Optimizing Parallel Algorithms for All Pairs Similarity Search

Maha Alabduljalil, Xun Tang, Tao Yang
Department of Computer Science
University of California at Santa Barbara
All Pairs Similarity Search (APSS)

- Finding all pairs of objects with similarity score above a threshold.
- Example Applications:
 - Collaborative filtering/recommendation.
 - Coalition detection for advisement frauds.
 - Query suggestions.
 - Spam and near duplicate detection.

- Slow data processing for large datasets
Problem Definition

• Cosine-based similarity:

\[\text{sim}(A, B) = \cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|} \]

• Given \(n \) normalized vectors, compute all pairs of vectors such that

\[\text{Sim}(d_i, d_j) = \cos(d_i, d_j) = \sum_{t \in (d_i \cap d_j)} w_{i,t} \times w_{j,t} > \tau \]

• Quadratic complexity \(O(n^2) \)
Previous Work to Speedup Similarity Search

- **Approximated clustering**
 - LSH mapping [Gionis et al. VLDB99]: Tradeoff in precision, recall, & redundant comparison.
 - Proposed techniques can be used with LSH.

- **Exact similarity search:**
 - Dynamic computation filtering [Bayado et al. WWW07]
 - Inverted indexing to search vectors that share features [Arasu et al. VLDB06]
 - Parallel algorithms with MapReduce [Lin SIGIR09, Baraglia et al. ICDM10] Exploit parallelism in partial similarity score accumulation.
Parallelism in Partial Similarity Score Accumulation

Inverted index

Map

Reduce

\[+ = \text{sim}(d_2, d_4) \]
Focus and contribution: Partition-based APSS

• Focus on exact APSS with cosine similarity.

• New techniques to speedup APSS:
 ▪ Static partitioning to identify dissimilar vectors in advance.
 → Early removal of I/O, communication, computation.
 ▪ Partition-based symmetric comparison and load balancing.
 → Removes unnecessary I/O and communication before computation.
 ▪ No reduce tasks to avoid partial result parallelism.
 → Removal of excessive communication.

• An order of magnitude of performance improvement.
Partition-based Similarity Search (PSS)
Function of each PSS task

• Read assigned partition and build inverted index in memory area S.

• **Repeat**
 - Read vectors from other partitions
 - Compare S with these vectors
 - Write similar vector pairs

• **Until** other potentially similar similar vectors are compared.

Coarse-grain task parallelism
I. Static Partitioning with Dissimilarity Detection

- **Goal:**
 - Place dissimilar vectors into different partitions.
 - Low-cost partitioning:
 - near linear complexity in identifying pair-wise dissimilarity with no false positive.
How To Detect Dissimilar Vectors?

• For normalized cosine similarity, Holder inequality:

\[
Sim(d_i, d_j) = \sum_{t \in (d_i \cap d_j)} w_{d_i,t} \times w_{d_j,t} \\
\leq \min(\max w(d_i) \times \|d_j\|_1, \max w(d_j) \times \|d_i\|_1) \leq \tau
\]

• \(d_i\) is dissimilar to \(d_j\) if:

\[
\|d_i\|_1 \leq \frac{\tau}{\max w(d_j)}
\]

• How to detect dissimilarity without pairwise comparison?
Illustration of $O(n\log n)$ static partitioning with dissimilarity detection

\[||d_1||_1 \leq ||d_2||_1 \leq \ldots \leq ||d_8||_1 \leq ||d_9||_1 \]

(a) Sort

(b) Group

(c) Decompose

\[||d_6||_1 \leq \tau / \max_w(d_7) \]
Final Output of Static Partitioning

Decompose

G_1 \rightarrow G_2 \rightarrow G_3 \rightarrow G_n

G_{1,1} \rightarrow G_{2,1} \rightarrow G_{3,1} \rightarrow \cdots \rightarrow G_{n,1}

G_{2,2} \rightarrow G_{3,2} \rightarrow \cdots \rightarrow G_{n,n}

Dissimilarity edges
II. Partition-oriented symmetric comparison

• **Issue:**

 • $\text{Sim}(d_i, d_j) = \text{Sim}(d_j, d_i)$.

 \rightarrow Redundant computations.

 \rightarrow Use vector IDs to detect symmetry i.e. use one pair.

 \rightarrow Eliminate computation, but not I/O.

• **Strategy**

 • Partition-level symmetric detection

 • Eliminate entire partition I/O and communication

 • **Q:** Should P_i compare with P_j or P_j compares with P_i?

 • Impact communication/workload balance.
II. Partition-level Circular Load Balancing

- **Goal:**
 - Select partition-level comparison direction.
 - Balance I/O traffic and workload among tasks.
III. Run PSS tasks in parallel

- Simple task parallelism: Do not exploit partial result parallelism.
 - No reduce tasks → no map-reduce communication.
- Hybrid indexing for faster memory data access:
 - Inverted indexing for assigned partition
 - Forward indexing for other vectors
Implementation and Evaluation

• **Implemented** in Java with Hadoop MapReduce.

• **Evaluation objectives:**
 • Scalability of PSS with hybrid indexing.
 • Compare against inverted indexing, PSS with forward indexing
 • Effectiveness of static partitioning and partition-based circular balancing.

• **Datasets:** Twitter (20M). Clueweb (50M subset).
 Enron emails (448K).

• Data cleaning and stopword removal applied first

• Static partitioning takes ~3% of total time.
Speedup of PSS with hybrid indexing as # of cores increases
Parallel time comparison of 3 algorithms

Inverted indexing 20x faster
PSS/forward indexing 10x faster
PSS/hybrid indexing
Ratio of PSS/hybrid indexing time over forward indexing

- p_s: average posting length in the assigned partition
- s: number of vectors in the assigned partitions

\[
\frac{T_{HI}}{T_{FI}} \approx \frac{l + 4p_s \delta + 4p_s \psi}{2s \delta + 4p_s \psi} \approx \frac{2p_s}{s}
\]

- Analysis predicts the trend of cost ratio and impact of faster data access with hybrid indexing.

For Twitter: 20% vs. actual: ~10%
Execution time reduction by static partitioning and partition-level circular balancing

Ratio: \(1 - \frac{\text{Time(optimized)}}{\text{Time(baseline)}}\)

Static partitioning yields 30-75% reduction
Circular balancing adds 3%-26% more

Datasets:
- Twitter
- Clueweb
- Emails

Non-binary weights
Execution time reduction with binary weights

Ratio: $1 - \frac{\text{Time(optimize)}}{\text{Time(baseline)}}$

Static partitioning yields 50-75% reduction
Circular balancing adds 4%-11% more
Static partitioning yields 20%-80% volume reduction.
Read I/O volume of statement-level vs. partition-level symmetric comparison

Partition-level symmetric comparison has 50% less read I/O volume
Conclusions

• A scalable two-step approach: partition-based all-pairs similarity search
 1) fast static partitioning to place dissimilar vectors into different groups.
 2) circular partition-based comparison assignment that exploits computation symmetry & balances workloads.
 3) Simple parallel task execution with hybrid indexing.

• Up to 10x-20x faster in the tested datasets.
 ▪ By I/O and communication reduction, & faster memory data access

• http://www.cs.ucsb.edu/projects/psc