Formal specification, symbolic reasoning, and automatic generation of simulation models

Mamadou Kaba Traoré

LIMOS CNRS UMR 6158
Université Blaise Pascal, Clermont-Ferrand 2
• Requirements for symbolic reasoning...
 • Verification and validation
 • Reuse and composability
• ...lead to formal specification:
 • logic characterization of models structure and behavior
 • multi-step process: each step reveals more knowledge
• From formal specification to operational code: automatic code generation
Formal specification, symbolic reasoning, and automatic generation of simulation models

- **M&S algebra:**
 - manipulation of simulation models as algebraic entities
 - deduction of models properties by logic operations

- **Basic principle: separation of concerns**
 - models
 - frames (context)
 - simulators
Formal specification, symbolic reasoning, and automatic generation of simulation models

- Algebraic constructions:
 - multi-step specification (formal verification, wrapping)
 - morphism between specifications (bisimulation)
 - formalism transformation (validation?)

- Operators
 - model-frame coupling (composability, reuse)
 - simulator generation (rapid prototyping, interoperability)
Formal specification, symbolic reasoning, and automatic generation of simulation models
Formal specification, symbolic reasoning, and automatic generation of simulation models

DEVS

Level 0: \(M_{OF} = <X, Y, T> \)
Level 1: \(M_{IORO} = <X, Y, T, \Omega, R> \)
Level 2: \(M_{IOFO} = <X, Y, T, \Omega, F> \)
Level 3: \(M_{IOS} = <X, Y, T, \Omega, S, \delta_{ext}, \delta_{int}, \lambda, t_a> \)
Level 4: \(M_{CN} = <X, Y, T, \Omega, D, \{M_d, d \in D\}, EIC, EOC, IC> \)

Formal Methods

Operational specification
Functional specification
State-based specification
Transition-based specification
History-based specification

Use of model checkers and theorem provers

2005 Bellairs CAMPam Workshop – April 18-22 – M. K. Traoré
Formal specification, symbolic reasoning, and automatic generation of simulation models

Matching (reuse, composability, V&V)

Frame-to-Model inputs

Model-to-Frame outputs

Frame outputs

Experimental frame
Validation frame
Verification frame ...
Formal specification, symbolic reasoning, and automatic generation of simulation models

- Constraints
 - Format (input, output variables)
 - Scale (time base, time unit)
 - Formalism (semantics, syntax)

- Objectives
 - Focus (outcome measures, control variables)
 - Function (summary mapping, domains)

- Assumptions
 - Interactivity (continuous/discrete)
 - Dependencies: initial, transient and final conditions (time, data, parameters, state)
Formal specification, symbolic reasoning, and automatic generation of simulation models

Frame specification:

Level 0: $F_{\text{Interface}} = <T, I_M, I_E, O_M, O_E>$

Level 1: $F_{\text{Behavior}} = <T, I_M, I_E, O_M, O_E, \Omega_M, \Omega_E, \Omega_C, SU>$

Level 2: $F_{\text{System}} = <T, I_M, I_E, O_M, O_E, D, \{M_d\}, \{I_d\}, \{Z_{i,d}\}, \{Z^*_i,d\}>$
Formal specification, symbolic reasoning, and automatic generation of simulation models

Model-Frame matching:

Model: $M_{\text{pre}} \Rightarrow M_{\text{post}}$
Frame: $F_{\text{pre}} \Rightarrow F_{\text{post}}$

Constraints matching \approx Signature matching
Objectives/Assumptions matching \approx Specification matching
Formal specification, symbolic reasoning, and automatic generation of simulation models.

Multimodel

Formalism transformation

LDEVS model

Mu calculus

LDEVs simulator

Other simulator

2005 Bellairs CAMPam Workshop – April 18-22 – M. K. Traoré