Context-Based Proofs of Termination for Typed Delimited-Control Operators

Malgorzata Biernacka Dariusz Biernacki
Institute of Computer Science
University of Wroclaw
Wroclaw, Poland
{mabi,dabi}@ii.uni.wroc.pl

Abstract
We present direct proofs of termination of evaluation for typed delimited-control operators shift and reset using a variant of Tait’s method of context-based reducibility predicates. We address both call by value and call by name, and for each reduction strategy we consider a type-and-effect system à la Danvy and Filinski as well as a system with a fixed answer type. The call-by-value type-and-effect system we present is a refinement of Danvy and Filinski’s original type system, whereas the call-by-name type-and-effect system is new. From the normalization proofs, we extract call-by-value and call-by-name evaluators in continuation-passing style with two layers of continuations; by construction, these evaluators are instances of normalization by evaluation.

Categories and Subject Descriptors D.3.3 [Programming Languages]: Language Constructs and Features—Control structures; F.3.3 [Logics and Meanings of Programs]: Semantics of Programming Languages—Studies of program constructs

General Terms Languages, Theory

Keywords Delimited Continuations, Reduction Semantics, Type System, Reducibility Predicates, Continuation-Passing Style

1. Introduction
Static delimited continuations, accessible through the control operators shift and reset, were introduced by Danvy and Filinski for expressing the success-failure continuation model of backtracking in direct style [18, 19] and they have found numerous practical and theoretical applications ever since [12, 15, 20, 21, 24, 25, 32, 35, 36, 39]. While delimited continuations are gaining currency for practitioners and implementors, their theoretical foundations are also being actively studied and developed [1–4, 10, 27, 28, 30, 31]. Recently, Ariola et al. [1] and Kameyama and Asai [29] have proved strong normalization of, respectively, several monomorphic calculi and a polymorphic calculus for static delimited continuations by using reduction-preserving CPS translations to the corresponding pure calculi.

In this article, our goal is to prove termination of evaluation for shift and reset directly, using a variant of Tait’s method of reducibility predicates [37, 40] for both call by value and call by name. Specifically, we adapt the method that we have proposed in an earlier work and successfully applied to the simply typed lambda calculus enriched with abortive control operators callcc, abort and Felceisen’s C [9]. Our context-based approach takes as the starting point a reduction semantics (i.e., a small-step operational semantics with explicit representation of evaluation contexts [22, 23]) which is especially fitted for languages with control operators where reduction rules that manipulate the current context (or, "the rest of the computation") can be conveniently specified. We treat evaluation contexts as an independent syntactic category (rather than informally as “terms with a hole”) for which we define typing rules and reducibility predicates. The formalization of the problem and the proof of termination then relies on the fact that each program can be represented explicitly by a term in context. Moreover, a subsequent application of program extraction from the (constructive) proof shows how continuations arise as the computational content of the reducibility predicate defined on contexts and provides a logical confirmation of the connection between contexts and continuations [16, 17].

In case of delimited-control operators shift and reset, the standard reduction semantics uses two layers of contexts [10]. In this work, we show how the context-based method can be extended to account for such a language under both the call-by-value and the call-by-name reduction strategy. By introducing typed contexts we obtain two new type systems for shift and reset, one for each reduction strategy. They are derived from the respective CPS translations and are sound with respect to reduction (the subject reduction property holds in each case). Our call-by-value type system is a refinement of the original type system of Danvy and Filinski [18] in that it admits a form of implicit context answer type polymorphism. For each of the termination proofs we present its computational content, i.e., an evaluator in continuation-passing style with two layers of continuations that is an instance of normalization by evaluation [6, 8, 11]. The evaluators normalize well-typed lambda terms with shift and reset according to the given evaluation strategy and are provably correct with respect to the corresponding reduction semantics.

We also discuss another useful typing discipline for shift and reset—a system with a fixed answer type, for which termination holds as well and can be proved along the same lines provided the answer type is a base type [1].
2. Call-by-Value Delimited Continuations

2.1 Reduction Semantics

In this section we present the call-by-value reduction semantics for the lambda calculus extended with delimited-control operators shift and reset [10].

We introduce three syntactic categories of terms, evaluation (reduction) contexts and metacontexts. The syntax of contexts encodes the chosen reduction strategy—here, left-to-right call by value:

\[(\text{terms}) \quad t ::= x \mid \lambda x.t \mid t\ t \mid \text{Sk}.t \mid \langle t \rangle \mid k \leftarrow t \mid E \Rightarrow t\]

\[(\text{CBV contexts}) \quad E ::= \bullet \mid v\ E \mid E\ t \mid E' \Rightarrow E\]

\[(\text{metacontexts}) \quad F ::= \Box \mid E \cdot F\]

\[(\text{values}) \quad v ::= \lambda x.t\]

The grammar of terms extends lambda terms with the shift construct \text{Sk}.t (where the operator \text{S} is a binder and the continuation variable \text{k} is bound in \text{t}), the delimited term (\text{t}) (where the delimiter \langle \rangle is called reset), the application of a continuation variable to a term \text{k} \leftarrow \text{t} (akin to the throw operator known from SML of New Jersey [26]) and the application of a captured context \text{E} to a term denoted \text{E} \Rightarrow \text{t}. This last construct is not present in source terms but it can appear in the course of evaluation when the shift operator captures a context. Therefore, we distinguish terms with no subterm of the form \text{E} \Rightarrow \text{t} and we call them plain terms. Continuation variables \text{k} are separate from object variables \text{x} and they can only appear in the shift construct or the throw construct.

We define the sets of free and bound variables (of both kinds) in a term in the usual way, and we distinguished closed terms, i.e., terms with no free variables (of any kind). As is also standard, we identify terms that differ only in the names of their bound variables.

Both contexts and metacontexts can be regarded as terms with a hole. Contexts are standard and in our approach they are represented inside-out, i.e.: \bullet represents the empty context, \text{v E} represents the “term with a hole” \text{E}[\text{v} \mid \text{\}], \text{E} t \mid \text{\} represents \text{E}[\text{\}[\text{\} t \mid \text{\} and \text{E}' \Rightarrow \text{E} represents \text{E}[\text{E}' \mid \text{\}]. A metacontext is a stack of contexts: the empty metacontext is denoted \Box and the metacontext obtained by pushing a context \text{E} on top of a metacontext \text{F} is denoted \text{E} \cdot \text{F}. Each context on the stack is separated from the rest by a delimiter, and thus \Box represents the term with a hole \langle \rangle, and \text{E} \cdot \text{F} represents the term with a hole \text{F}[\text{\} \]. Formally, we can define the meaning of contexts (metacontexts) by the function \text{plug} (plugm) mapping a term and a context (metacontext) to the term such a pair represents:

\[\begin{align*}
\text{plug} (t, \bullet) & = t \\
\text{plug} (t, v\ E) & = \text{plug} (v\ t, E) \\
\text{plug} (t_0, E_1 \ t_1) & = \text{plug} (t_0, E_1, E) \\
\text{plug} (t, E' \Rightarrow t) & = \text{plug} (E' \Rightarrow t, E) \\
\text{plugm} (t, \Box) & = (t) \\
\text{plugm} (t, E \cdot F) & = \text{plugm} ((\text{plug} (t, E), F))
\end{align*}\]

We write the result of plugging the term \text{t} in the context \text{E} in the usual way: \text{E}[\text{t}]. Similarly, \text{t} plugged in the metacontext \text{F} is written \text{F}[\text{t}]. We say a context is closed, if all terms occurring in it are closed. A metacontext is closed if all contexts occurring in it are closed.

Given the grammar of terms, contexts and metacontexts, we now define a program in the call-by-value language as a triple consisting of a term, a call-by-value context and a metacontext:

\[(\text{programs}) \quad p ::= (t, E, F)\]

The program \(p = (t, E, F)\) represents the term obtained by plugging the term \text{t} into the context \text{E} and metacontext \text{F}, i.e., the term \text{plugm} (plug (t, E), F) or again \text{F}[\text{E}[\text{t}]]. With such triples we can represent all terms in such a way that we explicitly show boundaries in a program: we distinguish the current term, its surrounding context up to the nearest enclosing reset, and the rest of the program beyond the reset. This definition allows various triples to represent the same program, i.e., the function \text{plugm} (plug (\text{\}, \text{\}), \text{\}) applied to different triples may give the same term as a result. In other words, all such triples represent different decompositions of the same program. Computationally, we will identify them by considering programs as abstraction classes of the equivalence relation between triples defined as follows:

\[⟨t_0, E_0, F_0⟩ \sim ⟨t_1, E_1, F_1⟩ \Rightarrow F_0[⟨E_0[\text{t}_0]⟩] = F_1[⟨E_1[\text{t}_1]⟩]\]

where the equality on the right-hand side denotes syntactic equality modulo alpha renaming. For example, the program \(⟨(\lambda x. r) \ s, \bullet, E \cdot F⟩\) can be otherwise represented by a program \(⟨\lambda x. r, \bullet, E \cdot F⟩\), or by \(⟨(\lambda x. r) \ s, E \cdot F⟩\), or by \(⟨(\lambda x. r) \ s, \bullet, E \cdot F⟩\). It should be noted that programs are in fact terms, only represented in a way that allows one to easily see their decomposition into three components. Such a representation is useful when considering reduction rules where each term must be decomposed and itsredux located before the reduction takes place. What is even more important, this representation is well suited for defining reducibility predicates in Sections 2.3 and 3.3.

The call-by-value notion of reduction for this language is given by the following set of rules:

\[\begin{align*}
\text{(β)} & \quad \langle(\lambda x. r) \ s, \bullet, E \cdot F⟩ \Rightarrow_\nu \langle r[\text{v}[\text{x}]], E \cdot F⟩ \\
\text{(shift)} & \quad \langle\text{Sk}.t, E, F⟩ \Rightarrow_\nu \langle t[\text{E}[\text{k}]], \bullet, F⟩ \\
\text{(reset)} & \quad \langle(\text{plug} (t, \bullet), v), E \cdot F⟩ \Rightarrow_\nu \langle v, E \cdot F⟩ \\
\text{plugm} (t, \Box) & \quad \langle(\text{plug} (t, E), F)\rangle
\end{align*}\]

where \text{v} is a value and the notation \text{r}[\text{v}/\text{x}] stands for the usual metaoperation of capture-avoiding substitution of \text{v} for variable \text{x} in \text{r}. Similarly, \text{t}[\text{E}/\text{k}] denotes the metaoperation of capture-avoiding substitution of context \text{E} for continuation variable \text{k} in \text{r}. Terms of the form \((\lambda x. r) \ s\) are the familiar call-by-value \text{β}-redexes. Reduction of the operator shift (rule (shift)) \text{Sk}.t takes place in any context \text{E} (i.e., in the surrounding program fragment up to the nearest enclosing reset) and it consists in capturing that context and substituting it for the continuation \text{t} in \text{F}. The metacontext remains unchanged during this operation. In turn, whenever a captured context is applied to a value in the rule (throw), it becomes the current context for that value and the previous current context is pushed on the metacontext. Finally, the reduction for reset (rule (reset)) takes place whenever the term under the delimiter is evaluated to a value—in that case, the reset is no longer needed to delimit the context and is therefore dropped. We say a redex is the term component of the program occurring on the left-hand side of each of the contraction rules above.

Thanks to the unique-decomposition property of the calculus, the relation \sim is deterministic and it is a function on programs as abstraction classes of the relation \sim.

Property 1 (Unique decomposition (CBV)). For all terms \text{t}, \text{t} either is a value, or it decomposes uniquely into a CBV context \text{E}, a metacontext \text{F} and a potential redex \text{r}, i.e., \text{t} = \text{F}[\text{E}[\text{r}]]

Finally, we define the evaluation relation as the reflexive-transitive closure of one-step reduction \(\Rightarrow_\sim\). The result of the evaluation is a (program) value of the form \text{p}_v ::= (\text{v}, \bullet, \Box). A program value consists simply of a term value in the empty context.
Terms:

\[S ::= b \mid S_U \to \nu T \]

\[\Gamma, x : S; \Delta \vdash T \to x : S \mid \Gamma \]
\[\Gamma, \Delta \vdash W \to \lambda x.t : S_U \to \nu T \mid W \]
\[\Gamma, \Delta \vdash X \to t_0 : S_U \to \nu T \mid V \]
\[\Gamma, \Delta \vdash W \to t_1 : S \mid X \]
\[\Gamma, \Delta \vdash U \to t_0; t_1 : T \mid V \]

\[\Gamma, \Delta \vdash U \to t : U \mid S \]
\[\Gamma, \Delta \vdash T \to (\ell) : S \mid T \]
\[\Gamma, \Delta \vdash E : S \to \nu T \mid W \]
\[\Gamma, \Delta \vdash W \to \nu \Gamma, \Delta \vdash V : S_U \to \nu T \mid W \]

Contexts:

\[C ::= S \supset T \]

\[\Gamma, \Delta \vdash \cdot : S \supset S \]
\[\Gamma, \Delta \vdash E : S \supset V \]
\[\Gamma, \Delta \vdash \nu : S \supset W \]
\[\Gamma, \Delta \vdash \nu E : S \supset V \]

Metacontexts:

\[D ::= \neg S \]

\[\Gamma, \Delta \vdash E : S \supset T \]
\[\Gamma, \Delta \vdash F : \neg T \]

Programs:

\[\Gamma, \Delta \vdash F[(E[\ell])] : S \mid T \]
\[\Gamma, \Delta \vdash (t, E, F) : S \]

and the empty metacontext. Note that—according to the interpretation of program triples—a program value is a term consisting of a value (i.e., a lambda abstraction) delimited by a reset.

In the remainder of this section, whenever we consider terms, contexts, metacontexts, or programs, we refer to their well-typed counterparts.

2.2 Type System à la Danvy and Filinski

The type system of Danvy and Filinski is the most liberal of monomorphic type systems proposed for the language with shift and reset and it has been derived from the call-by-value CPS definitional interpreter for this language [18]. The slightly modified system we propose is shown in Figure 1.

In our modifi cation of Danvy and Filinski’s type system, we not only assign types to terms, but also to contexts and metacontexts. In typing judgments, \(\Gamma \) is the typing context of object variables (i.e., a list of pairs \(x : S \) and \(\Delta \) is the typing context of continuation variables (i.e., a list of pairs \(k : S \supset T \)). Contexts are assigned types of the form \(S \supset T \), where \(S \) is the type of the hole of the context and \(T \) is its answer type. Metaccontexts are assigned types of the form \(\neg S \), where \(S \) is the type of the hole of the metacontext. A typing judgment for terms uses effect annotations and is of the form \(\Gamma, \Delta \vdash t : S \mid U \) and can be interpreted in the following way: under the typing assumptions \(\Gamma \) and \(\Delta \), term \(t \) can be put in a context of type \(S \supset \Gamma \) and a metacontext of type \(\neg U \) (in general, evaluating a well-typed term may use its surrounding context of type \(S \supset \Gamma \) to produce a value of type \(U \), where \(T \) and \(U \) can be different). Operationally, the effect annotations can be understood as the type of the surrounding context before \(T \) and after \(U \) evaluating \(t \). Because lambda abstractions encode “frozen” computations that can be activated by application to an argument, the type of a lambda abstraction is annotated with additional two types: the function type \(S \supset U \to \nu T \supset W \) denotes the type of a function that can be applied to an argument of type \(S \) in a context of type \(T \supset U \) and a metacontext of type \(\neg W \) (i.e., control-effect free expressions) \(x, \lambda x.t \) and \(\ell \) the two effect annotations are equal, but otherwise arbitrary. Such terms can be put in any context and always return a value to the surrounding context. If for such a term \(t \) a judgment \(\Gamma, \Delta \vdash T \to t : S \mid T \) is derivable for some type \(T \), then \(\Gamma, \Delta \vdash T' \to t : S \mid T' \) is derivable.
for any other type T'.

Consequently, since a program represents a delimited term, its type does not depend on the effect annotations in the premise of the typing rule for programs.

What is characteristic of Danvy and Filinski’s original type system is that, unlike in our type system, continuation variables are assigned functional types (where the two annotations on the arrow must be the same type—continuations captured by shift are static [13] and hence contain a control delimiter) and do not need an explicit throw construct. The original typing rule for shift reads as follows:

\[
\Gamma; \Delta, k : S \rightarrow W \vdash t : V | U \\
\Gamma; \Delta \vdash \text{letrec} \ f x = t_1 \text{ in } t_2 : S | U
\]

A consequence of this design choice is that a captured continuation can be used only in contexts of the specified and chosen upfront answer type W, resulting in the lack of context answer type polymorphism that causes rejection of some interesting programs by this type system [5]. Let us discuss this issue using a classical example—the following program listing list prefixes, traditionally presented to illustrate the power of Danvy and Filinski’s type system [10]:

\[
\text{letrec \ prefix } \text{zs} = \\
\text{match } \text{zs} \text{ with} \\
\quad \text{nil} \rightarrow \text{Sk.nil} \\
\quad y :: \text{ys}
ightarrow y :: (\text{Sk.}(k \rightarrow \text{nil}) :: (k \rightarrow (\text{prefix } \text{ys})))
\]

in λxs.(prefix zs)

In order to analyze this program, we introduce typing rules for recursion and lists (again, derived from the CBV evaluator in CPS):

\[
\begin{array}{c}
\Gamma, f : U \rightarrow V, x : U; \Delta \vdash t_1 : V | X \\
\Gamma, f : U \rightarrow x V ; \Delta \vdash t_2 : S | Y \\
\end{array}
\]

\[
\Gamma; \Delta \vdash \text{letrec } \ f x = t_1 \text{ in } t_2 : S | Y
\]

\[
\begin{array}{c}
\Gamma; \Delta \vdash t_\ast : \text{nil} : S \text{ list} \rightarrow T \\
\Gamma; \Delta \vdash t_1 : S | V \\
\Gamma; \Delta \vdash \text{match } t \text{ with } \text{nil} \rightarrow t_1 : x : \text{zs} \rightarrow t_2 : S | U
\end{array}
\]

We can observe that the captured continuation k in the induction case of the function prefix is used in two different contexts. In Danvy and Filinski’s original type system, the first application requires k to be of type $S \text{ list } \text{ list} \rightarrow \text{list} \text{ list} S \text{ list}$, whereas the second requires k to be of type $S \text{ list } \text{ list} \rightarrow \text{list} \text{ list} S \text{ list}$. The program, therefore, does not type-check in Danvy and Filinski’s original type system. Recently, Asai and Kameyama have proposed a generalization of Danvy and Filinski’s type system introducing let-polyorphism for shift and reset [5] that addresses the above issue, but it turns out that we obtain a sufficient form of polymorphism (context answer type polymorphism), if captured continuations are not represented as functions, but as contexts (after all, continuations are not functions) accompanied by the explicit throw construct. Indeed, a context (and hence, a continuation variable) does not need to be assigned a full function type; the types annotating the arrow are redundant (witness the typing rules for shift and throw in Figure 1). Therefore, we obtain a type system with a form of polymorphism—a captured continuation can be applied in contexts of any answer type.

Adjusting the program listing list prefixes accordingly (continuation applications are performed by throw):

\[
\text{letrec \ prefix } \text{zs} = \\
\text{match } \text{zs} \text{ with} \\
\quad \text{nil} \rightarrow \text{Sk.nil} \\
\quad y :: \text{ys}
ightarrow y :: (\text{Sk.}(k \rightarrow \text{nil}) :: (k \rightarrow (\text{prefix } \text{ys})))
\]

in λxs.(prefix zs)

we see that k captured in prefix is simply given the type $S \text{ list} \rightarrow S \text{ list}$ and it can freely be used in different contexts. Thus, the function prefix is well typed and the whole expression listing list prefixes is of type $S \text{ list} \rightarrow S \text{ list}$, for any types S and T.

Our type system is thus a minimal refinement of Danvy and Filinski’s original type system that accepts the prefixes example as well as the other examples discussed by Asai and Kameyama [5]. The refinement we obtain is a natural consequence of representing captured continuations as typed contexts.

We now turn to proving some essential properties of the system.

The relations between typing terms, contexts, metacollections and programs is established by the following three lemmas:

Lemma 1 (Decomposition of well-typed terms). The following hold:

1. $\text{if } \Gamma; \Delta \vdash S \vdash \text{E}[t] : S | T \text{ then } \Gamma; \Delta; V \vdash t : U | T \text{ and } \Gamma; \Delta; E : U \rightarrow V \text{ for some types } U \text{ and } V.$

2. $\text{if } \Gamma; \Delta \vdash T \rightarrow E[\langle \rangle] : S | T \text{ then } \Gamma; \Delta; V \vdash t : V | U \text{ and } \Gamma; \Delta; F : U \rightarrow V \text{ for some types } U \text{ and } V.$

3. $\text{if } \Gamma; \Delta \vdash \langle t, E, F \rangle : S \text{ then } \Gamma; \Delta; U \vdash t : T | V \text{ and } \Gamma; \Delta; E : T \rightarrow U \text{ and } \Gamma; \Delta; F : U \rightarrow V \text{ for some types } T, U \text{ and } V.$

Lemma 2 (Recomposition of well-typed terms). The following hold:

1. $\text{if } \Gamma; \Delta \vdash T \vdash t : S | U \text{ and } \Gamma; \Delta; E : S \rightarrow T \text{ then } \Gamma; \Delta; T \rightarrow E[\langle t \rangle] : U.$

2. $\text{if } \Gamma; \Delta \vdash S \vdash t : S | T \text{ and } \Gamma; \Delta; F : \text{ shift} \rightarrow T \text{ then } \Gamma; \Delta; V \vdash F[\langle \text{shift} \rangle] : U | V \text{ for some type } U \text{ and any type } V.$

3. $\text{if } \Gamma; \Delta \vdash U \vdash t : T | V \text{ and } \Gamma; \Delta; E : T \rightarrow U \text{ and } \Gamma; \Delta; F : V \rightarrow \text{ shift} \text{ then } \Gamma; \Delta \vdash \langle t, E, F \rangle : S \text{ for some type } S.$

Lemma 3 (Type preservation through plugging). Let $\Gamma; \Delta \vdash S \vdash \text{E}[\langle t \rangle] : S | T \text{ and } \Gamma; \Delta; F : \text{ shift} \rightarrow T.$

If $\Gamma; \Delta; V \vdash F[\langle \text{E}[\langle t \rangle] \rangle] : U | V \text{ then } \Gamma; \Delta; V \vdash F[\langle \text{E}[\langle t \rangle] \rangle] : U | V.$

Substituting a well-typed value (context) for a free variable (continuation variable) of the right type preserves types:

Lemma 4 (Substitution lemma). The following hold:

1. $\text{if } \Gamma, x : V; \Delta \vdash t : S | U \text{ and } \Gamma; \Delta; W \vdash v : V | W \text{ then } \Gamma; \Delta; T \vdash t[v/x] : S | U.$

2. $\text{if } \Gamma; \Delta, k : C \vdash \langle t ; v [k] \rangle : S | U \text{ and } \Gamma; \Delta; E : C \text{ then } \Gamma; \Delta; T \vdash \text{E}[\langle t \rangle ; k] : S | U.$

Finally, using the above lemmas we prove the subject reduction property of our type system:
THEOREM 1 (Subject Reduction). If $\Gamma; \Delta \vdash p : S$ and $p \rightarrow_\nu p'$, then $\Gamma; \Delta \vdash p' : S$.

As a corollary, we obtain strong type soundness of evaluation of closed well-typed programs:

COROLLARY 1. If $\cdot; \vdash p : S$ and $p \rightarrow_\nu p$, then $\cdot; \vdash p : S$.

Let us end this section by presenting a CPS translation for the language under consideration and a theorem that justifies the proposed typing rules with respect to the image of the translation—the simply typed lambda calculus. We show a CPS translation with one layer of continuations that extends Plotkin’s call-by-value CPS translation [34], leading to terms in continuation-composing style [18] (the evaluator of Section 2.3.2, on the other hand, embodies the two-layer CPS that, thanks to the presence of the metacontinuation, eliminates non-tail calls):

$$
\begin{align*}
\tau &= \lambda k. x \\
\lambda x. \iota &= \lambda k. k (\lambda x. \mathcal{I}) \\
\iota_0 \iota_1 &= \lambda k. \mathcal{I}_0 (\lambda x. \mathcal{I}_{x_0} (\lambda x_1. x_0 v_1 k)) \\
\mathcal{I} &= \lambda k. \mathcal{I}_1 (\lambda x. \mathcal{I}) \\
\beta \rightarrow \iota &= \lambda k. \iota (\lambda k. \iota (k' v)) \\
\mathcal{E} \rightarrow \iota &= \lambda k. \mathcal{I} (\lambda k. \iota [(E) v])
\end{align*}
$$

where $[\cdot]$ refunctionalizes contexts into continuations they represent:

$$
\begin{align*}
[\varepsilon] &= \lambda v. v \\
[E \cdot_1. v] &= \lambda v_0. \mathcal{I}_0 (\lambda x. \mathcal{I}_{x_0} v_1 [E]) \\
[\nu_0 E] &= \lambda v_0 v_1. v_0 [E] \\
[\mathcal{E} \cdot_1. \mathcal{E} \rightarrow E] &= \lambda v. [E] ([E'] v)
\end{align*}
$$

and $(\lambda x. \iota)^* = \lambda x. \mathcal{I}$.

The translation on types is defined as follows:

$$
\begin{align*}
\mathcal{S} U \rightarrow_\nu \mathcal{T} &= b \quad \Rightarrow \quad \mathcal{S} \rightarrow (\mathcal{T} \rightarrow \mathcal{U}) \rightarrow \mathcal{V}
\end{align*}
$$

and is extended to typing environments pointwise, using the following translation rule for Δ:

$$
\mathcal{S} \triangleright \mathcal{T} = \mathcal{S} \rightarrow \mathcal{T}
$$

PROPOSITION 1. The CBV type system of Figure 1 is correct with respect to the call-by-value CPS translation:

1. If $\Gamma; \Delta \vdash \mathcal{T} \triangleright t : S \mid U$, then $\Gamma; \Delta \vdash \mathcal{I} \triangleright t : (\mathcal{S} \rightarrow \mathcal{U}) \rightarrow \mathcal{V}$.
2. If $\Gamma; \Delta \vdash \mathcal{E} : S \triangleright T$, then $\Gamma; \Delta \vdash [\mathcal{E}] : \mathcal{S} \rightarrow \mathcal{T}$.

2.3 Termination of Evaluation

We are now in a position to state the main result—a direct proof of termination for call-by-value evaluation using a context-based variant of Tait’s reducibility predicates. For simplicity, we will only consider closed terms but the theorem and the proof extend to open terms. In the absence of values of base type, the only values obtained by evaluation of closed terms are lambda abstractions.

2.3.1 Logical Predicates and the Proof of Termination

We define three families of mutually inductive predicates. Each of these families is defined by induction on types: \mathcal{R}_S is defined on term values and is indexed by term types, \mathcal{C}_C is defined on contexts and is indexed by context types, and finally \mathcal{M}_D is defined on metacontexts and is indexed by metacotext types.

$$
\begin{align*}
\mathcal{R}_b(v) &= True \\
\mathcal{R}_{S \cup \cdot} U \rightarrow \mathcal{T}(v_0) &= \forall v_1. \mathcal{R}_S(v_1) \rightarrow \forall E. \mathcal{C}_D (U (E) \rightarrow \mathcal{F}. \mathcal{M}_S (F) \rightarrow \mathcal{N} (\langle v_0 v_1, E, F \rangle)) \\
\mathcal{C}_{D \rightarrow \mathcal{T}} (E) &= \forall v. \mathcal{R}_S (v) \rightarrow \forall E. \mathcal{M}_S (F) \rightarrow \mathcal{N} (\langle v, E, F \rangle) \\
\mathcal{M}_{S \rightarrow \mathcal{T}} (F) &= \forall v. \mathcal{R}_S (v) \rightarrow \mathcal{N} (\langle v, \bullet, F \rangle)
\end{align*}
$$

where $\mathcal{N}(p) = \exists v. p \rightarrow_\nu \langle v, \bullet, \square \rangle$.

These predicates can be seen as a contextualized (or, double-CPS-translated) version of standard, direct-style Tait reducibility predicates. A reducible value of function type is such that whenever applied to another reducible value, it normalizes if plugged in any reducible context and metacotext. A reducible context in turn is such that plugged with a reducible value and put in a reducible metacotext, it normalizes. Finally, a reducible metacotext is such that plugged with a reducible value in the empty context, it normalizes. We do not need to define reducibility predicates on all terms because under call by value both functions and continuations accept only values as arguments.

Our goal is then to prove $\mathcal{N}(p)$ for each closed, well-typed program p, i.e., that each such program evaluates to a value program using the call-by-value evaluation strategy.

The predicates are only defined for well-typed terms, contexts, and metacotexts of suitable types, and—by construction—all programs constructed in these definitions are well typed as well. Note that the normalization predicate \mathcal{N} does not have a type annotation—we do not need to know the type of the entire program in order to prove the normalization theorem; we only need to know that it is well typed.

In the following, whenever we say that a value v is of type S, we mean that v is well typed, i.e., the judgment $\cdot; \vdash [T] : S \mid T$ is derivable for a type T. We do not care for type T, because if such a judgment is derivable for one type T, it is derivable for any type (cf. the discussion in Section 2.2).5

In the proof of the main result, we will need the following property:

LEMMA 5. For all types S, $\mathcal{C}_{D \rightarrow \mathcal{T}} (\bullet)$ holds.

PROOF. Assume v is a value of type S and such that $\mathcal{R}_S(v)$ holds. We need to show that for all metacontexts F satisfying $\mathcal{M}_{S \rightarrow \mathcal{T}} (\bullet) \rightarrow \mathcal{N}(v, \bullet, F)$ holds. But this fact holds by the assumption $\mathcal{M}_{S \rightarrow \mathcal{T}} (F)$ applied to v. □

Now we are ready to state the main lemma.

LEMMA 6. Let $\Gamma; \Delta \vdash \cdot; \vdash [S] \mid U$, where $\Gamma = x_1 : T_1, \ldots, x_n : T_n$ and $\Delta = k_1 : C_1, \ldots, k_m : C_m$, and let t be a plain term. Next, let v be a sequence of closed well-typed value terms such that $\cdot; \vdash V \rightarrow v_1 : T_1 \mid V$ and $\mathcal{R}_D (v_i)$ for $1 \leq i \leq n$, and let E be a sequence of closed well-typed contexts such that $\cdot; \vdash E_i : C_i \land \mathcal{C}_D (E_i)$ for $1 \leq i \leq m$. Then for all closed well-typed contexts E such that $\cdot; \vdash E \rightarrow S \rightarrow T \mid E$ and $\mathcal{C}_{D \rightarrow \mathcal{T}} (E)$ and for all closed well-typed contexts F such that $\cdot; \vdash E \rightarrow S \rightarrow \mathcal{T} \mid E$ and $\mathcal{C}_{D \rightarrow \mathcal{T}} (F)$ and $\mathcal{R}_D (v)$, then $\mathcal{C}_{D \rightarrow \mathcal{T}} (F)$ applied to v. □
\(\vdash \forall F : \neg U \text{ and } M_{\neg U}(F), \text{ the program } (\{ \hat{\sigma} | \hat{x} | E/\hat{k} \}, E, F) \) normalizes, i.e., \(N((\{ \hat{\sigma} | \hat{x} | E/\hat{k} \}, E, F)) \) holds.

Proof. The proof is done by induction on the structure of \(t \).

Case \(x \). By assumption \(x \) is one of the variables \(x_t \) and we have \(\{ \hat{\sigma} | \hat{x} | E/\hat{k} \} = v \). Hence, by assumption \(R_S(v) \) and for any \(E \) such that \(M_{\neg U}(F) \) holds, unfolding the definition of \(C_{S\neg U} \) entails that \(N((v, E, F)) \) holds.

Case \(\lambda x. r \). Because \(\lambda x. r \) is well typed, its type \(S \) must be an arrow type; let \(S = S' \rightarrow w \rightarrow S'' \). Moreover, \(T = U \). Taking \(r' = r(\hat{\sigma} | \hat{x} | E/\hat{k}) \), we have \(\{ \hat{\sigma} | \hat{x} | E/\hat{k} \} = \lambda x. r' \).

We will show that \(R_S(\lambda x. r') \) holds, and from this fact it follows that the required \(N((\lambda x. r') \{ \hat{\sigma} | \hat{x} | E/\hat{k} \}, E, F)) \) holds as in the previous case. In order to prove \(R_S(\lambda x. r') \), let us assume that \(v \) is a value of type \(S' \) and such that \(R_{S'}(v) \) holds. Next, let \(E \) be a well-typed context of type \(S'' \rightarrow v \rightarrow S' \) and such that \(C_{S''}(E) \) holds. Next let \(F' \) be a well-typed metacontext of type \(\neg W \) such that \(M_{\neg U}(F') \) holds. We have to prove that \(N((\lambda x. r') \{ \hat{\sigma} | \hat{x} | E/\hat{k} \}, E, F) \) holds. By the reduction rule (\(\beta_a \)), \((\{ \hat{\sigma} | \hat{x} | E/\hat{k} \}, E, F) \) reduces in one step to the program \((r(\hat{\sigma} | \hat{x} | E/\hat{k}), E) \). By induction hypothesis, \(N((r(\hat{\sigma} | \hat{x} | E/\hat{k}), E)) \) holds and therefore \(N((\lambda x. r') \{ \hat{\sigma} | \hat{x} | E/\hat{k} \}, E, F)) \) also holds.

Case \(to \ t_1 \). Since \(to \ t_1 \) is well typed, then \(\Gamma, \Delta \vdash V \vdash t_0 : W \rightarrow y \rightarrow S \vdash U \) and \(\Gamma, \Delta \vdash V \vdash t_1 : W \rightarrow v \rightarrow v \forall \text{ some types } V, W, Y. \) Taking \(t'_0 = t_0(\hat{\sigma} | \hat{x} | E/\hat{k}) \) and \(t'_1 = t_1(\hat{\sigma} | \hat{x} | E/\hat{k}) \), we have \((t_0(t_1(\hat{\sigma} | \hat{x} | E/\hat{k})) = t'_0 t'_1 \). By definition, the program \((t'_0, t'_1, E, F) \) is the same as the program represented by \((t_0, t_1, E, F) \). Since \(t_0 \) is a subterm of \(t_1 \), we can apply the induction hypothesis to deduce \(N((t_0, t_1, E, F)) \) and that \(C_{W \rightarrow y \rightarrow y} \rightarrow S \rightarrow V(E) \) holds. The former is easy to see, and for the latter let us unfold the definition of \(C_{W \rightarrow y \rightarrow y} \rightarrow S \rightarrow V \). Let \(v \) be a value of type \(W \rightarrow y \rightarrow S \) and such that \(R_{W \rightarrow y \rightarrow y} \rightarrow S \rightarrow V(v) \). We need to show that \(N((v, E, t_1, F')) \) holds for any \(F' \) satisfying \(M_{\neg U}(F') \). Here again we can use another representative of the class of programs equal to \((v, E, t_1, F') \), such as \(t'_1, v, E, F' \). Now we can apply the induction hypothesis again, this time for \(t_1 \), provided that \(v \) is well typed and \(C_{W \rightarrow y \rightarrow y} \rightarrow S \rightarrow V(E) \). And again, the former property is easy to see, and for the latter we again unfold the definition of \(C_{W \rightarrow y \rightarrow y} \rightarrow S \rightarrow V \); let \(v' \) be a value of type \(W \rightarrow y \rightarrow S \) such that \(R_{W \rightarrow y \rightarrow y} \rightarrow S \rightarrow V(v') \). We need now to show that \(N((v', E, F', F'')) \) holds for any typable \(F'' \) such that \(M_{\neg U}(F'') \) holds. But this is equivalent to showing that \(N((v', E, F', F'')) \) holds, and this property follows from the fact that \(R_{W \rightarrow y \rightarrow y} \rightarrow S \rightarrow V(v') \) holds by Lemma 5.

Case \(S(k,r) \). In this case, we have \(\Gamma, \Delta, \kappa : S \vdash t \rightarrow r : V \rightarrow U \forall \text{ some type } V. \) Let \(r' = r(\hat{\sigma} | \hat{x} | E/\hat{k}) \). We need to show \(N((S(k,r'), E, F)) \) for any \(E, F \) of suitable type such that \(C_{S\neg U}(E) \), \(M_{\neg U}(F) \) hold. According to the (shift) reduction rule, \((S(k,r), E, F) \) reduces in one step to \((r'(E/k), v, \bullet, F) \). It is thus enough to prove that \(N((r'(E/k), v, \bullet, F)) \) holds. This fact we can prove by applying the induction hypothesis, because \(E \) satisfies the required conditions, and \(C_{S\neg U}(v) \) holds by Lemma 5.

Case \((r) \). Here, \(\Gamma, \Delta \vdash V \vdash r : V \vdash S \) holds for some type \(V \) and \(T = U \). We have to prove that \(N((r', E, F)) \) holds for any \(E, F \) and such that \(C_{S\neg U}(E) \), \(M_{\neg U}(F) \) hold and where \(r' = r(\hat{\sigma} | \hat{x} | E/\hat{k}) \). We can decompose the program \((r', E, F) \) alternatively as \((r', E, F) \). But we can prove \(N((r', E, F)) \) by induction hypothesis, using two facts: \(C_{V \rightarrow y \rightarrow V}(v) \) holds by Lemma 5 and \(M_{\neg U}(E, F) \) holds. To see the latter fact, we take a value \(v \) such that \(R_S(v) \) holds. We need to show \(N((v, E, F)) \). The program \((v, E, F) \) can be alternatively represented by program \((v, E, F) \) and by the (reset) reduction rule, \((v, E, F) \) reduces in one step to program \((v, E, F) \) and \(N((v, E, F)) \) holds by the assumption \(C_{S\neg U}(E) \) applied to \(v \) and \(F \).

Case \(k_0 \rightarrow r \). Here, \(\Gamma, \Delta \vdash T \vdash r : V \rightarrow U \) holds for some type \(V \) such that \(C_{V \rightarrow y \rightarrow V}(v) \) holds to \(N((v, E, F)) \). We have to prove that \(N((v, E, F)) \). The program \((v, E, F) \) can be alternatively represented by program \((v, E, F) \) and by the (reset) reduction rule, \((v, E, F) \) reduces in one step to program \((v, E, F) \) and \(N((v, E, F)) \) holds by the assumption \(C_{S\neg U}(E) \) applied to \(v \) and \(F \).

The main result of this section is the following theorem.

Theorem 2 (Termination of CBV evaluation). If \(t \) is a closed well-typed plain term such that \(\langle \cdot \rangle \vdash t : \langle \cdot \rangle \vdash v : \langle \cdot \rangle \vdash S \vdash \langle \cdot \rangle \vdash v : \langle \cdot \rangle \vdash U \), then it evaluates to a value, i.e., \(N((t, v, v)) \) holds.

Proof. By Lemma 5, \(C_{S\neg U}(v) \) holds. Furthermore, \(M_{\neg U}(\bot) \) holds because \((v, v, \bot) \) is already a value program for any value \(v \). Therefore, we can apply Lemma 6 with the empty sequence of values and contexts with and context and metacontext to obtain \(N((t, v, v)) \).

2.3.2 Extracted Evaluator

The normalization problem and Theorem 2 can be formalized in type theory in various ways and the computational content can be extracted from the proof. In order to keep things simple, we present here an informal description of the extraction method and the resulting program—an evaluator for the object language, obtained by hand based on the modified realizability interpretation. (In contrast, a fully formalized development in a proof assistant usually contains many distracting details; furthermore, the program obtained by mechanical extraction may be unreadable and require further simplifications done by hand.)

The idea of program extraction relies on the Curry-Howard correspondence between proofs and terms (programs). A proof of Theorem 2 treated as a lambda term contains both logical and computational information. The computation in the proof is used to construct terms—witnesses for the existential quantifier. Program extraction then consists in erasing the logical parts from the proof term. The extraction method ensures that the resulting program is provably correct with respect to the specification stated in the theorem. In our case, the extracted program is a call-by-value evaluator for plain terms in the lambda calculus with shift and reset (i.e., a function that produces weak head normal forms for

\(\text{Theorem 2 has the form } \forall t \vdash \exists Q(t, v), \text{ where } P, Q \text{ are logical formulas. Hence the computational content of its proof is a function from terms to values.} \)
The evaluator of Figure 2 differs from the definitional interpreter for shift and reset with two layers of continuations because of the use of normalization by evaluation. In particular, here we compute syntactic normal forms and therefore two environments must be maintained for both object and continuation variables.

A careful reader may notice that the evaluator in Figure 2 works for any term, typable or not. In particular, it may diverge for some input terms. This fact is due to the formalization of the termination theorem, where the typability information for a term is considered computationally irrelevant and is dropped in extraction. The formalization can be adjusted to ensure that only well-typed terms are evaluated by making typing information computationally relevant. One of possible ways in this case is to prove decidability of type-checking in a constructive logic. The computational content of such a proof is a type-checker that can be called by the evaluator before trying to evaluate a given term (the evaluator will be given a term and its type as input).

3. Call-by-Name Delimited Continuations

In this section, we consider a call-by-name version of typed lambda calculus with shift and reset. The reduction semantics we present coincides with that attributed to Danvy in a recent work of Hervé and Ghilezan who proposed a different calculus for call-by-name delimited continuations [27].

Since Danvy and Filinski’s type system has been derived from the call-by-value definitional evaluator in CPS, it is sensitive to reduction strategy and does not account for call by name. Therefore, we give a novel type system for call-by-name delimited reductions, derived from call-by-name CPS. Next, we define reducibility predicates and prove termination of call-by-name evaluation. We only show the highlights of the development which is otherwise carried out along the same lines as for call by value in Section 2.

3.1 Reduction Semantics

The grammar of terms and metacommss is the same for call by name and call by value; only the syntax of contexts differs:
We present a call-by-name typing system à la Danvy and Filinski.

3.2 Type System à la Danvy and Filinski

Programs are defined as triples as in call by value.

The one-step reduction relation for call by name contains the same reduction rules as the call-by-value case except for β-reduction and the rule for applying a captured context:

- **(β)** \((\lambda x.r)s, E, F\) → \((r[s/x]), E, F\)
- **(throw)** \((E' \leftarrow t, E, F\) → \((t, E', E, F)\)

where a function or a captured context is applied to an arbitrary term rather than to a value.

3.2.1 Metacontexts

\[
\Gamma; \Delta \vdash \Box : \neg S
\]

3.2.2 Programs

\[
\Gamma; \Delta \vdash T \vdash F(E[t]) : S \vdash T
\]

\[
\Gamma; \Delta \vdash \{E t\} : S
\]

Figure 3. Type system à la Danvy and Filinski for call by name

(CBN contexts) \(E ::= \bullet \mid B\ t\)

Programs are defined as triples as in call by value.

The one-step reduction relation for call by name contains the same reduction rules as the call-by-value case except for β-reduction and the rule for applying a captured context:

- **(β)** \((\lambda x.r)s, E, F\) → \((r[s/x]), E, F\)
- **(throw)** \((E' \leftarrow t, E, F\) → \((t, E', E, F)\)

where a function or a captured context is applied to an arbitrary term rather than to a value.

3.2 Type System à la Danvy and Filinski

We present a call-by-name typing system à la Danvy and Filinski (Figure 3), derived from the call-by-name CPS for shift and reset, be it in the form of an evaluator or a translation to the simply typed lambda calculus. The judgments of the type system are of the form \(\Gamma; \Delta \vdash T \vdash t : S \vdash U\) and they are interpreted exactly as Danvy and Filinski's judgments described in Section 2.2. In the call-by-name CPS, however, functions do not accept values but thunks, i.e., delayed computations expecting a continuation. This fact is manifested in the form of the arrow type \(S^{T,U} \rightarrow x \ V\) and in the type of variables \(S^{T,U}\) occurring in typing environments \(\Gamma\). The intuition behind this notation is as follows: a function argument of type \(S^{T,U}\) can be evaluated in a context of type \(S \vdash T\) and metacontext of type \(\neg U\). Programs are typed as in call by value.

For example, the type of the program listing list prefixes from

Section 2.2 is \(S\ list\ list\ list, S\ list\ list\ t \rightarrow \tau\ S\ list\ list\) (for any types \(S\) and \(T\)) under call by name.

Following the same steps as in Section 2.2, we can show that the CBN reduction semantics preserves types assigned by the CBN type system.

Theorem 3 (Subject Reduction). If \(\Gamma; \Delta \vdash p : S\) and \(p \rightarrow_n p'\), then \(\Gamma; \Delta \vdash p' : S\).

Corollary 2. If \(\vdash p : S\) and \(p \rightarrow_n^\omega p_v\), then \(\vdash p_v : S\).

We also define the call-by-name CPS translation on terms and types in order to show correctness of the type system with respect to CPS. The call-by-name CPS translation to the simply typed lambda calculus is defined as follows:

\[
\begin{align*}
\bar{\lambda} x. t & = \lambda k. \bar{x} k \\
\bar{\lambda} x.t & = \lambda k. \bar{k}(\lambda v. \bar{t} k) \\
\bar{\ell} & = \lambda k. (\bar{t} (\bar{t} k)) \\
\bar{E} t & = \lambda k. \bar{E}(t' k') (\bar{t} v) \\
\bar{E'} t & = \lambda k. \bar{E}'(\bar{E} k) \\
\bar{E''} & = \lambda k. \bar{E} k \\
\end{align*}
\]

where \(\bar{\cdot}\) refunctionalizes contexts into continuations they represent:

\[
\begin{align*}
\bar{\bullet} & = \lambda v. v \\
\bar{E} t_1 & = \lambda v. v \bar{t}_1 [E]
\end{align*}
\]
eval_\x_i = \lambda \vec{x} \vec{E} \vec{K} \vec{E} \vec{K} \gamma, \vec{E} \vec{K} \gamma

eval_\lambda x. t = \lambda \vec{r} \vec{E} \vec{E} \vec{K} \gamma, \vec{E} \vec{K} \gamma, \lambda (x.t') \ (\lambda v \vec{E} \vec{K} \gamma, \vec{E} \vec{K} \gamma) \ (\vec{t}(\vec{r})(\vec{u}) \vec{E} \vec{K} \gamma, \vec{E} \vec{K} \gamma) \gamma

\text{where } (x.t') = (\lambda x)(\vec{r}\vec{E}) \vec{E} \vec{K} \gamma

eval_\tau_0 \tau_1 = \lambda \vec{r} \vec{E} \vec{E} \vec{K} \gamma, \vec{E} \vec{K} \gamma, \text{eval}_{\vec{E}} \tau_0 \vec{r} \vec{E} \vec{K} \gamma, \vec{E} \vec{K} \gamma, \vec{E} \vec{K} \gamma, \vec{E} \vec{K} \gamma

\text{where } \tau_1 = \tau_1(\vec{r}\vec{E}) \vec{E} \vec{K} \gamma

eval_\text{Sk.} \tau = \lambda \vec{r} \vec{E} \vec{E} \vec{K} \gamma, \vec{E} \vec{K} \gamma, \text{eval}_{\vec{E}} \vec{E} \vec{K} \gamma, \vec{E} \vec{K} \gamma, \vec{E} \vec{K} \gamma, \vec{E} \vec{K} \gamma

\text{where } \kappa_0 = \lambda \vec{E} \vec{K} \gamma, \vec{E} \vec{K} \gamma, \vec{E} \vec{K} \gamma, \vec{E} \vec{K} \gamma

\text{norm } \tau = \text{eval}^{\infty} \text{tecece} \bullet \kappa_0 \gamma_0

\text{where } \gamma_0 = \lambda \vec{E} \vec{K} \gamma, \vec{E} \vec{K} \gamma, \vec{E} \vec{K} \gamma

\text{Figure 4. The call-by-name evaluator extracted from proof of Theorem 4}

\[\frac{\bar{b}}{S^{T,U}} W \rightarrow_x \bar{V} = (\bar{S} \rightarrow \bar{T} \rightarrow \bar{U}) \rightarrow (\bar{V} \rightarrow \bar{W}) \rightarrow \bar{X} \]

Typing environments are translated pointwise using the following translation rules:

\[\frac{S^{T,U}}{S^{\bar{T}}} = (\bar{S} \rightarrow \bar{T} \rightarrow \bar{U}) \]

\[\frac{S^{\bar{T} \rightarrow \bar{T}}}{S^{\bar{T}}} = \bar{S} \rightarrow \bar{T} \]

\text{PROPOSITION 2. The CBN type system of Figure 3 is correct with respect to the call-by-name CPS translation:}

1. If \(\Gamma; \Delta \vdash \tau : S \mid \tau \), then \(\Gamma, \Delta \vdash \tau : (\bar{S} \rightarrow \bar{T} \rightarrow \bar{U}) \rightarrow \bar{U} \).
2. If \(\Gamma; \Delta \vdash E : S \vdash T \), then \(\Gamma, \Delta \vdash [E] : \bar{S} \rightarrow \bar{T} \).

\text{3.3 Termination of evaluation}

We now give the definitions of reducibility predicates and the statement of the termination theorem for call by name.

\text{3.3.1 Logical Predicates and the Proof of Termination}

We introduce three families of logical predicates defined on well-typed values (\(R_S \)), contexts (\(C_C \)) and metacontexts (\(M_D \)) in a similar way to the call-by-value case:

\[R_S(v) \ := \ \text{True} \]

\[R_{S^{T,U}}(v) = \forall t, Q_{S}^{T,U}(t) \rightarrow Q_{W,X}^{V}(v t) \]

\[Q_{S}^{T,U}(t) = \forall E, C_{S^{T}}(E) \rightarrow \forall F, M_{-U}(F) \rightarrow N((t, E, F)) \]

\[C_{S^{T}}(E) = \forall v, R_S(v) \rightarrow \forall F, M_{-T}(F) \rightarrow N((v, E, F)) \]

\[M_{-S}(F) = \forall v, R_S(v) \rightarrow N((v, \bullet, F)) \]

\[N(p) = \exists \bar{v}, p \rightarrow \bar{v} \]

Unlike in call by value, we need an auxiliary predicate \(Q_{S}^{T,U} \) defined on well-typed terms \(t \) such that \(\vdash : T \vdash t : S \mid U \). This predicate expresses the property that a term plugged in any reducible context and metacontext normalizes as a program.

\text{LEMMA 7. Let } \Gamma; \Delta \vdash T \vdash t : S \mid U, \text{ where } \Gamma = x_1 : T_1, \ldots, x_n : T_n \text{ and } \Delta = k_1 : C_1, \ldots, k_m : C_m \text{, and let } t \text{ be a plain term. Next, let } F \text{ be a sequence of closed well-typed terms such that } \vdash : T \vdash r_i : T_i \mid U \text{ and } Q_{S}^{T,U}(r_i) \text{ for } 1 \leq i \leq n, \text{ and let } \vec{E} \text{ be a sequence of closed well-typed contexts such that } \vdash : T \vdash E_i : C_i \text{ for } 1 \leq i \leq m. \text{ Then for all closed well-typed contexts } E \text{ such that } \vdash : E \vdash S \vdash T \text{ and } C_{S^{T}}(E) \text{ and for all closed well-typed metacontexts } F \text{ such that } \vdash : F : S \vdash U \text{ and } M_{-U}(F), \text{ the program } \{t(\vec{r})(\vec{x})\{\vec{E}\{\vec{k}\}, E, F)\} \text{ normalizes, i.e., } N((t, E, F, E)) \text{ holds.}

\text{THEOREM 4 (Termination of CBN evaluation). If } t \text{ is a closed well-typed plain term such that } \vdash : S \vdash t : S \mid S \text{ is derivable, then } t \text{ evaluates to a value, i.e., } N((t, \bullet, \square)) \text{ holds.}

\text{The proofs of Lemma 7 and Theorem 4 are carried out analogously to the call-by-value case.}

\text{3.3.2 Extracted Evaluator}

The program extracted from Theorem 4 is presented in Figure 4. The evaluator for call by name differs from that in call by value in that the use of continuations imposes the call-by-name evaluation order. Moreover, the two environments \(\vec{t} \) and \(\vec{u} \) contain terms and \textit{thunks}, respectively, to be substituted for free object variables (rather than values and their functional representations—functions, as in call by value). Thunks represent delayed computations that can be activated by an application—here, to a context, a continuation and a metacontext. They arise as the computational content of proofs of the predicate \(Q_S \) for any type \(S \).

\textbf{4. Type System with a Fixed Answer Type}

Another type system for \textit{shift} and \textit{reset} considered in the literature is the type system with a fixed answer type, induced by Filinski's implementation of \textit{shift} and \textit{reset} in ML [24]. This system is considerably simpler but also more restrictive than that of Danvy and Filinski. The idea is that the answer type of a context and the type of the surrounding metacontext must agree and all contexts inside the program are required to have the same answer type—the (top-level) type of the program (programs always are closed by the top-level
Terms:

\[S ::= b \mid S \rightarrow T \]

\[\Gamma, x : S; \Delta \vdash_U t : T \quad \Gamma \vdash_U \lambda x.t : S \rightarrow T \quad \Gamma, \Delta \vdash_U t_0 : S \rightarrow T \quad \Gamma, \Delta \vdash_U t_1 : S \]

\[\Gamma, \Delta \vdash_U t : U \]

\[\Gamma, \Delta, k : S \triangleright U \vdash_U t : S \]

\[\Gamma, k : S \triangleright U \vdash_U k \leftarrow t : U \]

\[\Gamma \vdash_U E : S \triangleright U \quad \Gamma, \Delta \vdash_U t : S \]

Contexts:

\[C ::= S \triangleright T \]

\[\Gamma ; \Delta \vdash_U E : T \triangleright U \]

\[\Gamma ; \Delta, k : S \triangleright U \vdash_U E t : T \]

\[\Gamma ; \Delta \vdash_U E t : (S \rightarrow T) \triangleright U \]

\[\Gamma ; \Delta \vdash_U v : S \rightarrow T \quad \Gamma ; \Delta \vdash_U E : T \triangleright U \]

\[\Gamma ; \Delta \vdash_U v E : S \triangleright U \]

\[\Gamma ; \Delta \vdash_U E' : S \triangleright U \quad \Gamma ; \Delta \vdash_U E \triangleright V \]

\[\Gamma ; \Delta \vdash_U E' \leftarrow E : S \triangleright U \]

Metacontexts:

\[D ::= \neg S \]

\[\Gamma ; \Delta \vdash_U E : U \triangleright U \quad \Gamma ; \Delta \vdash_U F : \neg U \]

\[\Gamma ; \Delta \vdash_U E F : \neg U \]

\[\Gamma ; \Delta \vdash_U F[\langle E[t] \rangle] : S \]

\[\Gamma, \Delta \vdash_U \langle t, E, F \rangle : S \]

Figure 5. Type system with a fixed answer type

Terms:

\[S ::= b \mid S \rightarrow T \]

\[\Gamma, x : S; \Delta \vdash_U t : T \quad \Gamma \vdash_U \lambda x.t : S \rightarrow T \quad \Gamma \vdash_U t_0 : S \rightarrow T \quad \Gamma \vdash_U t_1 : S \]

\[\Gamma, \Delta \vdash_U t : U \]

\[\Gamma, \Delta, k : S \triangleright U \vdash_U t : S \]

\[\Gamma, k : S \triangleright U \vdash_U k \leftarrow t : U \]

\[\Gamma \vdash_U E : S \triangleright U \quad \Gamma, \Delta \vdash_U t : S \]

\[\Gamma, \Delta \vdash_U t : U \]

Contexts:

\[C ::= S \triangleright T \]

\[\Gamma ; \Delta \vdash_U E : T \triangleright U \quad \Gamma ; \Delta \vdash_U t : S \]

\[\Gamma ; \Delta \vdash_U E t : (S \rightarrow T) \triangleright U \]

\[\Gamma ; \Delta \vdash_U v : S \rightarrow T \quad \Gamma ; \Delta \vdash_U E : T \triangleright U \]

\[\Gamma ; \Delta \vdash_U v E : S \triangleright U \]

\[\Gamma ; \Delta \vdash_U E' : S \triangleright U \quad \Gamma ; \Delta \vdash_U E \triangleright V \]

\[\Gamma ; \Delta \vdash_U E' \leftarrow E : S \triangleright U \]

Metacontexts:

\[D ::= \neg S \]

\[\Gamma ; \Delta \vdash_U E : U \triangleright U \quad \Gamma ; \Delta \vdash_U F : \neg U \]

\[\Gamma ; \Delta \vdash_U E F : \neg U \]

\[\Gamma ; \Delta \vdash_U F[\langle E[t] \rangle] : S \]

\[\Gamma, \Delta \vdash_U \langle t, E, F \rangle : S \]

Relaxing the latter restriction leads to Murthy’s type system [33] that is a special case of Danvy and Filinski’s type system.

Let us remark that when \(U \) is a base type the above definition is correct and otherwise it is not—the predicates are no longer defined inductively on the type structure. For example, if \(U = S \rightarrow T \), then in order to see whether \(R^U_S(v) \) holds, one needs to know whether \(R^U_S(v) \) holds.

In the call-by-name case, reducibility predicates are defined as follows:

\[R^U_S(v) := \text{True} \]

\[R^U_{S \rightarrow T}(v_0) := \forall v_1. R^U_S(v_1) \rightarrow \forall v. \mathcal{C}_{T \triangleright U}(E) \rightarrow \forall F. \mathcal{M}_{\rightarrow T}(F) \rightarrow \mathcal{N}((v_0, v_1, E, F)) \]

\[\mathcal{C}_{T \triangleright U}(E) := \forall v. R^U_S(v) \rightarrow \forall v. \mathcal{R}^U_S(v) \rightarrow \forall F. \mathcal{M}_{\rightarrow S}(F) \rightarrow \mathcal{N}((v, E, F)) \]

\[\mathcal{M}_{\rightarrow T}(F) := \forall v. \mathcal{R}^S_U(v) \rightarrow \mathcal{N}((v, \bullet, F)) \]

\[\mathcal{N}(p) := \exists v. p \rightarrow^* (v, \bullet, \square) \]

reset). This type system is insensitive to reduction strategy. We adapt it to the language with explicit contexts (where the chosen reduction strategy becomes essential) and show it for the call-by-value language in Figure 5 (for the call-by-name language, we only need to drop the lower two typing rules for contexts). Because of the type restriction, each typing judgment is annotated with the top-level type and all the continuation variables are required to have this type as answer type (cf. the last three rules). Furthermore, the type of a delimited term must be equal to the top-level type.

While the type system with a fixed answer type proves useful in many theoretical and practical applications, it is too restrictive to type-check, e.g., the function `prefix` in Section 2.2: in `prefix` contexts of type `S list`, `S list` are used to produce values of type `S list list` (the answer type of the context does not agree with the type of the metacontext).

It has been shown by Ariola et al. that the type system with a fixed answer type has the normalization property provided the fixed type is a base type (it is a sufficient condition) and that in general the property may not hold [1]. Assuming that the fixed type is a base type, we can state the theorem and prove it along exactly the same lines as shown in Section 2.3 for call by value and in Section 3.3 for call by name. The definition of reducibility predicates in each case differs only in type annotations. In particular, the logical relations for call by value are defined as follows:

9 Relaxing the latter restriction leads to Murthy’s type system [33] that is a special case of Danvy and Filinski’s type system.
5. Conclusion and Future Work

Proofs of termination of evaluation or—or more generally—of normalization for typed languages with control operators are usually done by a CPS translation to a strongly normalizing language, e.g., the simply typed lambda calculus. In this work we showed that context-based reduction semantics for static delimited-control operators with type structure put on terms, contexts and metacontexts lend themselves to direct proofs of termination of evaluation. Furthermore, the computational content of each of the proofs is materialized as a continuation-passing evaluator whose continuations and metac continuations are extracted from the proofs of reducibility of contexts and metacontexts, respectively.

It is worth noting that the type-and-effect systems we present in this article arise naturally from continuation-passing semantics of the language and by treating captured continuations as separate entities that require an explicit throw construct. In particular, the latter choice led us to a refinement of Danvy and Filinski’s original type system.

While the type systems we considered are monomorphic, the proof method we presented should be adaptable to Asai and Kameyama’s polymorphic calculi for delimited continuations [5, 29]. It remains to investigate whether the context-based approach to proving weak head normalization of calculi with control operators could be adjusted to proofs of weak and strong normalization where reductions under binders can take place.

Acknowledgments

We would like to thank Olivier Danvy and the anonymous reviewers for their insightful and helpful comments on the present article. This work has been partially supported by the MNiSW grant number N N206 357436, 2009-2011.

References

[18] Olivier Danvy and Andrzej Filinski. A functional abstraction of typed contexts. DIKU Rapport 89/12, DIKU, Computer Science Department, University of Copenhagen, Copenhagen, Denmark, July 1989.

