

6 are markedly increased in EC cultures, it has not been possible to

determine whether non-infected cells are also induced to produce

this cytokine. Since IL-1b may induce IL-6 production by ECs, it

is not clear whether IL-6 production by infected cells is a direct

result of the infection or is induced by the IL-1b produced in

response to infection. CSF-1 is an important growth factor for the

proliferation and maturation of cells of the mononuclear lineage

[85]. It is also important in recruitment, possibly acting in

conjunction with IL-1b. High CSF-1 levels have been detected in

cultured ECs infected with T. cruzi. These observations may reflect

the growth of the monocyte population in the microvasculature,

resulting in the later elaboration of proinflammatory cytokines

[71]. In addition, trypomastigotes may elaborate a neuraminidase

that may be involved in the removal of sialic acid from the surface

of mammalian myocardial cells and ECs, facilitating thrombin

binding. The loss of this endothelial surface protector molecule

may contribute to platelet aggregation and thrombosis within the

small coronary vessels [88]. These factors acting together may

ultimately result in spasm and thrombosis in the small coronary

vessels, inducing focal myocardial damage.

The consequences of T. cruzi infection of HUVECs with regard

to the production of biologically active ET-1 are an increased

expression of ET-1 mRNA [89]. Increased production of ET-1

may contribute to the coronary microvascular vasoconstriction

previously reported in experimental Chagas disease [9].

Studies in humans. Anatomical studies have shown

structural derangement and rarefied microvasculature in the left

ventricular myocardium. A histotopographical study comparing

the microcirculatory system after injection of an opaque medium

into chagasic and control human hearts demonstrated focal

decapillarization in chronic Chagas disease due to extraluminal

compression, suggesting that this might be the cause of focal

myocytolytic necrosis [90]. Similarly, a postmortem radiological

study of chagasic hearts revealed vascular changes at the heart

apex characterized by distorted and/or scarce vessels associated

with decreased arterial density, presumably related to the

pathogenesis of apical aneurysm [91].

The evaluation of chest pain is a major problem in chagasic

patients. Almost all exhibit symptoms that are atypical for classic

angina pectoris. Although symptoms suggestive of myocardial

ischemia are present, coronary angiographical studies show

normal or nearly normal coronary arteries in more than 90% of

patients studied [92]. This peculiarity had been previously

reported in a postmortem study [93]. However, patients

specifically selected on the basis of chest pain did show perfusion

abnormalities detectable by thallium-201 scintigraphy, suggesting

that myocardial ischemia, possibly of the microvascular type, may

contribute to the genesis of the symptoms (Figure 4C).

Abnormal perfusion in different groups of chagasic patients has

been confirmed by various independent investigators using

isonitrile-99m-technetium [94] or thallium-201 [92,95]. In

addition, myocardial capillary blood flow in chronic chagasic

patients with no significant clinical or electrocardiographic

manifestations proved to be markedly reduced when evaluated

Figure 4. Changes of coronary perfusion in experimental T.
cruzi infection and human chronic Chagas cardiomyopathy. (A)
Microfil injection of the coronary vasculature of A/J mice infected with
T. cruzi 15–17 days post-infection. Section of the atrium reveals saccular
microaneurysms and vasospasm in the subendocardium. (B) Videomi-
crographs of representative fields of the microvasculature obtained
from the cremaster muscle from T. cruzi–infected mice 20–25 days post-
infection (a, arterioles; v, venules). Upper left and right panels:
Representative fields showing areas of vasospasm (arrows). Left lower
panel: In this field there is an area of segmental microvascular dilation
(arrow). Right lower panel: Infected mouse treated with verapamil in
which there were no areas of vasospasm or dilatation. Bar = 20 mm
(from Tanowitz et al. (1996) Journal of Parasitology 82: 124–130, with
permission of Allen Press and the Journal). (C) Planar images (anterior,
left anterior oblique, and lateral views of myocardial scintigraphy with
Tc-labelled microspheres in a chronic chagasic patient whose complaint
was chest pain, but who had angiographycally normal coronary arteries.
A prominent perfusion defect is seen in the anterolateral and
posterolateral regions of the left ventricle. Courtesy of J. Antonio
Marin-Neto, MD.
doi:10.1371/journal.pntd.0000674.g004
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with rubidium-86, while the major coronary vessels appeared

normal. The reduction observed, comparable to that exhibited by

a group of non-chagasic patients with obstructive coronary disease,

occurred under basal conditions [96] and, to a lesser extent,

during exercise [97]. Using a specific marker of regional flow

independent of cell metabolic activity, a perfusion defect was

detected in 55% of the 18 chagasic patients with CCC and

essentially normal epicardial coronary circulation [98].

Vasospastic mechanisms have been proposed in the genesis of

coronary accidents in patients with CCC [99]. For example, it was

demonstrated that cardiopathic chagasic patients present an

abnormal, endothelium-dependent, coronary vasodilating mecha-

nism as demonstrated by acetylcholine and adenosine infusion into

the left coronary artery, suggesting that epicardial and microvas-

cular coronary reactivity may be altered in these patients. The

clinical importance of this alteration awaits elucidation. However,

this abnormality of the coronary microvasculature may contribute

to the genesis of the symptoms related to the ischemic processes

observed in chronic chagasic patients and to acute myocardial

infarction in the absence of significant coronary damage [100].

Biopsies obtained from chronic chagasic hearts revealed a

marked thickening of the basement membrane in most myocytes

and capillaries (up to 20 times the normal thickness) [101]. This

alteration is similar to the thickening with or without multiple

layers reported for the basement membranes of myocardial

capillaries in other cardiomyopathies [102]. A very well-developed

capillary network has been observed in chagasic human hearts

using a cell-maceration scanning electron microscopic method

[103]. This alteration may represent the probable cause of slow

capillary flow, contributing to the hypoxic changes observed in

CCC.

Significant dilatations of arterioles and capillaries in various

ventricular areas of chagasic hearts compared to hearts with

dilated cardiomyopathy were described. It was hypothesized that

such microcirculatory dilatations could cause inadequate blood

flow distribution in the watershed area lying between the two main

coronary flow sources (the anterior descending and posterior

descending arteries, and the right and circumflex coronary

arteries), resulting in ischemic and extensive fibrosis within the

left ventricle apical and posterior regions [104].

The relation of regional sympathetic denervation and myocar-

dial perfusion disturbance to wall motion impairment was

described in patients with CCC. Global left ventricular function,

segmental wall motion analysis, and myocardial perfusion were

evaluated in 58 patients, demonstrating myocardial perfusion

defects in the absence of epicardial coronary artery disease. In

addition, the extension and severity of perfusion abnormalities

parallel the progression of myocardial damage. These results

support the notion that perfusion disturbance in CCC may be

caused by transient disturbances of coronary blood flow regulation

at the microvascular level [105]. The same group correlated the

clinical, electrocardiographic, angiographic, electrophysiologic,

and wall motion/myocardial perfusion disturbances in chronic

chagasic patients with either sustained or non-sustained ventricular

tachycardia. The fact that both fixed perfusion defects (reflecting

local fibrosis) and reversible and paradoxical defects predominate

in the dyssynergic arrhythmogenic left ventricle region is also

compatible with the hypothesis that microvascular ischemia plays

an important role. Thus, several findings suggest that transient

disturbances of coronary blood flow regulation at the microvas-

cular level may be a causative mechanism of regional myocardial

degeneration, with a consequent reparative fibrosis that ultimately

constitutes the substrate for reentrant circuits and the appearance

of both sustained and non-sustained ventricular tachycardia [106].

Chronic Chagas Heart Disease and the Interstitial Matrix
In CCC there is extensive damage of the myocardium and,

consequently, it is not surprising that interstitial fibrosis is one of

the most prominent features [38]. Since the extracellular matrix

has an important role in the structure and function of the

myocardium [107–109], the progressive accumulation of intersti-

tial collagen could well be the main factor responsible for the

progressive impairment of the contractile performance of the

myocardium and for the increase in arrhythmogenic risk in

chronic Chagas heart disease.

The pattern of myocardial fibrosis in chronic Chagas heart

disease probably reflects the pathogenic mechanisms involved.

Diffuse foci of myocardial myonecrosis may be the main etiology

factor of the chronic expression in chronic chagasic cardiomyop-

athy [110]. The presence of infiltrates of lymphomononuclear cells

is a consistent and prominent finding in the chronic chagasic

fibrosing myocarditis. Our results clearly showed the colocaliza-

tion of the fibrosed areas and fibroblasts with T lymphocytes and

macrophages. T lymphocytes have been demonstrated to play a

role in the pathogenesis of fibrosis. Bleomycin-induced pulmonary

fibrosis in mice is attenuated by depletion of CD4+ or CD8+ T cells

and completely abrogated by total T cell depletion [111]. CD4+

and CD8+ cells may act directly on mesenchymal cells by means of

cytokine production that leads to the proliferation of fibroblasts

and the synthesis of collagen or indirectly by enhancing the

activation of macrophages [111]. Macrophages, when activated by

cytokines, have been shown to produce powerful inducers of

fibrosis, such as transforming growth factor b (TGF-b) and

platelet-derived growth factor (PDGF) [112,113]. Our study shows

a predominance of T cells and macrophages concentration.

Besides, since myocytes can produce growth factors such as

fibroblast growth factor [114], the injured myocytes could

potentially produce and release such factors, contributing to

fibrogenesis. In addition, increased production of ET-1 by cardiac

myocytes correlates closely with the degree of hemodynamic and

functional impairment [76,115], indicating that this peptide could

also contribute to myocardial fibrosis through its collagen

synthesis-enhancing effect [116].

Studies on Therapeutic Strategies
Increasing evidence for abnormalities at the microvascular level

has been accumulated from studies both in chagasic patients and

experimentally infected animals. The changes suggest that

myocardial lesions develop, at least in part, as a consequence of

additive and progressive cell necrosis initiated and perpetuated by

changes in myocardial microcirculation. Based on these studies, it

is possible to speculate that therapy aimed at decreasing the degree

of microvascular ischemia could prevent or ameliorate myocardial

damage, ventricular dysfunction, and ventricular arrhythmias.

Angiotensin-converting enzyme inhibitors (ACEIs) have

emerged as the treatment of choice for patients with all degrees

of heart failure, ranging from asymptomatic left ventricular

dysfunction to severe heart failure. The mechanism of action of

captopril, an ACEI, involves suppression of angiotensin II, a

potent vasoconstrictor, and increased levels of bradykinin through

the inhibition of kininase II, which induces NO release in ECs and

stimulates the production of prostacyclin, a vasodilating prosta-

glandin [117]. Captopril is commonly given to patients with CCC.

Despite routine administration of captopril to patients with CCC,

few studies have examined the effects of this drug in these

individuals. Captopril has been shown to improve cardiac function

with few side effects [118,119] but has not been found to reduce

mortality [120]. In a study using A/J mice infected with a Brazil

strain of T. cruzi, the animals developed acute myocarditis 21 days
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after infection, characterized by severe focal inflammation,

necrosis, and fibrosis. The administration of captopril significantly

reduced necrosis and fibrosis in infected mice. Taken together,

these results suggest that captopril can reduce myocarditis and

fibrosis in T. cruzi infection.

The effect of enalapril, another ACEI, on ventricular function

in patients with CCC has been evaluated. A significant

improvement of diastolic function and a trend to improvement

of systolic function was seen in the group that received digitalics,

diuretics, and enalapril in comparison with the group that received

digitalics and diuretics only. This beneficial action of enalapril in

diastolic function could be related to decreased venous return and

increased arteriolar vasodilatation [121].

Two cases of myocarditis due to acute Chagas disease, resulting

from oral intake of sugar cane juice infected with T. cruzi,

developed acute decompensated NYHA class IV heart failure.

Both patients were refractory to treatment with ACEI, aldosterone

antagonists, and dobutamine. Levosimendan was prescribed, and

clinical improvement was observed, with progression to NYHA

class II. Levosimendan is a positive inotropic drug with

vasodilatory properties with anti-ischemic action through in-

creased coronary flow and reduced preload and afterload. The

limitations of this study include lack of studies with a placebo

group to ensure that the benefits are a result of the drug and not

side effects of other medications [122].

Further evidence of the microvascular involvement in CCC

pathogenesis has been demonstrated by studies with verapamil, a

first generation L-type calcium channel antagonist [123]. T. cruzi–

infected CD1 mice given verapamil immediately after infection

showed decreased mortality and attenuated myocardial inflam-

mation and fibrosis [65,67]. However, when verapamil was

administered after 60 days post-infection, there was no ameliora-

tion of infection-associated structural and functional abnormalities.

The results suggested that verapamil acts early in the course of T.

cruzi infection to prevent ventricular dilatation and myocardial

dysfunction [124]. Verapamil has several well-known actions that

may reduce the severity of cardiomyopathy, including increasing

coronary blood flow, inhibition of calcium channels and a and b-

adrenergic activity, and platelet aggregation [123].

Phosphoramidon, a potent inhibitor of endothelin-converting

enzyme, reduced myocardium inflammation and fibrosis and

attenuated right ventricle diameter increase in CD1 mice infected

with the Brazil strain of T. cruzi and treated for the initial 15 days

post-infection [125].

Conclusions

The pathogenesis of chronic chagasic cardiomyopathy, which

takes decades to develop after the initial infection with T. cruzi,

occurs as a consequence of several physiopathological processes.

The very rare finding of parasites in the myocardium in the

chronic phase of the disease is out of proportion to the degree of

organ compromise and dysfunction. The chronic fibrosing

myocarditis development is related to progressive and additive

focal cellular necrosis and associated with inflammatory mononu-

clear infiltrate and reactive and reparative interstitial fibrosis and

surrounding myocytes hypertrophy. Based on the evidence

presented in the present review, these processes may be initiated

and perpetuated by alterations in the myocardial microcirculation.

The intrinsic and/or extrinsic cardiac necrosis system abnormal-

ities and immunological mechanisms may contribute, but there

has been extensive debate on their significance on the marked

cardiac damage.

The treatment of the chronic Chagas heart disease has relied on

the same conventional treatments for other cardiomyopathies. The

studies cited illustrate the potential benefit of therapeutics aimed at

the underlying pathophysiological microvascular mechanism of

CCC. However, the favorable effect of these changes has not yet

been established due to the lack of randomized multicenter clinical

trials using different treatments to determine their impact on

clinical improvement and survival of chronic chagasic patients.

There is an urgent need for developing adequate specific

treatment procedures, particularly during the chronic phase of

the disease.
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correlação anátomo-radiológica. Arq Bras Cardiol 34: 81–86.

92. Marin-Neto JA, Marzullo P, Marcassa C, Gallo Júnior L, Maciel BC, et al.

(1992) Myocardial perfusion abnormalities in chronic Chagas’ disease as
detected by Thallium-201 scintigraphy. Am J Cardiol 69: 780–784.

93. Oliveira JS, dos Santos JC, Muccillo G, Ferreira AL (1985) Increased capacity

of the coronary arteries in chronic Chagas’ heart disease: further support for

the neurogenic pathogenesis concept. Am Heart J 109: 304–308.

94. Castro R, Kuschnir E, Sgammini H (1988) Evaluacion de la performance

cardiaca y perfusion miocardica con radiotrazadores en la cardiopatia

chagasica cronica. Rev Fed Argent Cardiol 17: 226–231.

95. Hagar JM, Tubau JF, Rahimtoola SH (1991) Chagas’ heart disease in the

USA: Thallium abnormalities mimic coronary artery disease. Circulation 84:

631.

96. Kuschnir E, Kustich F, Epelman M, Santamarina N, Podio RB (1974)
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