
© 2012, IJARCSSE All Rights Reserved Page | 96

 Volume 2, Issue 5, May 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

An Efficient Line Clipping Algorithm for 3D Space
 R. Kodituwakku K. R. Wijeweera M. A. P. Chamikara
 Dept. o f Statistics & Computer Science Dept. of Statistics & Computer Science Post Graduate Institute of Science

 Faculty of Science Faculty of Science Faculty of Science

 University of Peradeniya University of Peradeniya University of Peradeniya

 pathumchamikara@gmail.com

Abstract— This paper proposes a new line clipping algorithm for 3D space against a cuboid which is not generated based on Cohen-

Sutherland or Liang-Barsky line clipping algorithms. The proposed algorithm is based on a newly proposed simple theory developed

using basic mathematical concepts. All most all the 3D line clipping algorithms involve three steps to check whether a line segment lies

completely inside the clipping volume or lies completely outside the clipping volume or intersection calculations when it is not

completely inside or outside. The proposed algorithm does not follow these steps. The algorithm was tested for a large number of
random line segments and the results showed that the new 3D space line clipping algorithm performs better than the Cohen-

Sutherland 3D line clipping algorithm in terms of time and space.

Keywords— Computer Graphics, Line Clipping, 2D geometry, 3D geometry.

I. INTRO DUCTION

In computer graphics, it is very important to clip an area or

a volume of interest which is to be displayed on the computer

monitor. This reg ion of interest is normally a rectangle or a

general polygon in two-dimension and known as the clipping

window [2]. When it comes to three-dimensional clipping, a

volume is used to extract a part from a three-dimensional

scene. Generally the lines are clipped by this clipping volume

and it is a polyhedron. Cuboids are widely used as the clipping

volume. Three-d imensional clipping is one of the most

essential processes in medical applications, video games,

computer aided design and many other applications.

Somet imes it is necessary to discard the data that is not

contained in the visible region to avoid the overflow of the

internal registers of the display device [10]. Furthermore,

lesser memory consumption can be ach ieved from loading

only a certain part o f a scene to the memory by clipping

unnecessary parts [9]. Therefore, improving the efficiency of

clipping algorithms has a great impact on efficiency of the

overall graphics system.

Cohen-Sutherland line clipping algorithm [1], Liang-

Barsky line clipping algorithm [2], Cyrus-Beck line clipping

algorithm [3] and Nicholl-Lee-Nicholl line clipping algorithm

[4] are few of the traditional line clipping algorithms. The

Cohen-Sutherland and the Liang-Barsky algorithms can be

extended to three-dimensional clipping. Nicholl-Lee-Nicholl

algorithm performs fewer comparisons and divisions making

it faster than others [1]. However, it is difficult to extend for

three-dimensional clipping.

The Cohen- Sutherland algorithm is one of the simplest

and most widely used clipping algorithms in computer

graphics. This algorithm works very fast in situations like the

line segment is completely inside or outside of the clipping

window. When the line segment is not completely inside or

outside, the algorithm becomes inefficient due to repeated
calculations [1].

This algorithm can be easily extended to

three–dimensional clipping, but the space is needed to divide

into 27 mutually exclusive volumes, when the clipping

volume is a cube or a cuboid. Also each volume is assigned a

region code [11].

Throughout the clipping process those

region codes should be stored in the memory. So in terms of

space and time complexity Cohen – Sutherland algorithm is

inefficient for complex problems. According to Hearn and

Baker [1] all most all the 3D line clipping algorithms involve

three steps:

1. For a given line segment check whether it lies

completely inside the clipping volume.

2. If not check whether it lies completely outside the

clipping volume.

3. Otherwise perform intersection calculations with one

or more clipping planes.

These three steps lead the algorithm to perform many

calculations. In the proposed 3D space line clipping algorithm,

the traditional three step procedure has not been used. A new

efficient 2D space line clipping algorithm was introduced in

an earlier stage of this research [7]. The Pseudo code of the

2D space line clipping algorithm is as follows.

Begin

//Calculating m and c
m = (y[1]-y[0])/(x[1]-x[0]); //Gradient of the line segment

c= (x[0]*y[1]-x[1]*y[0])/(x[0]-x[1]);//Y-intercept of the line segment

For i=0 to i=1 //For each end point of the line segment

http://www.ijarcsse.com/

Volume 2, Issue 5, May 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 97

 If x[i] < minx //End point is in the -ve side of x=minx line

 //Calculating the intersection point with x=minx line
 x[i] = minx;

 y[i] = m*minx + c;

 ElseIf x[i] > maxx //End point is in the +ve side of x=maxx line

 //Calculating the intersection point with x=maxx line

 x[i] = maxx;
 y[i] = m*maxx + c;

 EndIf

 If y[i] < miny //End point is in the -ve side of y=miny line

 //Calculating the intersection point with y=miny line
 x[i] = (miny-c)/m;

 y[i] = miny;

 ElseIf y[i] > maxy //End point is in the +ve side of y=maxy line

 //Calculating the intersection point with y=maxy line

 x[i] = (maxy-c)/m;
 y[i] = maxy;

 EndIf

EndFor

// Initial line is completely outside
If (x[0]-x[1]<1) AND (x[1]-x[0]<1) Then //x-coordinates are equal

//Do nothing

Else //x-coordinates are not equal

//Save the line with end points (x[0],y[0]),(x[1],y[1])

EndIf
End

Where, the end points of the line segment are

A=(x[0], y [0]) and B=(x[1], y [1]), and conventions depicted

in Figure 1 have been used to label the rectangular clipping

window.

In this paper, a three – dimensional extension of that

algorithm is proposed. It is an extension of the above 2D

clipping algorithm.

II. METHO DO LOGY

This section presents the proposed line clipping algorithm

and analyses its performance. For line clipping, a cuboid

clipping volume is considered. Figure 2 depicts the

conventions that have been used to label the volume.

The general equation of a line,

(x - x[0])/ l=(y - y[0])/m=(z - z[0])/n; where l, m and n are

constants. End points of the line segment are

A=(x[0], y [0], z[0]) and B=(x[1], y[1], z[1]).

1) Mathematical background of the proposed algorithm

Equation of the line shown in Figure 3 is

(x - x[0])/ l=(y - y[0])/m=(z - z[0])/n; where l, m and n are

constants.

By substituting, (x[1], y[1], z[1]), the equation becomes

(x[1] - x[0])/ l=(y[1] - y[0])/m=(z[1] - z[0])/n;

From (x[1] - x[0])/l = (y[1] - y[0])/m

 => (x[1] - x[0])/(y[1] - y[0]) = l/m = a;

From (y[1] - y[0])/m = (z[1] - z[0])/n

=> (y[1] - y[0])/(z[1] - z[0]) = m/n = b;

Therefore, ab = (l/m)(m/n) = l/n;

Now consider the intersection of the line and the x = p p lane

depicted in Figure 4.

Consider, (x - x[0])/l = (y - y[0])/m = (z - z[0])/n;

From (y - y[0])/m = (x - x[0])/l => (y - y[0])/m = (p - x[0])/l

=> y = (p - x[0])(m/l) + y[0];

From (x - x[0])/ l = (z - z[0])/n => (z - z[0])/n = (p - x[0])/l

=> z = (p - x[0])(n/l) + z[0];

Therefore, the point of intersection is

{p, (p - x[0])/a + y [0], (p - x[0])/(ab) + z[0]}

Similarly consider the intersection of the line and the y = q

plane shown in Figure 5.

Consider, (x-x[0])/l=(y -y[0])/m=(z-z[0])/n;

From (x - x[0])/l = (y - y[0])/m => (x - x[0])/l = (q - y[0])/m

=> x = (q - y [0])(l/m) + x[0];

x

y

miny

maxy

maxx minx

Fig.1. 2D Clipping window

z

x

y

Fig.2. Clipping volume

miny

maxy

maxx minx

minz

maxz

Fig.3. A straight line

(x[0], y[0], z[0])

(x[1], y[1], z[1])

x=p plane

Fig.4. A straight line intersects with x=p plane

y=q plane

Fig.5. A straight line intersects with y=q plane

Volume 2, Issue 5, May 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 98

From (z - z[0])/n = (y - y[0])/m => (z - z[0])/n = (q - y[0])/m

=> z = (q - y[0])(n/m) + z[0];

Therefore, the point of intersection is

{a(q - y[0]) + x[0], q, (q - y[0])/b + z[0]}

Finally, consider the intersection of the line and the z = r p lane

shown in Figure 6.

Consider (x - x[0])/ l = (y - y[0])/m = (z - z[0])/n;

From (x - x[0])/l = (z - z[0])/n => (x - x[0])/ l = (r - z[0])/n =>

x = (r - z[0])(l/n) + x[0];

From (y - y[0])/m = (z - z[0])/n => (y - y [0])/m = (r - z[0])/n

=> y = (r - z[0])(m/n) + y[0];

Therefore, the point of intersection is

{ab(r - z[0]) + x[0], b(r - z[0]) + y[0], r}

2) Pseudo code of the proposed algorithm

All the symbols used in the following pseudo code are shown

in Figure 2 or provided in section 2.1.

Begin

//Calculating a and b

a = (x[1] - x[0])/(y[1] - y[0]);

b = (y[1] - y[0])/(z[1] - z[0]);

For i=0 to i=1 //For each end point of the line segment
 If x[i] < minx Then //End point is in -ve side of x=minx plane

 //Calculating the intersection point with x=minx plane

 y[i] = (minx - x[0])/a + y[0];

 z[i] = (minx - x[0])/(a*b) + z[0];

 x[i] = minx;
 ElseIf x[i] > maxx Then//End point is in +ve side of x=maxx plane

 //Calculating the intersection point with x=maxx plane

 y[i] = (maxx - x[0])/a + y[0];

 z[i] = (maxx - x[0])/(a*b) + z[0];

 x[i] = maxx;
 EndIf

 If y[i] <miny Then //End point is in -ve side of y=miny plane

 //Calculating the intersection point with y=miny plane

 x[i] = a*(miny - y[0]) + x[0];

 z[i] = (miny - y[0])/b + z[0];
 y[i] = miny;

 ElseIf y[i] > maxy Then //End point is in +ve side of y=maxy plane

 //Calculating the intersection point with y=maxy plane

 x[i] = a*(maxy - y[0]) + x[0];

 z[i] = (maxy - y[0])/b + z[0];
 y[i] = maxy;

 EndIf

 If z[i] < minz Then // End point is in -ve side of z=minz plane

 //Calculating the intersection point with z=minz plane

 x[i] = a*b*(minz - z[0]) + x[0];
 y[i] = b*(minz - z[0]) + y[0];

 z[i] = minz;

 ElseIf z[i] > maxz Then//End point is in +ve side of z=maxz plane

 //Calculating the intersection point with z=maxz plane
 x[i] = a*b*(maxz - z[0]) + x[0];

 y[i] = b*(maxz - z[0]) + y[0];

 z[i] = maxz;

 EndIf

EndFor

 // Initial line is completely outside

If (x[0] - x[1]) < 1 AND (x[1] - x[0]) < 1 Then //x-coords are equal

 // Do nothing

Else //x-coords are not equal
 // Save the line with end points (x[0], y[0], z[0]), (x[1], y[1], z[1])

EndIf

End

3) Implementation of the proposed algorithm

The proposed algorithm has been developed using C++

programming language. In order to improve the understand

ability of the algorithm, the source code is presented below.

void clipMY3D(double x[],double y[],double z[],double minx,double
miny,double minz,double maxx,double maxy,double maxz)

{

int i;

double a,b; // Two constants depending on the line

if((x[0]!=x[1]) && (y[0]!=y[1]) && (z[0]!=z[1])) // Line is not

parallel to xy, yz and zx planes

{

a=(x[1]-x[0])/(y[1]-y[0]);

b=(y[1]-y[0])/(z[1]-z[0]);

for(i=0; i<2; i++)

{

 if(x[i] < minx)

 {
 y[i] = (minx - x[0])/a + y[0];

 z[i] = (minx - x[0])/(a*b) + z[0];

 x[i] = minx;

 }

 else if(x[i] > maxx)
 {

 y[i] = (maxx - x[0])/a + y[0];

 z[i] = (maxx - x[0])/(a*b) + z[0];

 x[i] = maxx;

 }
 if(y[i] < miny)

 {

 x[i] = a*(miny - y[0]) + x[0];

 z[i] = (miny - y[0])/b + z[0];

 y[i] = miny;
 }

 else if(y[i] > maxy)

 {

 x[i] = a*(maxy - y[0]) + x[0];

 z[i] = (maxy - y[0])/b + z[0];
 y[i] = maxy;

 }

 if(z[i] < minz)

 {

 x[i] = a*b*(minz - z[0]) + x[0];

z=r plane

Fig.6. A straight line intersects with x=p plane

Volume 2, Issue 5, May 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 99

 y[i] = b*(minz - z[0]) + y[0];

 z[i] = minz;
 }

 else if(z[i] > maxz)

 {

 x[i] = a*b*(maxz - z[0]) + x[0];

 y[i] = b*(maxz - z[0]) + y[0];
 z[i] = maxz;

 }

}

if((x[0] - x[1] < 1) && (x[1] - x[0] < 1)) // Initial line is completely
outside

{

 // Do nothing

}

else
{

 cout<< x[0] << "," << y[0] << "," << z[0] << " ;

 " << x[1] << "," << y[1] << "," << z[1] << endl;

}

}

else if(z[0] == z[1]) // Line is parallel to xy plane

{

 clipMY1(x, y, z, minx, miny, maxx, maxy);

}
else if(x[0] != x[1]) // Line is parallel to xz plane

{

 clipMY2(x, y, z, minz, minx, maxz, maxx);

}

else if(y[0] != y[1]) //Line is parallel to yz plane
{

 clipMY3(x, y, z, miny, minz, maxy, maxz);

}

else // Line is parallel to z-axis

{
 // initial line is completely outside

 if((x[0] <= minx) || (x[0] >= maxx) || (y[0] <= miny) ||

(y[0] >= maxy))

 {

 // do nothing
 }

 else

 {

 for(i=0; i<2; i++)

 {
 if(z[i] < minz)

 {

 z[i] = minz;

 }

 else if(z[i] > maxz)
 {

 z[i] = maxz;

 }

 }

 // initial line is completely outside
 if((z[0] - z[1] < 1) && (z[1] - z[0] < 1))

 {

 // do nothing

 }

 // draw the clipped line
 else

 {

 Cout << x[0] << "," << y[0] << "," << z[0] << " ;

 " << x[1] << "," << y[1] << "," << z[1] << endl;
 }

 }

}

}

NOTE: clipMY1, clipMY2, clipMY3 are functions that have

been designed to clip lines in 2D space
7
. Once the line

segment is parallel to one of the principle planes it can be

considered as a 2D clipping problem.

4) Analysis of the algorithm

This section analyzes the algorithm for some possible

situations.

Case 1: Line is completely inside as shown in Figure 7

x[A] != x[B]true

y[A] != y[B]true

z[A] != z[B]true

Consider point A,

x[A] < minxfalse

x[A] > maxx false

y[A] < minyfalse

y[A] > maxy false

z[A] < minzfalse

z[A] > maxzfalse

Therefore, the initial position of A is not changed.

Consider point B,

x[B] < minxfalse

x[B] > maxx false

y[B] < minyfalse

y[B] > maxy false

z[B] < minzfalse

z[B] > maxzfalse

Therefore, the initial position of B is not changed.

(x[A] - x[B] < 1) && (x[B] - x[A]) false

Therefore, the line with the end points A and B is drawn.

Case 2: Line is completely outside as depicted in Figure 8

Fig.7.Line is completely inside

B

A

Fig.8. Line is completely outside

B’

B

A

A’ B’’

Volume 2, Issue 5, May 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 100

x[A] != x[B]true

y[A] != y[B]true

z[A] != z[B]true

Consider point A,

x[A] < minxfalse

x[A] > maxxfalse

y[A] < minytrue

So, AA’

z[A’] < minzfalse

z[A’] > maxzfalse

Consider point B,

x[B] < minxfalse

x[B] > maxxtrue

So, BB’

y[B’] < minytrue

So, B’B’’

z[B’’] < minzfalse

z[B’’] > maxzfalse

(x[A’] - x[B’’] <1) && (x[B’’] - x[A’]) true

Therefore, the line is ignored.

Case 3: Line intersects the clipping window as shown in

Figure 9

x[A] != x[B]true

y[A] != y[B]true

z[A] != z[B]true

Consider point A,

x[A] < minxfalse

x[A] > maxxfalse

y[A] < minytrue

So, AA’

z[A’] < minzfalse

z[A’] > maxzfalse

Consider point B,

x[B] < minxfalse

x[B] > maxxtrue

So, BB’

y[B’] < minyfalse

y[B’] > maxyfalse

z[B’] < minzfalse

z[B’] > maxzfalse

(x[A’] - x[B’] < 1) && (x[B’] - x[A’]) false

Therefore, the line with the end points A’ and B’ is drawn.

Case 4: Line partially inside the clipp ing window as depicted

in Figure 10

x[A] != x[B]true

y[A] != y[B]true

z[A] != z[B]true

Consider point A,

x[A] < minxfalse

x[A] > maxx false

y[A] < minyfalse

y[A] > maxy false

y[A] < minzfalse

y[A] < maxz false

Therefore, the initial position of A is not changed.

Consider point B,

x[B] < minxfalse

x[B] > maxxtrue

Therefore, BB’

y[B’] < minyfalse

y[B’] < maxyfalse

z[B’] < minz false

z[B’] < maxz false

(x[A] - x[B’] < 1) && (x[B’] - x[A]) false

Therefore, the line with the end points A and B’ is drawn.

III. RESULTS AND DISCUSSION

The proposed algorithm was tested for all the possible test

cases of line segments. The test results indicated that it

performs well in all possible situations. In order to validate the

algorithm, it was compared against the Cohen-Sutherland 3D

space line clipping algorithm. The following hardware and

software were used for testing.

Computer: Intel(R) Pentium(R) Dual CPU; E2180 @ 2.00

GHz; 2.00 GHz, 0.98 GB RAM IDE Details: Turbo C++;

Version 3.0; Copyright(c) 1990, 1992 by Borland

International, Inc. Method [2]:

The clipp ing volume (cuboid) with values minx = miny =

minz = 100 and maxx = maxy = maxz = 300 was used for

clipping. Random points were generated in the range 0 - 399

by using the randomize() function. These random points were

considered as end points to generate random lines. Number of

clock cycles taken by each algorithm to clip 1000000 random

lines were counted using the clock() function. The results are

shown in Table 1.

A’

A

B’

B

Fig.9. Line is intersecting the boundaries

B

Fig.10. Line is partially inside the clipping window

B’

A

Volume 2, Issue 5, May 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 101

TABLE I
NUMBER OF CLOCK CYCLES COMPARISON

Step Cohen-Sutherland

algorithm

The proposed

algorithm

1 3596 3403

2 3497 3271

3 3946 3431

4 3867 3980

5 3489 3097

6 4014 3790

7 3906 3767

8 3638 3737

9 4018 3914

10 3839 3684

The results prove that the new 3D space line clipping

algorithm is faster in 8 steps out of 10 steps than the Cohen-

Sutherland algorithm. Performance in our algorithm is poor

when the line segment is completely outs ide because a

number of intersection calculations are needed to remove such

lines which are completely outside of the clipping window.

Therefore, in a situation where many randomly generated

lines are completely outside of the clipping window, the

performance of the newly proposed algorithm is slightly lower

than Cohen-Sutherland algorithm.

IV. CO NCLUSIONS

 According to the test results, the proposed 3D space line

clipping algorithm is faster than the 3D Cohen–Sutherland

algorithm. Therefore, this algorithm can be successfully used

in 3D applicat ions where line clipping involved. Th is

algorithm can further be extended to clip lines within a

polyhedron volume.

REFERENCES

[1] D. Hearn and M. P. Baker, ―Computer Graphics,‖ C

Version, 2nd Edition, Prentice Hall, Inc., Upper Saddle

River, 1998, p. 224-248.

[2] Wenjun Huang, ―The Line Clipping Algorithm Basing

on Affine Transformation‖, Intelligent Informat ion

Management, 2010, 2,380-385, Published Online June

2010 (http://www.SciRP.org/journal/iim)

[3] M. Cyrus and J. Beck, ―Generalized Two and Three

Dimensional Clipping,‖ Computers and Graphics, Vol. 3,

No. 1, 1978, pp. 23-28.

[4] T. M. Nicholl, D. T. Lee and R. A. Nicholl, ―An

Efficient New Algorithm for 2-D Line Clipping: Its

Development and Analysis,‖ Computers and Graphics,

Vol. 21, No. 4, 1987, pp. 253-262.

[5] C. B. Chen and F. Lu, ―Computer Graphics Basis,‖

Publishing House of Electronics Industry, Beijing, 2006,

pp.167-168.

[6] V. Skala, ―O (lg N) Line clipping Algorithm in

E , ‖Computers and Graphics, Vol. 18, No. 4, 1994, pp.

517-527.

[7] S.R. Kodituwakku, K.R. W ijeweera, M.A.P. Chamikara.

An efficient algorithm for line clipping in computer

graphics programming; will appear in Ceylon Journal of

Science (Physical Sciences), 2012.

[8] You-Dong Liang, Brian A. Barsky, Mel Slater. Some

Improvements to a Parametric Line Clipping Algorithm.

pp. 2.

[9] Patrick-Gilles Maillot. Model Clipping Triangle St rips

and Quad Meshes, Sun Microsystems, Inc.

[10] Fuhua Cheng, Yue-Kwo Yen. A Parallel Line Clipping

Algorithm and its Implementation.

[11] J.D. Foley and A. van Dam, Fundamentals of Interactive

Computer Graphics, Addison Wesley, Reading, Mass,

1982. pp. 227.

S. R. Kodituwakku is an associate

professor at the Department of Statistics
and Computer Science, University of
Peradeniya, Sri Lanka. His research

interests include database systems,
distributed computing, Role based Access
Control systems, and software
engineering.

K. R. Wijeweera is an undergraduate,

following a computer science special
degree in University of Peradeniya, Sri
Lanka. His research interests include
computer graphics, image processing,

computer vision, and artificial
intelligence.

M. A. Pathum Chamikara is working

as a research assistant at the Post
Graduate Institute of Science (PGIS),
University of Peradeniya, Sri Lanka. He
received his BSc (Special) degree in

Computer Science, University of
Peradeniya, Sri Lanka (2010). His
research interests include Crime analysis,
GIS (Geographic Information Systems),

image processing, computer vision and
artificial intelligence.

