THE ROLE OF DOPAMINE IN THE MAINTENANCE OF WORKING MEMORY IN PREFRONTAL CORTEX NEURONS: INPUT-DRIVEN VERSUS INTERNALLY-DRIVEN NETWORKS

MASSIMILIANO VERSACE
Department of Cognitive and Neural Systems, Boston University, 677 Beacon st.,
Boston, 02215 MA, USA
E-mail: versace@cns.bu.edu
http://cns.bu.edu/~versace/

MARCO ZORZI
Dipartimento di Psicologia Generale, University of Padova, via Venezia 8,
35131 Padova, Italy
E-mail: marco.zorzi@unipd.it
http://ccnl.psy.unipd.it/zorzi.html

How do organisms select and organize relevant sensory input in working memory in order to deal with constantly changing environmental cues? Once stored, how is it protected from and altered by the continuous stream of sensory input and internally generated planning? The present study proposes a novel computational model of dopamine action in the maintenance of working memory in the prefrontal cortex that provides a link between the mechanisms of state switching and the biophysical properties of cortical neurons.

Keywords: recurrent networks, dopamine, prefrontal cortex, working memory, cognitive control.

1. Introduction

The link between working memory (WM), cognitive control, and prefrontal cortex (Pfc) functioning has been an active topic of research in cognitive science. Cognitive control is the process of selecting contextually relevant information and organizing these representations to achieve the organism’s behavioral goals. Cognitive control has been linked to the ability to maintain goal-related information in WM, and neuropsychological and neurophysiologic studies have provided strong evidence in favor of an involvement of Pfc in active maintenance of information in WM. WM is impaired in human subjects with lesions in the frontal cortex, and particularly the dorsolateral Pfc. Pfc ablation in non-human primates has been shown to cause impairments in tasks requiring WM. Such deficits are also common in rats with lesions to the medial Pfc, the rodent equivalent of the dorsolateral Pfc in primates.

Pfc has been shown to be involved in tasks that use a delayed-response paradigm. In these kinds of tasks, performance is linked to the ability of the animal to maintain information over some temporal delay in order to release a response at a later point in time, often facing the presentation of several distracters interleaved between the to-be-stored cue and the release of an action. Neurons in Pfc exhibit stimulus-specific, sustained activation during performance of these tasks, whereas lesions to Pfc impair their correct execution (for reviews, see 15-17). These results are corroborated by neuroimaging studies, where Pfc activity has been shown to increase as memory load increases and to be sustained over the entire delay interval.

Miller and colleagues have provided direct evidence for the ability of Pfc to maintain information in the face of interference. While cue-related information was held in both Pfc and infero-temporal cortex (IT) after the presentation of the stimulus, subsequent presentations of distracters obliterated the activity in IT, while the pattern in Pfc was maintained until a match (target presentation) occurred. Not
surprisingly, Pfc damage has been associated with increased distractibility and perseveration.

Pfc is also a target structure of dopaminergic (DAergic) innervation, and a linkage has been suggested between an imbalanced DAergic system, a poor Pfc activation and some key symptoms of neurological and psychiatric diseases. Converging evidence suggests that DAergic projections to the Pfc modulate both attention and WM processes that may be related to either insufficient or excessive dopamine activity specific to the DAergic D1 receptor mechanism.

The action of DA in spatial WM has also been investigated. Both primate and rodent studies have highlighted the role of dopaminergic receptors in the maintenance of activity in Pfc neurons during a task that implies some delay between the cue and the response. In particular, DAergic midbrain neurons become active and DA levels in the Pfc increase during WM performance. Blockade of the subtype D1 of DA receptors in Pfc and DA depletion in Pfc are correlated with WM deficits. At the same time, DA agonists enhance delay task performance. Over the past decades, in vivo and in vitro studies have suggested a more articulated picture by showing the differential influence of stimulation from the D1 and D2 subtypes of dopamine receptors on Pfc activity.

The relationship between DA receptor stimulation, WM and some neurological and psychiatric deficits has been a focus of interest in psychopathology. In a review paper, Lidow et al. summarize the evidence supporting a precise link between antipsychotic drugs, D1 and D2 receptors, Pfc activation and some major features of schizophrenia, one of the major psychiatric diseases that have been linked to an imbalanced DAergic transmission. Evidence from both physiological and behavioral studies suggests that normal cognitive performance is achieved with a restricted range of D1 receptors activation.

Goldman-Rakic and her colleagues have proposed a descriptive model trying to capture the relationship between D1 receptor stimulation, pyramidal neurons and gamma-aminobutyric acid (GABAergic) interneurons activation, and WM performance. The relative activation of pyramidal, excitatory neurons and inhibitory interneurons is important in shaping the resulting activation pattern in a neural population. Goldman-Rakic and colleagues suggest that, at an optimal level of DA stimulation, glutamatergic (pyramidal) neurons activation is enhanced more than the activation of inhibitory interneurons. At low levels of DA the absence of modulation does not allow any activation to be stored in WM. At high D1 activation, D1 receptors in pyramidal neurons will saturate while GABAergic interneurons will still be able to increase their firing rate, causing an overall decrease in activation and no WM storage.

Despite decades of studies on the nature of the action of DA in Pfc, the exact mechanism and, more importantly, the behavioral and computational function of the innervation of Pfc from the DAergic nucleus ventral tegmental area (VTA) is still elusive. Studies aimed at determining the excitatory or the inhibitory influence of DA in Pfc neurons have led to controversial results. Durstewitz and Seamans propose a detailed computational model incorporating numerous biophysical and electrophysiological data on the presumed role of DA in Pfc neuron functioning. Their simulations show that DA acts on several Pfc membrane currents (Na++, K+, Ca++), with the net effect of enhancing delay-active neurons and reducing the impact of intervening stimuli, therefore determining a shift between a resting state and a high memory state, defined as the average firing rate of the Pfc field. A simplified phase plane analysis of such a system shows how DA can widen the distance between the two critical points that describe the two states, thereby making it more difficult to switch between low and high memory states in the presence of DA. The Durstewitz and Seamans model is one of the most sophisticated computational model in terms of biophysical details simultaneously implemented in a single simulation. However, the authors do not simulate a behavioral task, nor do they systematically vary the magnitude of the DAergic innervation to determine its effect on the behavior of the network. Thus, based on this model, it is not possible to determine whether Pfc can preserve its activity in the face of interference in a behavioral task.

On the other hand, Braver and Cohen place emphasis on behavioral control in order to demonstrate the ability of a simple model to incorporate interactions between the DAergic system and Pfc in order to perform tasks known to involve WM load. Unlike the model by Durstewitz and Seamans, Braver and Cohen model the macroscopic functional features that the network should express in order to control behavior. This work focuses on the most prominent behavioral
impairment in schizophrenia, namely the loss of cognitive control. This involves impairment in attention, WM and behavioral inhibition. The authors suggest a possible role for DA as a gate for Pfc, determining the maintenance or the update of goal-related information based on the phasic DAergic signal controlled by VTA. Indeed, the proposal of DA as exerting a general gating function with respect to distal input is a recurring theme in the modeling literature, and is also emerging with increasing insistence in the neurophysiological community. However, the exact mechanisms of this gate are still under debate, with the main issue being the status of the gate, namely whether the gate is normally closed or open, and therefore whether the action of DA is to open or close the prefrontal gate. In Braver and Cohen’s model, DA controls the update of information in Pfc. A DAergic spike allows the input synchronized with this spike to enter Pfc and be stored in WM. In the absence of DAergic modulation, the Pfc gate is therefore closed, allowing reverberation of activation, protection from interference, and storage in WM. The competitive, recurrent network implemented in this study has been used to simulate the continuous performance task, an experimental setting in which a WM load is required in order to store sensory representations. Despite the encouraging results, the computational analysis of the system does not allow for a formal characterization of the behavior of the network. Furthermore, the model only allows inputs which are synchronized with a VTA DAergic spike to enter Pfc for WM storage. The specular view, as pointed out by Dreher and Burnod, is more plausible (see discussion below).

The work by Dreher and Burnod seems to take advantage of the strengths of Durstewitz and Seamans and Braver and Cohen in terms of neurobiological details incorporated in the model and the link between behavior and simulation results. Dreher and Burnod have chosen to limit the study to a two-population system in order to fully characterize the system dynamics and, with some simplifying assumptions, to remain able to simulate a non-trivial WM task, the delayed alternation task (DaAT). When DaAT is used in animal studies, the animal must alternate between two different responses (e.g., right/left button press) separated by a delay. Both rats and monkeys are impaired in this DaAT when they have Pfc lesions. Dreher and Burnod’s focus is on the subset of Pfc neurons that show sustained activity during the delay between right-sided and left-sided trials from the same animal studies. DaAT is sensitive to VTA DAergic innervations and direct infusions of D1 agonists and antagonists in Pfc impair behavioral performance. Dreher and Burnod’s model is built on the assumption that DA reduces the impact of intervening stimuli on network activity through D1 stimulation. This proposal is in disagreement with the one by Braver and Cohen, in which DA modulation is proposed to facilitate incoming inputs at the precise time of their presentation. Dreher and Burnod propose that DA is unlikely to play this role, for two different reasons: 1) DA presumably has an inhibitory effect on Pfc neurons; and 2) when the DAergic VTA neurons fire, DA released by their terminals in Pfc requires some time before influencing the post-synaptic cell (100-150 msec for VTA neurons to fire, plus some other time for DA to act at the post-synaptic site – 200 msec observed in the striatum). This time is greater than the time necessary for a stimulus to reach Pfc. Thus, Dreher and Burnod propose that the role of DAergic transmission is to momentarily isolate Pfc neurons activated by an input from a previous cortical area, in particular input to Pfc neuron’s apical dendrites. This would be achieved by increasing a threshold, defined as the electrotonic distance between the dendrite and the proximal dendritic regions.

The network simulated by Dreher and Burnod reflects an inverted “U” function between behavioral performance and levels of DA stimulation; low or high levels of DA increase errors in the task. The hypothesis of DA as acting on the input to apical dendrites of Pfc cells is supported by neurophysiological data. However, the scale of Dreher and Burnod’s simulation does not allow to clarify whether the demonstrated properties it would be scalable in a more complex and realistic model of Pfc.

Reid and Willshaw analyze the role of DA in forming delay cell ensembles responsible for the kind of activation seen in physiological recordings of Pfc in WM tasks. They propose that DA acts primarily on layer 3 cells by reducing firing threshold and allowing synchronous activation in the cell ensemble. Reid and Willshaw propose that DA has two major roles with regard to layer 3 activation dynamics: decrease in the firing threshold via its action on proximal dendrites/soma (amplification of recurrent connection...
within layer 3) and increase in firing threshold in distal dendrites (isolation of layer 3 from distal input). Thus, DA has an effect in synchronizing and lowering the threshold for reverberation of activity in layer 3, as well as isolating layer 3 cells from other inputs that might reset working memory. In Reid and Willshaw’s43 model, underactivity in D\textsubscript{1} receptors causes the disruption in the coherent firing of layer 3 cells and a reduction in the gating preserving delay ensembles from being influenced by (potentially) non-pertinent information. On the other hand, overactivity of D\textsubscript{1} receptors would cause over-gating of layer 3 cells. Similarly to Braver and Cohen’s7, Reid and Willshaw’s43 model assumes that DA is necessary for Pfc input to be processed at all. This model is therefore subject to the same critiques to the Braver and Cohen’s7 model: since DAergic action in Pfc is delayed with respect to the arrival of sensory input to Pfc, DA might not be able to open the Pfc gate in a timely manner for storing the correct information.

The aim of the present work is thus to clarify, within a realistic but still simple and mathematically tractable computational model, the possible roles played by DA in maintaining WM information in Pfc neurons. In the first part we describe the mathematical and computational foundations of the work. Two tasks with different levels of difficulty are then simulated in order to test the ability of the model to perform a WM task, which requires storage of information over time in spite of intervening distracters.

2. Input driven versus internally driven networks

Storage of information in Pfc requires maintenance of pattern of activation across an extensive network of cortical neurons. When groups of interconnected neurons become capable of self-sustaining their activity through repetitive, reverberatory excitation44, they form cell assemblies. Examples of neural networks models capable of preserving patterns of activation through time are Hopfield’s network45 and the Boltzmann machine46. Recurrent artificial neural networks models can be regarded as the closest mathematical analogous of Hebb’s cell assembly theory of cortical associative memory. A particularly mathematically well-characterized subset of recurrent networks is recurrent competitive fields (RCF47,48). Grossberg47 explained with the use of RCFs how arbitrary activation patterns can be stored in WM in a population of neurons that obey biologically plausible membrane equations. RCF have been characterized mathematically by later studies49 in an effort to define the conditions, parameters and architecture that allow a given activation pattern to be stored without major distortions in WM. RCF are therefore particularly suitable for being employed as a putative Pfc network which, given certain conditions, is able to store an arbitrary WM pattern once its external input is turned off. RCF, and recurrent networks in general, are complex dynamical systems that can exhibit a plethora of different network behaviors, ranging from the formation of stable activation patterns to chaos. Even when the recurrent field is considered in isolation, namely when any external input source is turned off (as, for instance, in the presence of a pharmacological gate), it is non-trivial to define the conditions upon which a stable activation pattern can be achieved, and what sort of deformation would be eventually applied to the to-be-stored pattern.

In order to demonstrate that a dynamical system of the complexity of a RCF has a stable solution, an energy function or Lyapunov function can be constructed for that system. The existence of a Lyapunov function guarantees that the system would converge to a set of stable points or limit cycles and, therefore, would not exhibit a chaotic or unpredictable behavior50. Cohen and Grossberg49 have formally analyzed a general class of biologically inspired, competitive, recurrent neural networks, proving that given certain conditions these networks converge to a global, stable solution (units’ activations do not oscillate or overshoot to – \(\infty\) or \(+\infty\)) for any choice of parameters. An example of a RCF which obeys the Cohen-Grossberg theorem49 of global pattern formation and absolute stability of the activation pattern is the two-node network illustrated in Figure 1 which is governed by Equations (1) and (2):

\[
\begin{align*}
\frac{dx_1}{dt} &= -x_1 + f(x_1) - x_1[f(x_1) + f(x_2)], \quad (1) \\
\frac{dx_2}{dt} &= -x_2 + f(x_2) - x_2[f(x_1) + f(x_2)], \quad (2)
\end{align*}
\]

where \(x_1\) and \(x_2\) are the activation values of the nodes, \(-x_1\) describes a leak term, \(f(x)\) is the self excitatory term, and \(x_1[f(x_1)+f(x_2)]\) is the inhibitory term from both neurons. Equations (1) and (2) describe a simplified...
Dopamine and working memory in the prefrontal cortex

model of neuron’s membrane potential (Grossberg, 1973). The activation function \(f(x) \) is defined by Equation (3) and plotted in Figure 1:

\[
f(x) = \begin{cases}
0 & \text{when } 0 \leq x < a \\
\frac{c}{b-a} (x-a) & \text{when } a \leq x \leq b \\
c & \text{when } b < x
\end{cases}
\] (3)

The parameters \(a, b, \) and \(c \) of the function are constrained to non-negative values, and their choice determines the behavior of the system. In fact, the choice of these parameters determines the shape of the signal function, namely the input/output mapping of the artificial neuron. For instance, \(a > 1 \) allows only input pattern greater than 1 to enter the linear part of the signal function and therefore being considered for storage in WM. Likewise, \(a \approx b \) determines a steep and short linear section of \(f(x) \). Various combination of \(a, b \) and \(c \) determine a family of very different mappings. This network can be more easily characterized in isolation, that is, by assuming that external input is turned on only briefly in order to generate activation pattern in the field, and is off otherwise. Although chaos can be ruled out as an admissible behavior of such system, it remains to be determined what is the fate of the input pattern, namely what would be the activation pattern emerging as a result of the interaction in the two-node network. This is particularly important if we assume that the pattern of activation reaching Pfc carries some important information.

A convenient way to visualize and study the behavior of low-dimensional systems such as the one described in Equations (1), (2), and (3) is through the use of phase plane analysis. Figure 2 illustrates how the activation of the two nodes varies with respect to each other as a function of parameter choice, in particular the shape of the signal function. The choice of the parameters in Figure 2 emphasizes the very different families of behavior that can be obtained by varying the shape of the signal function. Depending from the choice of parameters, the network can either quench, or suppress, the WM pattern (Figure 2a), converge to a uniform, stable solution (Figure 2b), or implement a choice network in which only one unit preserves its activity in WM (Figure 2c). Figure 2 shows how the choice of the parameters of in Equation (3) greatly affects the dynamics of the system, suggesting that neuromodulatory, unspecific input might be able to switch the behavior of the network from one functional state to the other by acting on the input/output mapping. This concept is related to a long-held hypothesis suggesting that DA and other catecholamines exert their action by modulating target neuron responses, for instance by increasing their signal-to-noise ratio. In particular, DA effects have been cited as responsible to the change in the slope (or gain) of the sigmoid shaped input–output activation function of model neurons.

In a symmetric system like the one described in Equations (1), (2), and (3), an unspecific activation (e.g., a neuromodulatory input) can move \(x_1 \) and \(x_2 \) into different regions of the phase plane and determine, for instance, the storage of information or its suppression, as well as acting to amplify recurrent connections and isolate the network from external sources of stimulation. The proposal of this work is that DA actually subserves the latter role.
3. A computational model of the delayed alternation task: role of dopamine in working memory

The architecture of the model is shown in Figure 3. The network consists of 10 pyramidal (excitatory) neurons and 10 (inhibitory) interneurons. A pyramidal node, simulating a PFC neuron, receives input from previous cortical stages, VTA DAergic innervations, recurrent excitation, and intracortical inhibition. The equations describing the dynamics of the excitatory (x_i) and inhibitory (y_i) nodes are:

$$\frac{dx_i}{dt} = -Ax_i + (B - x_i)(I_i(1 - DA) + F \cdot DA \cdot f(x_i)) - (x_i + C) \sum_{j=1}^{10} y_{ij}$$

and

$$\frac{dy_i}{dt} = -Ay_i + (B - y_i)\sum_{j=1}^{10} x_{ij} - (y_i + C) f(y_i),$$

where

$$f(h) = \frac{h^2}{0.25 + h^2},$$

and x_i and y_i are the units’ activation, where $i = 1, 2, \ldots, 10$, I_i is the bottom-up input to the cell, $f(x_i)$ and $f(y_i)$ are the recurrent excitatory and inhibitory inputs, respectively, A and B and C are the decay rate, the excitatory and the inhibitory saturation point, respectively. As observed experimentally (Freeman, 1979), a sigmoid $f(h)$ signal function defines the feedback input/output relationship in the network. In Equation (6), h is the activation of the node and F is a constant. In Equation (4), $0 \leq DA \leq 1$. In all simulations, $A = 1$, $B = 1$, $C = 0.2$, $F = 10$. The choice of parameters A, B, C and F was such as to ensure desired functional properties in the RCF networks. In particular, $B = 1$ and $C = 0.2$ ensure that activations is bounded between 1 and -0.2. This parameter choice account for the fact that the maximum cell excitation during a spike is higher than the inhibition, as measured with respect to resting potential, which in an RCF is conventionally set to $x_i = 0$. Finally, $F = 10$ allows amplification of the DA innervations and the feedback function $f(x_i)$ with respect to the external input. This value of F was empirically derived by trial and error, until a robust storage of activation was achieved. As shown in Equation (4), DA has a double effect on the RCF excitatory neurons. On the one hand, it isolates the network from external (distal) input through the term $(1 - DA)$ such that a high DAergic signal would bias PFC activation mode from externally-driven to internally-driven (recurrent mode). On the other hand, DA is assumed to amplify recurrent

![Fig. 3](image-url)
connections through the term $DA \cdot f (x_i)$, facilitating WM storage. The computational model described in Equations (4), (5), and (6) belongs to a class of well-studied biologically-inspired network equations which exhibit desirable computational properties, like resistance to saturation, preservation of the relative magnitude of the input with respect to varying level of total input energy, and the ability to store activation in WM when recurrent connections are included47,53,54. Furthermore, Equations (4), (5), and (6) satisfy the constraints of the Cohen-Grossberg theorem49, which studies the conditions under which recurrent neural networks are stable. The network implemented in this study will eventually converge to some stable point, and there will be at most a countable number of such stable points, therefore excluding chaotic dynamics.

4. Results

The network is tested in two tasks involving different degrees of WM load. The first set of simulations, described in Figure 4, involves a simple WM (sWM) task in which a stimulus, a spatial pattern of activation instantiated in the network from a previous cortical stage, is maintained until a new stimulus arrives in Pfc and resets its activation. In the sWM task the inter-stimulus interval (ISI) is 1100 msec (where 1 msec = 1 time step), while both stimuli are presented for 50 msec. The network is simulated with variable DAergic innervation parameters and in the presence of noise during the active maintenance of WM.

Figure 5 shows the network performance in the Delayed Alternation Task (DaAT). This task, described previously and simulated by Dreher and Burnod37, is more demanding than the sWM task. At each moment in time, the subject should alternate between left and right responses in order to obtain a reward. A delay is interposed between the execution of the movement direction that leads to the delivery of the reward, requiring the subject to temporarily store the previous movement in WM throughout the delay in order to execute the correct alternation. The DaAT requires that the input trace, in this simulations a 50 msec activation pattern should precisely alternate at each trial, and the activation pattern should be prevented from being corrupted or decay throughout the entire duration of the task. Furthermore, the robustness of the WM network has to be tested in the presence of noise during the delay interval, mirroring the fact that although sensory and associative cortical stages which provide input to the Pfc can be continuously updated by new information, the Pfc should preserve important activation patterns even though its distal input changes over time. In the delay interval, the network has to rely exclusively on its reverberatory activity and the DAergic input in order to preserve the activation pattern in WM. Noise consists of 50-msec-bursts of random input ranging from 0 to 0.4 (see figures for details). The injection of noise as input to the network is motivated by the assumption that sensory information is continuously processed by previous cortical stages. This input reaches Pfc and affects its processing via the term $I_i \cdot (1 - DA)$, where $0 \leq I_i \leq 0.4$. The choice of this level of noise, which is smaller than the behaviorally relevant input reaching Pfc, is motivated by the hypothesis that selective attentional mechanisms might operate upstream in brain areas inputting Pfc to help selectively suppress irrelevant sensory information. Other sources of noise, such as internal membrane potential fluctuation, random delays in connectivity, and other forms of variability were not investigated in this study, since the focus of the investigation was to characterize the ability to maintain relevant signals in Pfc in spite of the presence of distracters (noise). Each simulation runs for 12,000 simulated milliseconds, with 5 alternations between left/right responses in each run.

4.1 The simple working memory task

The network simulated in this study is designed to implement a competition within the Pfc field due to the choice of the sigmoid feedback function47. The optimum activation pattern would consist of one or a limited number of active units (soft winner-take-all behavior) surrounded by a population of inhibited units. Inhibition is mediated by projections from the winning unit(s) to a kernel of interneurons, which in turn inhibit neighboring pyramidal cells. The behavior of each neuron is determined by the equilibrium between its excitatory and inhibitory inputs, the neuron’s recurrent signal function, as well by the level of DAergic innervation common to all units. The relationship between the level of DAergic innervation and the behavior of the system is highly non-linear. Varying the amount of DAergic stimulation, all other things being equal, switches the behavior of the network between a no memory state (no
Massimiliano Versace and Marco Zorzi

Maintenance of WM, a WM state, and a corrupted state (multiple units active in WM). A robust WM storage prevents other stimuli from entering Pfc, preserving the instated WM pattern and preventing interference. Figure 4 summarizes the qualitative behavior of the network for the sWM task. Each plot shows the input pattern, the activation of the field of 10 pyramidal prefrontal neurons for 2000 time steps (top panels), and the related DAergic innervation level (bottom panels).

Varying the degree of DAergic input to the field has dramatic consequences on the resultant activation pattern. Low DAergic innervation does not allow the input pattern to be stored in WM (Figure 4a, left panels). Intermediate tonic levels of DA allow moderate WM storage (Figure 4a, middle panels), whereas higher levels of DA, both phasic and tonic, determine the storage of the pattern (Figure 4a, right panels). Noise can be ignored when DAergic levels are too low (Figure 4b, left panels), or determine the corruption of WM when DA levels are high enough (Figure 4b, middle panels). This effect can be understood in light of the fact that DA not only gates external input, but also amplifies recurrent activation (Equation 4). High levels of DA amplify recurrent activation, and the sigmoid signal function can eventually cause activity of cells with initial small values to grow. Since the DAergic signal varies between 0 and 1, many possible combinations of gating/WM storage are possible, depending also on the balance between excitation and inhibition.

A phasic DAergic spike at the beginning of the trial can prevent noise from entering the system (Figure 4b, right panels), and thus avoiding the corruption of the relevant WM pattern. Finally, in this task the model shows that a hyper-DAergic state maintains information in WM, but that the maintained patterns are corrupted by spurious neurons interfering with the task-relevant representation. The prediction of an increase Pfc activation in states of hyper-DAergic transmission is consistent with recent neurophysiological data.

4.2 The delayed alternation task

In the DaAT (Figure 5a), optimal model behavior can be achieved by a phasic DAergic spike followed by tonic input (Figure 5a, left panels), whereas tonic DAergic hyperactivity can cause the corruption of the WM pattern (Figure 5a, right panels). The network is robust against noise (Figure 5b, left panels), although DAergic tonic hyperactivity would cause noise to corrupt the WM pattern (Figure 5b, middle panels). Finally, even in this tonic hyperactive state, DAergic phasic signal can bias the WM pattern, thus preventing noise corruption of the already instated activation (Figure 5b, right panels).
In order to quantitatively characterize the goodness of WM storage for any given task and DAergic innervation, the cosine of the angle between the input pattern vector to be stored and the Pfc neurons activation vector after a given delay were calculated. The results, summarized in Table 1, support the qualitative results that can be inferred from the graphs.

Figure 6 illustrates the effect of time jitter in the arrival of the DAergic spike with respect to the arrival of the input stimulation to Pfc in the DaAT task. Simulations show that a variation of +/-10 ms and +/-50 ms produce no qualitative change in network behavior. Figure 7 provides a qualitative summary of the main results of the simulations. An inverted U relationship is found between level of DAergic stimulation and the resulting WM storage. Low DA does not allow WM storage, since the term $DA \cdot f(x)$ silences the recurrent connections of the network. High DA prevents bottom-up input from previous cortical stages (continuous line) to modify Pfc activation through the term $(1-DA)$, whereas recurrent connections (dashed line) are amplified through the term $DA \cdot f(x)$. This is a high-WM state, in which the input pattern is preserved through time. Excessive DAergic innervation can cause spurious patterns to be formed, e.g., units that should loose the competition with the winning node become active and degrade the WM pattern.

5. Discussion
The model proposed herein begins to address how do organisms store relevant input in working WM, and how WM is protected from and altered by the continuous stream of sensory input and internally generated planning. The model proposes a mechanistic explanation of the role of DA in the maintenance of recurrent activation in simulated Pfc neurons. This effect is achieved by allowing DAergic innervations to simultaneously open the gate in model’s recurrent connections, and close the gate in the model’s Pfc input pathway. In this sense, DA switches the behavior of the network from being input-driven to being internally-driven. The study of a reduced version of the model allows for a direct comparison between the action of DA to the choice of the parameters of the signal function $f(x)$. The shape of this function greatly affects

Table 1

<table>
<thead>
<tr>
<th>TASK</th>
<th>Dopamine Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>sWM</td>
<td>Low Medium *</td>
</tr>
<tr>
<td>DaAT (no noise)</td>
<td>Low tonic High tonic</td>
</tr>
<tr>
<td>DaAT (noise)</td>
<td>Low tonic High tonic + high phasic</td>
</tr>
</tbody>
</table>

Fig. 5. a) DaAT task. The alternation in the pattern to be stored is achieved by alternating the active Pfc unit (left). Optimal DAergic innervation allows a correct alternation of left/right response (left panels). Notice that two units correctly alternate in the competition for WM storage. Tonic DAergic hyperactivity, as illustrated in the plots immediately below PFC units activation, causes interference in the pattern storage (right panels): in the final 200 msec before the response is generated, one of the units increases its activation and matches the “correct” unit’s activation. This can potentially lead to a behavioral error. b) DaAT task despite the presence of noise. The input pattern is presented on the left inset. Optimal DAergic input allows the correct execution of the task despite the presence of noise (left panels). Notice that an error might occur in the third trial. Tonic DAergic hyperactivity disrupts the performance in the noisy condition (central panels). Tonic and Phasic DA: in a difficult, noisy task, increasing the phasic level of DA can be beneficial to the storage of the target in WM (right panels).
the shape of the phase plane describing the behavior of the two-neuron-network, suggesting that neuromodulatory, unspecific input might be able to

dynamically switch the behavior of the network from one functional state to the other by acting on the input/output mapping. Such an insight would be difficult to achieve in more complex models, in which the core computational properties are overshadowed by the amount of biophysical details incorporated in the model. We argue that the level of abstraction of the present model allows to capture the crucial functional properties of DAergic modulation in Pfc without compromising its biological plausibility.

The results show that the quality of WM storage of an arbitrary input pattern in Pfc is influenced by DAergic innervation, in line with experimental findings. The simulations further suggest that the DAergic input does not necessarily need to be exactly timed with the input from previous cortical stages, as proposed by Braver and Cohen, but should follow the input from the previous cortical stage. Simulation results show little effect of delaying or anticipating the the phasic DAergic spike with respect to the time of arrival of the input from the previous cortical stage. On the other hand, a precise coincidence of DAergic spike with the external input would prevent the WM of a given stimulus to be instated. This is a sharp discrepancy between the present model and the one proposed by Braver and Cohen, since in their model the DAergic spike needs to be exactly timed with the input in order to cause update in WM. This is unlikely to happen as discussed in Dreher and Burnod, because of the delay between the time of VTA activation and DAergic action in Pfc, and the time required to the bottom-up stimulation for reaching the Pfc. In the current model, the DAergic input should follow the pattern to be stored within a few tens or even hundreds of milliseconds, depending on the strength of the input pattern and the DAergic spike, and the presence of noise.

The simulations show that a phasic DAergic spike can boost the relevant information into a maintained state, while a lower tonic level can be enough to keep that information maintained, since associated neural activities are already high, pushing the network into an emergent self-sustaining state while being too low to boost new, distracting information into a maintenance state. If instead of a phasic spike, a higher DAergic level is instated, it will boost intervening distractor inputs into a maintenance state.

An additional result of the present simulations is that tonic DAergic hyper and hypo-activity cause different pattern of impairment in the model WM. DAergic hypoactivity prevents the instantiation of the WM pattern, causing the Pfc field to be driven by external input, and could be considered the network analogue of
the increased distractibility shown by patients with a Pfc lesion, in particular the fact that hypofrontal patients are easily distractible by environmental events. On the other hand, DAergic hyperactivity causes a very different pattern of deficits; WM is in fact maintained and activation patterns are formed in WM. Depending on the input pattern, the length of the delay, and the degree of DAergic hyperactivity, the network can show interference of inappropriate (i.e., noise) patterns in WM, or the expression of non-preponderant, or weaker, unit activation due to the amplification of the recurrent activation. This pattern of deficits can therefore be regarded as a candidate biophysical substrate for some of the positive symptoms of schizophrenia, such as odd behaviors, auditory and visual hallucinations, and others57,58. An unbalanced Pfc functioning could prevent filtering out of patterns of activation from lower cortical areas to Pfc that, under normal conditions, would not be able to access higher cortices and control behavior.

In order for the network to alternate between rapidly changing input patterns and responses, as in the DaAT task, a DAergic “pause” was required at the time of the reward delivery in the DaAT. This pause was necessary for the WM pattern to decay and for enabling the new pattern to generate WM activity. DAergic pauses are often present in electrophysiological recordings24, but their functional meaning is still under debate. Dopaminergic dips have also been correlated with unpredicted non-occurrence of reward24. Although recent evidence has linked increased in vivo DA efflux in the PFC to accurate recall during a delayed response task25,59, no specific study has explicitly investigated the role of DA dips in WM. The present model therefore predicts that a DAergic dip should be present in highly demanding tasks in which rapid alternation of responses are required. DAergic dips may therefore be essential in promoting the reset of a WM pattern in a given neural ensemble. Under this interpretation, a DAergic dip can be essential in those situations where the non-occurrence of an expected reward should elicit the disengagement of the behavioral plan that has led to the non-occurrence of reward.

The paper proposes that the main role of DA is input specific, increasing recurrent excitation, storage and code sharpening within the Pfc network, while at the same isolating Pfc neurons from the input of previous cortical stages. The effect of DA in Pfc neurons are subtle and greatly vary depending on experimental conditions. D1 and D5 agonists have been shown to suppress Ca++ potentials in apical dendrites of Pfc neurons60, a mechanism that can decrease the ability of distal, depolarizing currents in generating Ca++ spikes in target Pfc neurons. Overall, DA agonists have input-specific effect on Pfc neurons. Urban at al.81 has found that stimulation evoked EPSCs are decreased by DA release, while paired-cell EPSPs were not. However, more targeted research is needed to effectively isolate the action of DA on different input sources (local input within Pfc vs. distal input from other cortical areas) targeting Pfc neurons.

In conclusion, a final consideration concerns the fragility of the brain structures involved in cognitive control. Balancing the level of DAergic stimulation and the various parameters of the network is a demanding task, and is probably among the greatest challenges for the ontogenetic and phylogenetic development of an organism’s higher cognitive functions. It is therefore not surprising that Pfc dysfunctions are involved in a variety of neuropsychological deficits. Pfc damage has been associated with increased distractibility and perseveration21, and a deficit in Pfc cortex functioning has been correlated with schizophrenia22,43. An underactive or impaired Pfc is believed to be responsible for some of the major deficits seen in schizophrenia, such as thought process disturbances17,22. The link between an imbalanced DAergic system, a poor Pfc activation and some key symptoms of schizophrenia22 is one of the major issues in schizophrenia research27,7,43. Although the present model does not openly address any psychopathological data, several interesting results have emerged. The simulations have shown, in fact, how DAergic hyper and hypo-activity cause different patterns of WM impairment6,62. These results are promising, but further work is needed to investigate how imbalances in the system can shape our understanding of psychopathology.

Acknowledgements

Massimiliano Versace was supported in part by the Air Force Office of Scientific Research (AFOSR F49620-01-1-0397), the Office of Naval Research (ONR N00014-01-1-0624), and by CELEST, a National Science Foundation Science of Learning Center (SBE-0354378). Marco Zorzi was funded by the European Research Council (210922-GENMOD).
Correspondence should be sent to Massimiliano Versace (versace@cns.bu.edu).

References

