A Software Approach for Managing Shared Resources in Multicore IMA Systems

Xavier Jean, Marc Gatti, David Faura. Thales Avionics, France
Laurent Pautet, Thomas Robert. Telecom ParisTech, France

2013/10/10
DASC 2013 - Syracuse
Context

Problem Statement

Approach for Shared Resources Management

Prototyping

Conclusion
Digital Avionic Systems Evolution

- Processing Requirements
 - Home designed processors
 - COTS processors
 - Federated architecture
 - Integrated architecture
 - Single-core processors
 - Multicore processors

- Concorde
 - ATR-42
 - A320
 - ATR-72
 - SSJ-100
 - A380
 - B787
 - A350

- Time:
 - 1960 - 1980
 - 1980 - 2000
 - 2000 - 2020
 - 2020 - 2040
Integrated Modular Avionics concept

- **Set of Hardware and Software components**
 - Modular development
 - Incremental certification

- **Dependability constraints**
 - Worst Case Execution Time computability
 - Safety of WCET computation
 - Failure Isolation: Robust Partitioning
 - Modularity of WCET computation

- **Platform efficiency**
 - Raw Performances for each Partition
 - Number of Hosted Partitions
- **ARINC 653 Partitions Deployment**
 - Asymmetrical Multi-Processing
 - Backward compatibility on legacy
 - No global constraint on schedule

- **Hardware Resources Allocation**
 - Private vs Shared resources
 - Interleaving of concurrent transactions in the interconnect

- **Inter-Core Conflicts Occurrences**
 - Resources sharing policy driven by the hardware
Context

Problem Statement

Approach for Shared Resources Management

Prototyping

Conclusion
Problem Statement

◆ How to compute a WCET?
 ○ Simulate the core’s worst case behavior executing the application
 ○ Consider any access to a shared resource as taking its Worst Case Access Time (WCAT)

◆ Problem: How to determine WCAT to shared resources?
 ○ No constraint on embedded partitions
 ○ No guarantees on a minimal bandwidth granted to each core
 ○ In practice we observe pathological situations

Hardware management of shared resources accesses seems not safe
Approach for Shared Resources Management

- **Software approach implemented in a hypervisor**
 - One virtual machine per core hosting an Operating System
 - Shared resources management policy hidden to guest software

- **Resource sharing policy setup and configuration**
 - Interconnect bandwidth quota allocated to each core
 - On the fly control of accesses to cope with the allocated quota
 - Detection of pathological situations

Which impact on application’s performances?
Context

Problem Statement

Approach for Shared Resources Management

Prototyping

Conclusion
◆ Objectives
 ▪ Determine a usage domain for applications
 ▪ Determine configurations for which shared resources access times are independent

◆ Experimentation
 ▪ Quad-core processor from the QorIQ series
 ▪ Focus on DDR accesses regulation

◆ Virtual machines scenarios
 ▪ One benchmark VM
 ▪ Up to three stress VM
Phase 1: Estimate raw performances of applications: AES and FFT

- Simulation of Average Memory Access Time
- Comparison of execution time with a reference execution in a bare metal configuration

There is a usage domain in which our solution seems efficient.
Phase 2: Estimate performances degradation of bandwidth sharing

- Allocation of a portion of interconnect bandwidth
- Comparison of execution time with a reference execution inside a virtual machine that is granted all interconnect bandwidth

Measurements for AES

Measurements for FFT

Bandwidth sharing entails a limited degradation of performances
Phase 3: Assess bandwidth management impact on worst case access times to DDR

- The benchmark VM is granted a portion of interconnect bandwidth
- Stress VM share another portion of the interconnect bandwidth
- Access times from benchmark VM to DDR are collected

Access profile for the reference execution
Phase 3: Reference execution, no traffic regulation

- No stress Cores
- 1 stress Cores
- 2 stress Cores
- 3 stress Cores
Phase 3: 50% of interconnect bandwidth is allocated to each group.
Phase 3: 30% of interconnect bandwidth is allocated to each group.
Context

Problem Statement

Approach for Shared Resources Management

Prototyping

Conclusion
Conclusion

- Computing modularly WCET of several applications on a COTS multicore under AMP deployment is an open problem
 - Gathering WCAT to shared resources is the root problem
 - This problem was partially closed by removing some constraints
 - Deterministic home-maid processors
 - Non modular WCET analysis

- We introduced a purely software solution
 - Configurable resources sharing policy, not visible by guest software
 - Limited impact on application performances within a usage domain

- Future prototype improvements
 - Main effort on shared resources management capabilities
 - Deeper experiment with several avionic applications
Thanks for your attention!