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Abstract. Gene finding is crucial in understanding the genome of a species. 
The long genomic sequence is not very useful, unless its biologically functional 
subsequences (genes) are identified. Along with the ongoing revolution in 
sequencing technology, the number of sequenced genomes has increased 
drastically. Therefore, the development of reliable automated techniques for 
predicting genes has become critical.  
Automatic gene prediction is one of the essential issues in bioinformatics. Many 
approaches have been proposed and a lot of tools have been developed. This 
paper compiles information about some of the currently most widely used gene 
finders for prokaryotic genomes, explaining the underlying computational 
methods and highlighting their advantages and limitations. Finally, the gene 
finders are tested on a strain with high GC-content. 
Keywords: ab initio prediction, gene prediction, homology-based search, 
prokaryotes 

1  Introduction 

The development of automated sequencing technologies with dramatically lower cost 
and higher throughput has revolutionized biological research, allowing scientists to 
decode genomes of many organisms [1]. Prokaryotic genomes are sequenced at an 
increasing rate. After a genomic sequence is reconstructed from the sequencing data, 
the next and most important step is to understand the content of the genome i.e. 
identify the gene loci and their functions. These genes then become the basis for much 
further biological research. 

In the earliest days, genes were identified with experimental validation on living 
cells and organisms, which is the most reliable method, but costly and labor intensive. 
Since there can be thousands of genes in one bacterial genome, computational 
methods are essential for automatic analysis of uncharacterized genomic sequences. 

At present, there are many prokaryotic gene finders, based on different approaches. 
Generally, the gene prediction approaches can be divided into two classes: intrinsic 
(ab initio) and extrinsic (homology-based). It is common for gene finders of both 
types to be used in a gene finding project, owing to their complementary nature. They 
all have their own advantages and weaknesses. Therefore, high-quality gene 
annotation of microbial genomes remains an ongoing challenge. 
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2 Computational Methods for Gene Prediction 

DNA sequences that encode proteins are not a random combination of codons (triplets 
of adjacent nucleotides designating a specific amino acid). On the contrary, the order 
of codons obeys certain biological rules and is maintained during evolution. Certain 
patterns in the codon arrangements have been recognized. For example, conserved 
preference for certain codon pairs within the coding region is confirmed in the three 
domains of life [2]. Moreover, the genetic code is used differently in different 
bacterial species. In most bacteria, the synonymous codon usage (usage of codons that 
represent the same amino acid) varies not only between organisms [3], but also within 
an organism, since the horizontally transferred genes tend to have different codon 
usage from the host. These patterns in the genetic code and their conservancy with 
evolution can be very helpful for the computational gene finding. They enable 
algorithms for gene prediction to rely on statistics that describe gene patterns or on 
sequences’ resemblance to conserved annotated proteins. 

Two general classes of computational methods are adopted: ab initio prediction 
(intrinsic) and homology-based search (extrinsic) [4]. The first method uses gene 
structure as a guide to gene detection. The latter one, which is based on the 
observation that coding sequences are more conserved than the non-coding genes and 
intergenic regions, compares the genome to the available gene sequences and searches 
for significant homology. 

2.1 Ab initio Gene Finders 

Ab initio approaches do not use extrinsic information for gene prediction. Instead, 
they inspect the input sequence and search for traces of gene presence. Intrinsic 
methods extract information on gene locations using statistical patterns inside and 
outside gene regions as well as patterns typical of the gene boundaries. There are 
specific DNA motifs called signals that indicate a neighboring gene, e.g. promoters, 
start and stop codons. Apart from signals, ab initio methods discover gene signposts 
based on content search, looking for patterns of codon usage specific for the 
organism. Mainly, ab initio algorithms implement intelligent methods to represent 
these patterns as a model of the gene structure in the organism. The most widespread 
algorithms for gene finding in prokaryotes are based on Markov models and dynamic 
programming. 
Prokaryotic gene features useful for ab initio prediction. The simplest ab initio 
method is to inspect Open Reading Frames (ORFs). An ORF is a sequence of bases 
encompassed by the translation initiation and termination site i.e. the coding sequence 
of prokaryotic organisms [5]. Every coding Deoxyribonucleic Acid (DNA) has six 
possible reading frames: three on the direct (positive) strand and three in the 
complementary strand read in the opposite direction of the double-stranded DNA. The 
nucleotides on the positive strand are grouped into triplets starting from the first (+1), 
second (+2) or third (+3) nucleotide in the start codon. Therefore, there are three 
possible reading frames in the positive strand. The same follows for the negative 
strand, by looking at the sequence from the opposite side. An ORF consists of 
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consecutive triplets and terminates with the first stop codon it encounters.  Typically, 
only one reading frame, the ORF, is used to translate the gene. Therefore, the 
prokaryotic gene finder should primarily be able to identify which of the six possible 
reading frames contains the gene i.e. is an ORF. In general, bacterial genes have long 
ORFs. This is a hint for gene finding. For example, if the frame +1 has the longest 
sequence without a stop codon, then its amino acid sequence most probably leads to 
the gene product.  

Nevertheless, this is a good, but not assuring indication for selecting the correct 
ORF. Not every ORF is a coding region. Telling the difference between genes and 
random ORFs is the most important goal of the gene finding process [5]. Even if we 
tune a certain length threshold and define that ORFs longer than that threshold are 
genes, differentiating between short genes and occasional ORFs remains a problem. 

There are some other characteristics of the prokaryotic gene that pose difficulties 
for the gene finding process. Identifying the right ORFs is deteriorated when two 
ORFs overlap. Although this is considered to happen rarely in prokaryotes, it is 
difficult to automatically resolve the problem. 

Moreover, there are multiple start codons. In most cases, ATG is the start codon 
that suggests initiation of translation. Occasionally, GTG and TTG act as initiation 
sites [6]. Multiple start codons can cause ambiguities, because their presence does not 
ensure translation initiation.  
In conclusion, there is no straightforward way to find genes based on their features. 
Therefore, ab initio gene finders rely not only on signal sensors (start and stop 
codons, promoters, etc.), but they also use content sensors, such as patterns of codon 
usage or other statistically inferred features. 
Markov Model Based Algorithms. Several highly accurate prokaryotic gene-finding 
methods are based on Markov model algorithms. 

The GeneMark family [7] includes two major programs, called GeneMark [8] and 
GeneMark.hmm [9]. Analysis of DNA from any prokaryotic species without a pre-
computed species-specific statistical model is enabled by a self-training program, 
GeneMarkS [10]. 

GeneMark uses a Bayesian formalism to assess the a posteriori probability that a 
given short fragment is part of a coding or non-coding region. These calculations are 
performed using Markov chain models. The idea behind this is that there are specific 
correlations between adjacent nucleotides in chromosomal DNA sequences. Markov 
chains have shown to be appropriate in inferring the statistical description of the gene 
structure.  

In mathematical terms, a Markov chain is a discrete random process that evolves 
through the states from the set S = {s1, s2,…,sr}. The conditional distribution of any 
future state depends only on the k preceding variables, for some constant k. In the 
context of gene prediction, the sequence of random variables X1, X2,…, Xk take on 
values from the set of bases (A, C, G, T) and a Markov chain models the probability 
that a given base b follows the k bases immediately prior to b in the sequence. Using a 
training set, a Markov chain captures statistical information about a sequence by 
computing the probability that a certain nucleotide xi appears after a sequence si e.g.  
p (xi = A | si = TTGCA), k = 5. The three codon positions have different nucleotide 
frequency statistics. Therefore, in order to model the codon usage, normally the 
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variables of the Markov chain are sets of three nucleotides (codons) or multiples of 
codons. For this reason, the orders of the Markov chains, k, used for prediction are 2, 
5, 8, and so on. For the purpose of modeling protein-coding regions, GeneMark 
utilizes a three-periodic inhomogeneous Markov model (transition probabilities 
change with time), because the DNA composition and features vary among different 
species [11]. Ordinary (homogenous) Markov models are found to be appropriate for 
non-coding DNA. 

GeneMark is the oldest method based on Markov models. It does not offer high 
accuracy, because it lacks precision in determining the translation initiation codon [9]. 
Markov chain model of the DNA sequences is firstly introduced in GeneMark. The 
initial success of GeneMark has paved the way for further research in this direction. 

GeneMark.hmm is designed to improve GeneMark in finding exact gene starts. 
Therefore, the properties of GeneMark.hmm are complementary to GeneMark. 
GeneMark.hmm uses GeneMark models of coding and non-coding regions and 
incorporates them into hidden Markov model framework. In short terms, Hidden 
Markov Models (HMM) are used to describe the transitions from non-coding to 
coding regions and vice versa. GeneMark.hmm predicts the most likely structure of 
the genome using the Viterbi algorithm, a dynamic programming algorithm for 
finding the most likely sequence of hidden states. To further improve the prediction of 
translation start position, GeneMark.hmm derives a model of the ribosome binding 
site (6-7 nucleotides preceding the start codon, which are bound by the ribosome 
when initiating protein translation). This model is used for refinement of the results.  

Both GeneMark and GeneMark.hmm detect prokaryotic genes in terms of 
identifying open reading frames that contain real genes. Moreover, they both use pre-
computed species-specific gene models as training data, in order to determine the 
parameters of the protein-coding and non-coding regions.  

Acceleration of microbial genome sequencing has led to the need for non-
supervised gene finding methods. GeneMarkS combines GeneMark.hmm and 
GeneMark with a self-training procedure. The main focus of GeneMarkS is detecting 
the correct translation initiation sites. It creates a statistical model, runs the 
GeneMark.hmm program, and corrects the model based on the results. The steps are 
repeated iteratively until convergence.  

Glimmer3.0 [12] The core of Glimmer is Interpolated Markov Model (IMM), 
which can be described as a generalized Markov chain with variable order. After 
GeneMark introduces the fixed-order Markov chains, Glimmer attempts to find a 
better approach for modeling the genome content. The motivational fact is that the 
bigger the order of the Markov chain, the more non-randomness can be described. 
However, as we move to higher order models, the number of probabilities that we 
must estimate from the data increases exponentially. The major limitation of the 
fixed-order Markov chain is that models from higher order require exponentially more 
training data, which are limited and usually not available for new sequences. 
However, there are some oligomers from higher order that occur often enough to be 
extremely useful predictors. For the purpose of using these higher-order statistics, 
whenever sufficient data is available, Glimmer IMMs. 

Glimmer calculates the probabilities for all Markov chains from 0-th order to 8-th. 
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If there are longer sequences (e.g. 8-mers) occurring frequently, IMM makes use of 
them even when there is insufficient data to train an 8-th order model. Similarly, 
when the statistics from the 8-th order model do not provide significant information, 
Glimmer refers to the lower-order models to predict genes.  

Opposed to the supervised GeneMark, Glimmer uses the input sequence for 
training. The ORFs longer than a certain threshold are detected and used for training, 
because there is high probability that they are genes in prokaryotes. Another training 
option is to use the sequences with homology to known genes from other organisms, 
available in public databases. Moreover, the user can decide whether to use long 
ORFs for training purposes or choose any set of genes to train and build the IMM. 

There are many annotation services that incorporate Glimmer or GeneMark in their 
pipelines such as RAST [13], Maker [14] and JCVI Annotation Service [15]. 

AMIGene [16]. The reason for including AMIGene in the list of gene finders 
revised in this paper is that AMIGene can be very helpful in some cases. The 
interesting thing about AMIGene is that it serves as substitution for manual curation, 
because it searches the most likely CoDing Sequences (CDSs) in the output of a 
GeneMark-like program.  

AMIGene predicts the genome structure in the same way as GeneMark. In addition 
to that, AMIGene investigates codon usage patterns and relative synonymous codon 
usage in the predicted CDSs, using multivariate statistical technique of factorial 
correspondence analysis (FCA) and k-means clustering. AMIGene uses these results 
to evaluate and filter predicted genes. The construction of gene classes based on 
codon usage can uncover small genes, which are difficult to spot using the typical 
model. 

AMIGene is not yet suitable for identifying true translation initiation sites and does 
not take into account overlaps between adjacent CDSs. Considering these drawbacks 
and considering that AMIGene predicts only the most likely CDSs, it follows that it is 
a good idea to use AMIGene in combination with other gene finders. 

FGenesB [17] is another Markov chain-based algorithm, claimed to be more 
accurate than GeneMarkS and Glimmer. Unlike them, it finds tRNA and rRNA genes, 
in addition to coding sequences. Initial predictions of ORFs are used as training set 
for 5th order in-frame Markov chains for coding regions, 2nd order Markov models 
translation and termination sites. FGenesB uses genome-specific parameters, 
automatically trained using only genomic DNA as an input.  

FGenesB annotates the genes i.e. identifies their functions by homology with 
protein databases. As the rRNA genes are highly conserved with evolution, FGenesB 
identifies them easily in the genome, by comparing them against bacterial and 
archaeal rRNA databases, using the Basic Local Alignment Search Tool (BLAST) 
[18], which is described in the section for homology based search.  

In prokaryotic cells, functionally related genes are usually found grouped together 
in clusters called operons and transcribed as one unit. FGenesB is able to predict 
operons based on distances between ORFs and frequencies of different genes 
neighboring each other in known bacterial genomes. 

In conclusion, FGenesB integrates model-based gene prediction with homology-
based annotation, accompanied by operon, promoter and terminator prediction in 
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bacterial sequences. 
Dynamic programming.  Opposing to the other gene finders described so far, 
Prodigal [19] does not rely on the assumption that long ORFs are potential genes with 
high probability, because it can be misleading for gene prediction in GC-rich 
organisms. Because the stop triplets (TAA, TGA, TAG) are AT rich, their frequency 
is lower in organisms with high GC (guanine-cytosine) content. Hence, the 
probability that long ORFs occur by chance increases proportionally to the GC 
content [20]. 

Prodigal self-trains by detailed analysis of the GC frame plot. It calculates the 
statistical significance of the bases G and C in different frame positions. The GC 
frame plot consists of three graphs, depicting the GC content of the 1st, 2nd, and 3rd 
nucleotide from each codon in each open reading frame. In coding DNA, the GC 
content of the third base (GC3) is often higher in genes, relative to non-coding regions 
[21]. Based on this, Prodigal builds its gene model, looking for a bias for G or C in 
the 1st, 2nd and 3rd position of each codon. After determining the potential genes, 
Prodigal filters them, by examining the translation initiation site, ribosomal binding 
site (RBS), and the lengths of ORFs. The refined set of genes is used as training data. 

Prodigal utilizes the same dynamic programming algorithm both for its preliminary 
training phase and for its final gene calling phase. It scores each ORF, start-stop pair, 
some motifs, etc. and uses a dynamic programming procedure to find the optimal 
pathway among a series of weighted steps. 

The disadvantage of Prodigal is that there are some genes such as laterally 
transferred genes, genes in phage regions, proteins with signal peptides and other that 
do not match the typical GC frame bias for the organism in question. 

In summary, ab initio gene finders find most of the genes, but have a significantly 
bigger number of false positives. At the present, no ab initio gene finder is able to 
clearly distinguish short non-coding ORFs from real genes. Moreover, most gene 
finders rely on the assumption that long ORFs in prokaryotes are genes, which usually 
leads to incorrect results in microbes with high GC. This problem is addressed by 
Prodigal. On the other hand, Glimmer for example, uses long ORFs as its training set. 
As a consequence of the low frequency of stop codons in GC-rich organisms i.e. 
increased likelihood of random long ORFs, Glimmer lengthens the genes. Mainly, the 
predicted genes are longer than the actual ones. Therefore, it is important for gene 
finders to be GC content indifferent.  

Not only the GC content can influence on the accuracy of gene finders, but 
horizontally transferred DNA sequences can also affect the statistical model. These 
sequences are not evolutionary connected to the rest of the genome, which is why 
they differ significantly in the context of codon usage, GC frame bias, etc. The 
Markov models of GeneMark and Glimmer differentiate between these regions, 
whereas Prodigal fails to recognize them. 

2.2 Homology-Based Search 

The lower evolution rate of the coding regions enables that genes are identified by 
comparison with existing protein sequences. Given a library of sequences of other 
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organisms, we search the target sequence in this library and identify library sequences 
(known genes) that resemble the target sequence [22]. 

Local alignment and global alignment are two methods based on similarity 
searches. The most common local alignment tool is the BLAST family of programs. 
BLAST is a widely-used tool for searching similarity by homology-based gene 
finders. It identifies regions of similarity by first breaking down the query sequence 
into a series of DNA or protein sequences, and then it searches a local or NCBI 
database. Once a match is found, it tries to align the two sequences i.e. identify every 
matching letter, insertion, deletion and substitution. 

This evidence-based approach is the most reliable method for gene prediction [20]. 
It is able to find biologically relevant genes. Moreover, it is based on a very simple 
concept. This approach helps not only find the gene loci, but also annotate (infer the 
function of) that region, because homologous sequences are supposed to have the 
same or similar functions. 

The biggest limitation of this approach is that only an insufficient number of genes 
have significant homology to genes in external databases. This number is even 
smaller for organisms whose closest relatives are not sequenced, because there are 
many species-specific genes that are not present in databases. 
In conclusion, the most reliable way to identify a gene in a newly sequenced genome 
is to find a close homolog from another organism. Homology-based search is the 
simplest and is characterized with high accuracy. However, it requires huge amounts 
of extrinsic data and finds only half of the genes. Many of the genes still have no 
significant homology to known genes. 

3 Comparison of the Gene Finding Tools 

Gene finders may differ on the type of genes they are able to recognize (non-coding 
RNA or proteins); some of them accept only one genomic sequence as input, whereas 
others can process multiple sequences; different gene finders may produce output files 
in different formats. The following table summarizes the features of all the gene 
finders that are described or mentioned in this paper. 

Table 1. Comparison of Some Features for Gene Finders 

Gene finders CDS stable 
RNAa FAb developed for 

: Output files format 

Prodigal y n n bacterial & 
archaeal GBK, GFF or SCO 

GeneMark.hmm y n n prokaryotes algorithm-specific 

GeneMark y n n prokaryotes algorithm-specific 

GenMarkS y n y prokaryotes algorithm-specific 

RAST y y y bacteria and 
archarea GTF,GFF3,GenBank,EMBL 
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JCVI Annotation 
Service  y y y prokaryotes algorithm-specific 

AMIGene y n n prokaryotes EMBL, GenBank, GFF 

Glimmer3 y n n prokaryotes algorithm-specific 
EasyGene y n n prokaryotes GFF2 

Maker y n y small eukaryotes and 
prokaryotes GFF3 

Augustus y n y eukaryotes GTF (similar to gff). GFF 
a stable RNA refers to rRNA, tRNA, tmRNA, RNA Component of RNaseP 
b FA stands for functional annotations i.e. mRNA, operons, promoters, terminators, protein-binding 
sties, DNA bends 

 
The gene finders listed in Table 1 were tested on the bacterial strain Pseudomonas 
aeruginosa LESB58 (P.a. LESB58), which has a high GC-content (~66.3%). Most of 
these gene finders are specialized for prokaryotes. Although Augustus is developed 
only for eukaryotes, it offers the option to be trained on a given set of genomes. 
Therefore, Augustus was trained on the 10 closest genomes of Pseudomonas 
aeruginosa LESB58. 

Table 2. Results from Testing the Gene Finders on P.a. LESB58 

Gene Finder # 
Genes 

# Genes on 
the + Strand 

# Genes on 
the  - Strand 

#Correct 
Genes 

% Correct 
Genes 

(compared 
to the 

Original) 

% Correct 
Genes 

from (from 
all found 
genes) 

Original 6061 2993 3067 6061 100,00% 100,00% 
Prodigal 6055 3014 3041 5286 89,14% 87,30% 
FGenesB 6197 3094 3103 5070 85,50% 81,81% 

Glimmer3.0 6276 3100 3176 5043 85,04% 80,35% 
GeneMarkS 6100 3043 3057 5006 84,42% 82,07% 

JCVI 6270 3098 3172 5036 83,10% 80,32% 
GeneMarkHMM 6129 3055 3074 4920 82,97% 80,27% 

Rast 6297 3116 3181 4940 81,52% 78,45% 
MED 7475 3708 3767 4747 80,05% 63,51% 

Maker with model 6149 3065 3084 4588 75,71% 74,61% 
Maker 5884 2904 2980 4370 72,11% 74,27% 

Augustus 5268 2587 2681 3529 59,51% 66,99% 
AMIGene 6154 3077 3077 2967 50,03% 48,21% 
EasyGene 3150 0 3150 2570 43,34% 81,59% 

 
Expectedly, Prodigal coped robustly with the high GC content of the strain P.a. 

LESB58. From the Markov model-based algorithms for gene prediction, FGenesB 
generated the biggest number of correct genes, performing slightly better than 
Glimmer and GeneMarkS. Glimmer lengthened genes, resulting in drastically higher 
average gene length. AMIGene found many genes that were not recognized by other 
gene finders; however more than half of the genes it predicted were not correct. 
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Approximately 11.6% from all the genes in P.a.LESB58 were detected by every gene 
finder. 

The Results suggest that Prodigal is preferable for gene prediction in high GC 
genomes. However, for the purpose of testing the gene finders, the hypothetical 
proteins were not excluded from the published annotation. 

4 Future Directions in Microbial Gene Prediction 

Microbial gene identification is a well-studied problem. Since the early eighties of the 
twentieth century, there has been great progress in the development of computational 
gene prediction. There is still much room for improvement, especially in 
understanding the translation initiation mechanisms.  

The accuracy of most of the gene finding methods drops considerably, when high 
GC content genomes are observed. Moreover, most methods tend to predict too many 
genes, mainly because of the problem of predicting short genes. Although many short 
genes without a BLAST hit might be real, the likelihood is that the most are false 
positives.  

The evaluation system of gene prediction programs is still in need of improvement. 
The authors of all the gene finders mentioned in this review estimated the accuracy of 
the tools by predicting genes in complete genomes and then comparing the output to 
the “known” genes. However, it is estimated that 10-30% of the annotated genes are 
not protein-coding genes, but rather ORFs that occur by chance [20]. The gene finders 
exclude hypothetical proteins for testing purposes, because published annotations are 
not 100% accurate; therefore, the question remains open as to how accurate these 
predictions really are. The need for more reasonable criterions for evaluation of gene 
prediction programs is apparent. 
It is important to improve current methodologies to obtain higher quality gene 
predictions, translation initiation site prediction and reduction in the number of false 
positives, in order to minimize the need for manual curation. Future gene finders 
should enable automatic gene prediction without human intervention. 

5 Conclusion 

At the present, there is no tool for gene prediction that automatically finds all the 
genes in a given genomic DNA sequence with 100% accuracy. The most reliable 
method for identifying genes is by similarity to a protein in other organism. Genes 
with no match to known proteins can be predicted using statistical measures.  

Every algorithm for gene prediction has its advantages and limitations. Currently, 
the best approach seems to be a combination of gene finders, followed by evidence-
based manual curation.  
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