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A three-dimensional model of a die throw which considers the die bounces with dissipation on the

fixed and oscillating table has been formulated. It allows simulations of the trajectories for dice

with different shapes. Numerical results have been compared with the experimental observation

using high speed camera. It is shown that for the realistic values of the initial energy the

probabilities of the die landing on the face which is the lowest one at the beginning is larger than

the probabilities of landing on any other face. We argue that non-smoothness of the system plays a

key role in the occurrence of dynamical uncertainties and gives the explanation why for practically

small uncertainties in the initial conditions a mechanical randomizer approximates the random

process. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4746038]

The essential property characterizing random phenom-

ena is the impossibility of predicting individual outcomes.

Generally, it is assumed that when we toss a coin, throw a

die, or run a roulette ball this condition is fulfilled and all

predictions have to be based on the laws of large num-

bers. In practice, the only thing one can tell with a given

degree of certainty is the average outcome after a large

number of experiments. On the other hand, it is clear

that the dynamics of the coin, die, or roulette ball can be

described by the deterministic equations of motion.

Knowing the initial condition with a finite accuracy �, the

viscosity of the air, the value of the acceleration due to

the gravity at the place of experiment, and the friction

and elasticity factors of the table one should thus be able

to predict the outcome. In real experiment, the predict-

ability is possible only for very small �, i.e., an accuracy

which in practice is extremely difficult to implement and

that is why the coin toss, die throw, and roulette run can

be considered as a random process.

I. INTRODUCTION

Dice have been used for gambling for at least a few mil-

lennia. Nowadays, the throw of a die is commonly consid-

ered as a paradigm for chance, and gambling with the dice is

possible in casinos all over the world. Can we predict the

result of the coin toss or the throw of the die? For centuries,

this question has been asked not only by the gamblers but

also philosophers and physicists have asked it when trying to

answer the following problem. What is the origin of random-

ness in physical systems? Currently, there is some kind of

duality in answering these questions. A person studying

mathematics, even in primary school, is told that the result

of the coin toss is random and the probability of heads and

tails is equal and equals 1/2 as the coin is symmetrical.

Simultaneously, during the physics courses the same student

is told that the law of classical mechanics describes the

motion of the material body and guarantees the unique de-

pendence of the position and velocity of this body on the ini-

tial conditions (initial position and initial velocity). So as the

coin is a material body its motion during the toss is fully

described and the face on which it falls is determined. The

play with the coin toss (simple mechanical experiment) con-

firms the mathematical point of view, unless one learns some

magical tricks which allow predictability and the confirma-

tion of the mechanical laws.

The duality in understanding the coin toss (die throw)

results has attracted the attention of a great number of scien-

tists. Gerolano Cardano (1501–1576), Galileo Galilei (1564–

1642), and Christiaan Huygens (1629–1695) wrote books

about dice games.1 Blaise Pascal (1623–1662) and Piere-

Simon de Fermat (1601–1665) exchanged letters discussing

the mathematical analysis of problems related to the dice

games. In the XX century, this problem attracted the atten-

tion of the pioneers of nonlinear dynamics Henri Poincare

(1854–1912)2 and Eberhard Hopf (1902–1983).3 The dynam-

ics of the simplified models of the coin or die were studied

by Joe Keller4 and Persi Diaconis et al.5

The connection between unpredictable behavior of the

nonlinear system and random processes such as the coin toss

has been discussed 29 years ago by Joseph Ford in his fa-

mous paper “How random is a coin toss?”6 In last decades,

there were attempts to explain the problem of randomness in

mechanical systems using newly developed chaos theory.

One should mention the works of Erik Mosekilde and his co-

workers,7 Vladimir Vulovic and Richard Prange,8 Tsuyoshi

Mizuguchi and Makato Suwashita,9 Jan Nagler and Peter

Richter.10 In all these studies, simplified two-dimensional

models have been considered and the dynamics have been

studied through the derived discrete maps.

In this review, we reconsider this problem on the exam-

ple of the die throw. We give evidence that the dynamics of

the dice game can be fully described in terms of the determin-

istic nonlinear dynamics. We consider a full 3-dimensional

model of the die developed in our previous works,11–14

derived equations of motion which consider the energy dissi-

pation at the collision of the die with the fixed and oscillating
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table. Supplementing our previous studies,11–14 we add the

comparison of the numerical simulations with the experimen-

tal observation using high speed camera and consider the dy-

namics of the die on the oscillating table. Our studies show

that the results of the toss are predictable when one sets initial

conditions with an appropriate accuracy. This accuracy

increases with the increase of the number of die bounces on

the table. In practice, when the initial conditions are set at

random the results can be considered as random but the prob-

ability that the die lands on the side or face which is the low-

est at the beginning of throw is higher than the probability

that the die lands on the other side or face. We also find that

in the limiting theoretical case when the energy is not dissi-

pated during the bounces on the table or the table is oscillat-

ing the dynamics of the die is chaotic.

II. IS THE GAME OF DICE FAIR?

The die is usually a cube of homogeneous material. The

symmetry suggests that such a die has the same chance of

landing on each of its six faces after a vigorous roll thus it is

considered to be fair. Generally, a die with a shape of convex

polyhedron (with n faces) is considered fair by symmetry if

and only if it is symmetric with respect to all its faces, i.e.,

each face must have the same relationship with all other

faces, and each face must have the same relationship with

the center of the mass. The polyhedra (for example, tetrahe-

dron, octahedron, dodecahedron, and icosahedron shown in

Figure 1) with this property have an even number of faces

and are called the isohedra.15 Diaconis and Keller16 sug-

gested that there are non-symmetric polyhedra which are fair

by continuity. As an example, consider the duality of n-prism

which is a double pyramid with 2n identical triangular faces

from which two tips have been cut with two planes parallel

to the base and equidistant from it as shown in Figures 2(a)–

2(c). If the cuts are close to the tips (Figure 2(b)), the solid

has a very small probability of landing on one of two tiny

new faces. However, if the cuts are near the base (Figure

2(c)), the probability of landing on them is high. Therefore,

by continuity there must be the cuts for which new and old

faces have an equal probability. It has been suggested that

the locations of these cuts depend upon the mechanical prop-

erties of the die and the table and can be found either experi-

mentally or by the analysis based on the classical mechanics.

However, these definitions do not consider the dynamics

of the die motion during the throw. This dynamics is

described by perfectly deterministic laws of classical mechan-

ics which map initial conditions (position, configuration, mo-

mentum, and angular momentum of the die) at the beginning

of the motion into one of the final configurations defined by

the number on the face on which the die lands. The initial

condition–final configuration mapping is strongly nonlinear,

so one can expect the complex structure of the basin bounda-

ries between the basins of different final configurations. The

analysis of the structure of the basin boundaries allows us to

identify the condition under which the die throw is predict-

able and fair by dynamics.12,14

FIG. 1. Examples of typical dice: tetrahedron, cube, octahedron, dodecahedron, and icosahedron.

FIG. 2. (a) n-prism which is a di-pyramid

with 2n identical triangular faces from

which two tips have been cut with two

planes parallel to the base and equidistant

from it, (b) the cuts are close to the tips,

(c) the cuts are near the base.
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Definition 1. The die throw is predictable if for almost
all initial conditions x0 there exists an open set U (x0 2 U)

which is mapped into the given final configuration.
Assume that the initial condition x0 is set with the inac-

curacy �. Consider a ball B centered at x0 with a radius �. Def-

inition 1 implies that if B � U then randomizer is predictable.

Definition 2. The die throw is fair by dynamics if in the
neighborhood of any initial condition leading to one of the n
final configurations F1; :::;Fi; :::;Fn, where i¼ 1,…, n, there
are sets of points bðF1Þ; :::; bðFiÞ; :::; bðFnÞ, which lead to all
other possible configurations and measures of sets bðFiÞ are
equal.

Definition 2 implies that for the infinitely small inaccur-

acy of the initial conditions all final configurations are

equally probable.

III. MODEL

Let us consider the die model introduced in Refs. 12 and

14. In this model, the die is a rigid body of a homogeneous

material, i.e., the center of the mass and the geometrical cen-

ter are located in the same point C. We consider the dice

with isohedral shape, sharp edges and corners and neglect

the influence of the air resistance. Precise casino dice have

their pips drilled, and then filled with the flush with paint of

the same density as the acetate used for the dice, so they

remain in balance. They also have sharp edges and corners.

In our previous work, it has been shown that the influence of

the air resistance on the motion of the small rigid body like a

die or a coin is very small. We assume that during the throw

from the height z0 the die rotates around the n; g; f axis (see

Figures 3(a) and 3(b)). Using the laws of classical mechan-

ics, we have derived the equations of motion which allow

the determination of the position and velocity of any die

point in the frame x, y, z. Details of our model and the analy-

ses of the dynamics it produces have been presented in a

recent book.14

At the die-table collision, a portion of the energy is dis-

sipated. The level of dissipation is characterized by the resti-

tution coefficient v ð0 < v < 1Þ. When the die lands on the

soft surface without bouncing v ¼ 0, and if the energy is not

dissipated at the collision v ¼ 1. Of course, the second case

cannot be carried out experimentally. For the typical die

colliding with the wooden table this coefficient is approxi-

mately equal to 0.5. In the current study, we show that the

probability of the die landing on the face, which is the lowest

one, at the beginning is larger than on any other face. In dice

games, the top face usually counts. We shall refer to the low-

est face (the face on which a die lands) as one of the consid-

ered die shapes is tetrahedron which has no top face.

Previous work on die tossing7 has demonstrated that friction

has a significant effect on the dynamics of the simplified die

model. In particular, friction controls the transition from slid-

ing to non-sliding collisions and can change the outcome of

the throw. However, consideration of the stick-slip friction

in the full three-dimensional model of the die leads to the

complicated relations and required further studies so in the

present discussion we neglected the friction between the die

and the table.

A die is modeled as a rigid body of homogeneous mate-

rial, i.e., the center of mass and the geometrical center are

located in the same point C. We consider the dice with isohe-

dral shape and sharp edges and corners. The typical examples

of such dice are tetrahedron, cube, octahedron, dodecahedron,

and icosahedron.

To describe the motion of the die in 3-dimensional space,

we introduce the body embedded frame (Cngf). It is possible

to show that the axis n; g and f as well as any other axes pass-

ing through point C are principal axis so the considered die

models are spherical tops.17 Their moments of inertia for any

axes passing through C are equal to J (i.e., Jn ¼ Jg ¼ Jf ¼ J)

and deviation moments Jng; Jgf, and Jnf are equal to zero.

Using the numerical procedures for moments and products of

inertia of polyhedron bodies proposed in Ref. 18 we get J ¼
ma2=20 for tetrahedron, J ¼ ma2=6 for cube, J ¼ ma2=10

for octahedron, J ¼ ma2

300
ð95þ 39

ffiffiffi
5
p
Þ for dodecahedron, and

J ¼ ma2

20
ð3þ

ffiffiffi
5
p
Þ for icosahedron, where a is the length of

the dice edge.

Consider the die motion in 3-dimensional space described

by the fixed frame 0xyz as shown in Figure 3(a). Neglecting

the influence of the air resistance one obtains Newton-Euler

equations of motion in the following form:

m €x ¼ 0 ; m €y ¼ 0 ; m €z ¼ �mg ; (1)

J
dxn

dt
¼ 0 ; J

dxg

dt
¼ 0 ; J

dxf

dt
¼ 0 ; (2)

FIG. 3. Die as a homogeneous cube: (a) rotation axis n; g; f, angular velocity ~x and angular momentum ~KC , (b) orientation of die rotation axis ~l
0
, angular ve-

locity vector, and face orientation vectors ~no
i , (c) velocity vector v0Az of point A after the collision and its scalar components v0Ax; v

0
Ay; v

0
Az.
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where ðxn;xg;xfÞ are the components of the angular veloc-

ity vector ~x.

The integrals of Eqs. (1) and (2) are given in the form

_x ¼ v0x ¼ const ; _y ¼ v0y ¼ const ; _z ¼ �gtþ v0z ; (3)

xn¼x0n¼ const ; xg¼x0g¼ const ; xf¼x0f¼ const :

(4)

Equations (3) and (4) show that during the motion the angu-

lar velocity of the die ~x is constant and equal to its initial

value ~x0. The orientation of the vector ~x in relation to the

frames Cngf and Oxyz is not changing as the components of

angular velocity vector are constant (Eq. (4)). The directions

of the angular velocity vector ~x and the angular momentum

vector ~KC coincide and are constant during the motion as

shown in Figure 3(a) and depend only on initial conditions.

The initial conditions are given by the initial position of

the center of die mass C� q10 ¼ ½x0; y0; z0�T , its initial veloc-

ity v0 ¼ ½v0x; v0y; v0z�T , initial orientation of the axis

(Cngf)� q20 ¼ ½w0; #0;u0�T (given by the Euler angles) and

initial angular velocity x0 ¼ ½x0n;x0g;x0f�T .

To determine on which face the die lands, we analyze

full rotation of the die, i.e., ul 2< 0; 2p > around the given

rotation axes. During the die motion, the projections of the

vectors ~no
i (i ¼ 1; … ; n) (as shown in Figure 3(b)) on the

vertical axes �~k
o

(with the orientation towards the table))

have been calculated. This allows the calculation of the

cosines of the angles ai: cos ai ¼ �~k
o � ~no

i . The face j for

which cos aj is the largest, i.e., cos aj ¼ maxifcos ai g; ði ¼
1; … ; nÞ is the lowest. The die lands on the face which is the

lowest at the moment when the die stops on the table.

To describe a collision of the die with a table we assume

that: (1) the table is modeled as flat, horizontal, elastic body

(fixed to move), (2) friction force between the table and the

die is omitted, (3) only one point of the die is in contact with

the table during each collision. Let us consider that the die

collides with a table when the vertex A touches the table as

shown in Figure 3(c). According to Newton’s hypothesis,

one gets v ¼ v0Az=vAz, where v is the coefficient of restitution,

v0Az and vAz are the projections of the velocity of point A on

the direction (z) normal to the impact surface, before and af-

ter the impact, respectively. The position of point A in the

body embedded frame is described by nA, gA, and fA. To

describe the impacts, we consider an additional frame with

an origin at point A and the axes: x0y0z0—parallel to the fixed

axes xyz (Figure 3(c)). In the matrix form, the velocity vector

of point A is described as vA ¼ vC þXxR nA, where:

vC ¼ ½ _x _y _z�T, nA ¼ ½nA gA fA�T, Xx ¼ RT _R, and the trans-

formation matrix (in terms of Euler angles)

R ¼
cos u cos w� cos# sin u sin w �cos w sin u� cos# cos u sin w sin# sin w

cos# cos w sin uþ cos u sin w cos# cos u cos w� sin u sin w �cos w sin#

sin# sin u cos u sin# cos#

2
64

3
75 : (5)

In the analysis of the phenomena that accompany the impact besides Newton’s hypothesis the laws of linear momentum

and angular momentum theorems of rigid body, as well as constraint equations have been employed. Modeling the nonholo-

nomic contact between the die and the table, we consider the case of the smooth-frictionless die,19 i.e., the vector of the

impulse base reaction ~S has the following form ~S ¼ ½0; 0; Sz�T . The above assumptions result in the following relations:

_z0 þ _#
0ð�fA cosðuþ wÞ sin#þ cos# cos ðuþ wÞðgA cos uþ nA sin uÞ þ ðnA cos u� gA sin uÞ sin ðuþ wÞÞ

þ _w
0
sin# nA cos# cos w sin 2uþ gA cos 2 #

2
cos w sin ð2uÞ � gA sin 2u sin wþ nA cos 2 #

2
sin ð2uÞ sin w

�

þ cos 2uð�nA cos wþ gA cos# sin wÞ � fA sin# sin ðuþ wÞ
�

¼ �v
�

_z þ _#ð�fA cos ðuþ wÞ sin#þ cos# cos ðuþ wÞðgA cos uþ nA sin uÞ þ ðnA cos u� gA sin uÞ sin ðuþ wÞÞ

þ _w sin# nA cos# cos w sin 2uþ gA cos 2 #

2
cos w sin ð2uÞ � gA sin 2u sin wþ nA cos 2 #

2
sin ð2uÞ sin w

�

þ cos 2uð�nA cos wþ gA cos# sin wÞ � fA sin# sin ðuþ wÞ
��

; (6)

_x0 ¼ _x ; _y0 ¼ _y ; m _z0 � Sz ¼ m _z ; (7)

Jð _#0 cos wþ _u0 sin# sin wÞ ¼ Jð _# cos wþ _u sin# sin wÞ þ SzgA cos#� SzfA cos u sin# ;

Jð _#0 sin w� _u0 cos w sin#Þ ¼ Jð _# sin w� _u cos w sin#Þ � SznA cos#þ SzfA sin# sin u ;

Jð _u0 cos#þ _w
0Þ ¼ Jð _u cos#þ _wÞ þ SznA cos u sin#� SzgA sin# sin u :

(8)
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Equations (6)–(8) allow the determination of the die veloc-

ities components after the collision ( _x0, _y0, _z0, x0n, x0g, x0f)
and the table reaction impulse Sz.

The die motion after the collisions is given by Eqs.

(1)–(3) with new initial velocities: _x0, _y0, _z0, x0n, x0g, x0f cal-

culated from Eqs. (6)–(8) and the same initial positions x, y,
z, w, #, u as before the impacts.

IV. RESULTS

We perform some simple laboratory experiments that

allow for monitoring of the die motion. The speed camera

(Photron APX RS with the film speed at 1500 frames per

second) has been used to observe the motion of a die. We

observed the throw of the dice with different shapes. The

dice have been released at the height of 60 cm by the special

device. The examples of the die motion are shown in Figures

4(a) and 4(b). In Figure 4(a), we show the cubic die at the

moments of successive bounces on the mirror plane and in

Figure 4(b) the bounces of the icosahedron die on a cork

plane are shown. Notice that after several bounces (11 for

cube and 10 for icosahedron) the orientation of the die is not

changed during the further bounces.

Our model (Eqs. (6)–(8)) allows the numerical calcula-

tions of the trajectories of dice corners (Figures 5(a) and

5(b)). In the numerical calculations, we assume typical pa-

rameters: the die mass m¼ 0.016 [kg], restitution coeffi-

cient—v ¼ 0:5, tetrahedron die edge length—a¼ 0.040793

[m], and cube die edge length a¼ 0.02 [m]. The dice have

been thrown from the height z0 ¼ 0:3 ½m� with the angular

velocity realistic for the throw from the hand. One can iden-

tify the position of the successive collisions (vertical lines in

Figures 5(a) and 5(b)) and a die corner which collides with

the table. In the considered example for the tetrahedron die

during the successive bounces, the following corners collide

with the table: A,B,A,C,D,A,B,A,B,D (Figure 5(a)). The

cube die hits the table with C,D,D,C,B,A,D,B,B,B,B corners

(Figure 5(b)). Notice that as in experiments of Figures 5(a)

and 5(b) not all collisions result in the change of the die face

which is the lowest one before and after the collision (For

the tetrahedron die, we observe such a face change only once

after the 4th collision and four changes take place for the

cube die (after 3rd,4th,5th, and 7th collisions)—Figures 5(a)

and 5(b)).

For n face die there are n possible final configurations

(the die can land on one of its faces Fi (i ¼ 1; 2;…; n). All

FIG. 4. Experimental observation of the die

motion at the moments of successive boun-

ces on the plane, (a) cubic die on the mirror

plane, (b) icosahedron die on a cork plane.

FIG. 5. Trajectories of dice vertices calculated from Eqs. (1), (2), and (6)–(8);

m¼ 0.016 [kg], v ¼ 0:5, x0 ¼ y0 ¼ 0, v0x ¼ 0:6 ½m=s� v0y ¼ 0, v0z¼�0:7
½m=s� w0 ¼ 0:001 ½rad�; #0¼ 0:00001 ½rad�; u0 ¼ 0:0001 ½rad�; xn0 ¼ 0, xg0

¼ 60 ½rad=s�, xf0¼ 0: (a) tetrahedron, a¼0.040793 [m], (b) cube,

a¼0.02 [m].

047504-5 Kapitaniak et al. Chaos 22, 047504 (2012)

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

139.133.11.3 On: Fri, 22 Nov 2013 16:55:43



initial conditions are mapped into one of the final configura-

tions. The initial conditions which are mapped onto the ith
face configuration create ith face basin of attraction bðFiÞ.
The boundaries which separate the basins of different faces

consist of initial conditions mapped onto the die standing on

its edge configuration which is unstable.

The structure of the boundaries between the basins of

different faces is worth investigating. If in any neighborhood

of the initial condition leading to one of Fi, there are initial

conditions which are mapped to other faces (in the case of

the coin in the neighborhood of any point leading to the

heads there are points leading to the tail result), i.e., infinitely

small inaccuracy in the initial conditions makes the result of

the die throw unpredictable.

Let us indicate the die faces in different colors. For the

tetrahedron die, we used blue, green, yellow, and red to indi-

cate 1, 2, 3, and 4 faces. 12-dimensional space of all possible

initial conditions has been divided into small boxes. The cen-

ter of each box has been taken as the initial condition in the

simulations of the die trajectory. After the identification of

the face on which die lands the box is painted with an appro-

priate color. This procedure allows the identification of the

basin of attraction of each die face (Figures 6(a)–6(d)). Of

course one has to consider very small boxes and for better

visualization it is necessary to consider 2-dimensional cross

section of the initial condition space. In the presented calcu-

lations, we have fixed all initial conditions except the height

from which the die is thrown z0 and the die angular velocity

around the axis g. Consideration of the influence of the num-

ber of the tetrahedron die bounces on the table �n on the struc-

ture of the basin boundaries in height z0-angular velocity x0g

plane (Figures 6(a)–6(d)) leads to interesting results. For the

small number of bounces, the basin boundaries are smooth

(Figures 6(a)–6(c)). One can easily identify initial conditions

which lead to the a priori known final states even when the

set with known finite inaccuracy �. With the increase of the

number of bounces �n (this occurs when the energy dissipa-

tion decreases), it is possible to observe that the complexity

of the basin boundaries increases (Figure 6(d)). In this case,

to predict the result of the throw smaller inaccuracy � is nec-

essary. The similar mechanism of the fractalization has been

previously observed for the tossed coin.11,13 The same prop-

erties of the basin boundaries have been observed for several

cases of different initial conditions as well as for the dice

with different shapes (in our studies we consider tetrahedron,

octahedron, dodecahedron, and icosahedron shapes). This

allows us to state that if one can settle the initial conditions

with appropriate accuracy, the outcome of the die throw is

predictable and repeatable.

We perform the following numerical experiment.12 For

a given value of xg0 and fixed initial conditions x0 ¼ y0

¼ vx ¼ vy0 ¼ vz0 ¼ xn0 ¼ xf0 ¼ 0, we randomly choose

2� 106 values of the rest of initial conditions from the fol-

lowing set: z0 2 ½15a; 20a�, w0 2 ½0; 2p�, #0 2 ½0; 2p�, u0 2
½0; 2p� and integrate Eqs. (1), (2), and (6)–(8). Let <p�> be

the average probability that the cubic die lands on the face

which is the lowest one at the start. This probability can be

related to the values of xg0 (xg0 determines the initial rota-

tion energy of the system Erot0 ¼ 1
2

Jx2
g0). When the die lands

on the soft table without bouncing this probability is equal to

0.548 (significantly different from the theoretical probability

<p>¼ 1=6 ¼ 0:16ð6Þ). When the die is thrown from the

hand or the cup, the realistic values of xg0 are 20–40 [rad/s]

(for vigorous throw) and the typical number of bounces is

about 4–5, <p�> is equal to 0.199. This value is closer

but is still significantly different from the value of <p>.

The probability <p�> is close to <p> for large values of

xg0 (e.g., xg0 ¼ 300 ½rad=s�� < p�>¼ 0:121;xg0 ¼ 1000

FIG. 6. Basins of attraction in z0 � x0g

plane for the tetrahedron die; basins of 1,

2, 3, and 4 faces are shown, respectively,

in blue, green, yellow, and red; Eqs. (1),

(2), and (6)–(8) have been integrated for the

following initial conditions: x0 ¼ y0 ¼ 0;
v0x ¼ v0y ¼ v0z ¼ 0 w0 ¼ 0:3 ½rad�; #0 ¼ 1:2
½rad�;u0¼0:6 ½rad�; v0x¼ 0; v0y ¼ 0; v0z ¼ 0;
w0 ¼ 0:3 ½rad�; x0n ¼ 0, and x0f ¼ 0 (a)

v¼ 0:05, (b) v¼ 0:2, (c) v¼ 0:5, (d)

v¼ 1.
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½rad=s�� < p�>¼ 0:180) when the die typically bounces on

the table between 15 and 25 times before it no longer can

change its orientation. This numerical experiment (results

for the dice with different shapes are given in Ref. 22) gives

evidence that the die face which is the lowest at the begin-

ning is significantly more probable than other faces so in the

realistic mechanical experiment the dice are not fair. It is not

enough for a die which is fair by symmetry to be fair by

dynamics.

Finally, let us consider two unrealistic cases of the die

throw. The first one is the Hamiltonian system in which the

elastic collisions with no energy dissipation are assumed.

For this case, the series of die vertices which collides with

the table in the successive bounces E,A,A,C,D,D,E,E,C,C,

B,A,D,B,B,B,B,C,A,A,B,… is chaotic. The largest Lyapu-

nov exponent is equal to 0.076 for the tetrahedron and 0.067

for the cube. It seems that only in this case the throw of the

die can be considered as a chaotic process and the basins of

different faces are fulfilling conditions of Definition 2 (up to

the numerical accuracy—Figure 6(d)) and the results of the

die throw are unpredictable. The second one is the case of

the vibrating table. The example of a tetrahedron die bounc-

ing on the periodically oscillating table is shown in Figures

7(a) and 7(b). In this case, the motion of the die is not termi-

nated by the energy dissipation during the impacts and the

die motion is chaotic. The largest Lyapunov exponent is

equal to 0.169 for the tetrahedron and 0.183 for the cube.

The analogy of the second case to the well-known chaotic

dynamics of the bouncing ball20–22 is presented. Indeed, if

one considers the case in which the number of the die faces

increases (theoretically to infinity) the shape of the die

approaches the shape of the ball.

V. CONCLUSIONS

To summarize, the die throw is neither random nor cha-

otic. From the point of view of dynamical system theory, the

result of the die throw is predictable. Practically, the predict-

ability can be realized only when the die is thrown by a spe-

cial device which allows to set very precisely the initial

conditions. We show that the probability, that the die lands

on the face which is the lowest, is larger than on any other

face, i.e., the dice are not fair by the dynamics. It is not

enough for a die which is fair by symmetry to be fair by dy-

namics. By mechanical experiments or simulations, one can-

not construct the die which is fair by continuity. If an

experienced player can reproduce the initial conditions with

small finite uncertainty, there is a good chance that the

desired final state will be obtained.

The probabilities of landing on any face approach the

same value 1/n only for the large values of the initial rota-

tional energy and a great number of die bounces on table �n.

In the limit case when �n !1, the die throw can be consid-

ered as a chaotic process. This can be done in computer sim-

ulations but not in the real experiment when a die is thrown

from the hand or the cup as due to the limitation of the initial

energy the die can bounce only a few times. The dynamics

of the die is also chaotic in the case of the die bouncing on

the oscillating table.

Our studies give evidence that the origin of randomness

in mechanical systems is connected with the discontinuity of

the phase space (in the case of the die throw this discontinuity

occurs during the bounces on the table). The grazing bifurca-

tion23–27 characteristic for the discontinuous systems leads to

the sensitivity to initial conditions and chaotic behavior. As it

has been already stated in Ref. 14, the mechanical gambling

devices (dice, roulette, etc.) cannot show chaotic behavior as

its evolution is finite due to the energy dissipation. In this

case, the phenomena connected with the grazing bifurcation

result in the occurrence of the transient chaos and fractaliza-

tion of the boundaries between the basins of the different final

configurations. This can be also concluded from the studies

of other mechanical randomizers, like for e.g., roulette, pin-

ball machine, or Buffon’s needle.22,29–31

The simplifications used in our model like the neglection

of air resistance, friction between the die and the table, and

the consideration of the energy dissipation also through the

restitution coefficient have a negligible effect on the predict-

ability of die throw. The consideration of the influence of the

air resistance and different models of the contact between

the coin and the table results only in the small quantitative

difference in the die trajectories.11,28 Our numerical simula-

tions are in good agreement with the experimental observa-

tions using high-speed camera.

Before the appearance of chaos theory, concepts of

determinism and predictability were mostly the same. Our

studies show that the throw of the die is both deterministic

and predictable (when the initial conditions are set with a

sufficient accuracy). This confirms that closed dissipative

mechanical systems cannot show chaotic behavior. When the

die tossing is taken into the realms of conservative systems

(vanishing dissipation) or open dissipative systems (oscillat-

ing table) one can identify chaotic behavior but both cases

are far away from the classical understanding of die games.

Although the deterministic description of the mechani-

cal systems is possible in some cases the use of probabilistic

FIG. 7. Trajectory of the die bouncing on the periodically oscillating table,

(a) tetrahedral, (b) cube.
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arguments is unavoidable. Three main situations can be dis-

tinguished: (1) if the number of degrees of freedom is very

large (on the order of Avogadros number) a detailed dynami-

cal description is not useful: one does not care about the ve-

locity of a particular molecule in gas, all that is needed is the

probability distribution of the velocities, (2) even when the

number of degrees of freedom is small (but larger than three)

the sensitivity to initial conditions of the chaotic dynamics

makes determinism irrelevant in practice, because one can-

not control the initial conditions with infinite accuracy as in

the case of the die tossing. Our ignorance of initial condi-

tions is translated into a probabilistic description, (3) in

quantum mechanics (for details see Refs. 32 and 33).
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