High Level Transforms for SIMD and low-level computer vision algorithms

Lionel Lacassagne
Daniel Etiemble
Ali Hassan Zahraee
LRI Univ. Paris-Sud
firstname.name@lri.fr

Alain Dominguez
Intel Corporation
alain.dominguez@intel.com

Pascal Vezolle
IBM Corporation
pascal.vezolle@fr.ibm.com

Abstract
This paper presents a review of algorithmic transforms called High Level Transforms for IBM, Intel and ARM SIMD multi-core processors to accelerate the implementation of low level image processing algorithms. We show that these optimizations provide a significant acceleration. A first evaluation of 512-bit SIMD Xeon Phi is also presented. We focus on the point that the combination of optimizations leading to the best execution time cannot be predicted, and thus, systematic benchmarking is mandatory. Once the best configuration is found for each architecture, a comparison of these performances is presented. The Harris points detection operator is selected as being representative of low level image processing and computer vision algorithms. Being composed of five convolutions, it is more complex than a simple filter and enables more opportunities to combine optimizations. The presented work can scale across a wide range of codes using 2D stencils and convolutions.

Keywords: High Level Transforms, SIMD, Intel SSE & XeonPhi, IBM Altivec, ARM Neon, code optimization, 2D stencil, low-level computer vision and image processing algorithms.

1. Introduction
Graphic Processing Units (GPU) are efficient for High Performance Computing (HPC) [17] where the operations involved lend themselves to massive parallelization [7]. Some papers claim “orders-of-magnitude performance increase” versus General Purpose Processors (GPP). Recently, papers from Intel [11] and IBM [3] claim that GPPs can match GPUs if optimizations are applied. Some papers propose a fair benchmarking, by optimizing as much as possible the implementations on these architectures and compare them rigorously to find out the applications that really achieve significant speedups (like n-body [2] or stencil [4]).

The aim of this paper is to present some high level transforms (HLT) for SIMD applied to low-level image processing and computer vision algorithms. We focus on the fact that combining SIMD with OpenMP is not enough to reach and sustain a high level of performance. Optimizing memory accesses is an issue and HLT should be cache-aware and also external-memory-aware when data do not fit in the caches. In our study, the Harris operator [8] for point of interest detection is chosen. Widely used for image stabilization, velocity analysis or visual tracking, this operator is also a representative example of the regular low-level image processing algorithms class. As it is composed of 8 operators (Fig. 1), it enables more opportunities for optimizations and parallelization than a unique convolution kernel. HLT can be also efficiently applied to any code using 2D stencils.

The paper is organized as follows: the first section details the Harris operator, the software optimizations and HLT that can be applied to the Harris detector. The second section presents the targeted SIMD machines (with Altivec, SSE or Neon instruction set extensions) and a multistep benchmark that evaluates the impact of these optimizations. A first evaluation of XeonPhi is also presented. Then performance of GPPs and GPUs is compared.

2. Harris detector and HLT

![Figure 1. Harris detector, Nopipe version](image)

The Harris detector computation relies on a set of point-to-point operations such as products and additions, along with (3×3) convolutions (the Sobel gradients and Gaussian smoothing). Given an input image I, the first derivatives I_x and I_y of Sobel gradients are computed by $GradX$ and $GradY$. The cross-products $I_{xx} = I_x \times I_x$, $I_{xy} = I_x \times I_y$, and $I_{yy} = I_y \times I_y$ are performed by the Mul operator. These cross-products are smoothed by a Gaussian filter (Gauss) and finally, “coarsity” K is a linear combination of the smoothed cross-products. A producer-consumer model is also provided under each figure with explicit input and output patterns: $(3 \times 3) → (1 \times 1)$ for Grad and Gauss and $(1 \times 1) → (1 \times 1)$ for Mul and coarsity. Moreover, considering the four stages of its classical computation, the so called Nopipe version (Fig.1) is an...
interesting candidate for higher level optimizations such as fusion of operators.

Optimizing a code is a two-step process. First, the code is optimized to reach the highest level of performance in a stressless context, when data fit in the cache. Next, performance is sustained in a stressed context when data do not fit in the cache. We first describe the classical compilation optimizations like loop-unrolling, scalarization and reduction for High Performance Computation. These techniques are then adapted to the low level operators in image processing: some high level algorithmic transformations named Halfpipe and Fullpipe are introduced. These optimizations are then improved by considering the application domain: both the separability of the 2D filters and the convolutions overlapping are considered and combined to loop-unrolling and scalarization to add reduction in Halfpipe and Fullpipe transforms. Their complexity is finally evaluated in terms of arithmetic operations and memory access. The second part presents an advanced memory layout transform, circular buffers and modular addressing associated with another level of operator pipelining to optimize spatial and temporal data locality. Finally SIMD reduction is detailed.

2.1 Classical transformations, decomposition and reduction

\[
B_{3 \times 3} = \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} = \frac{1}{16} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \quad (1)
\]

Algorithm 1: 1-pass implementation of the 3×3 binomial filter with the 2D-filter corresponding to equation (1)

\[
\begin{align*}
&\text{for } i = 1 \text{ to } n - 1 \\
&\quad \text{for } j = 1 \text{ to } n - 1 \text{ step } 3 \\
&\quad a_0 \leftarrow X(i - 1, j - 1), b_0 \leftarrow X(i - 1, j), c_0 \leftarrow X(i - 1, j + 1) \\
&\quad a_1 \leftarrow X(i, j - 1), b_1 \leftarrow X(i, j), c_1 \leftarrow X(i, j + 1) \\
&\quad a_2 \leftarrow X(i + 1, j - 1), b_2 \leftarrow X(i + 1, j), c_2 \leftarrow X(i + 1, j + 1) \\
&\quad s \leftarrow a_0 + 2b_0 + 1c_0 + 2a_1 + 2b_1 + 2c_1 + 1a_2 + 2b_2 + 1c_2 \\
&\quad Y(i, j) \leftarrow s/16
\end{align*}
\]

To facilitate the presentation of different algorithms, we assume that computations use local variables and that memory accesses correspond to transfers between image pixels and local variables. This assumption fits with RISC processors, for which the computations operate on register values and memory accesses correspond to LOAD and STORE instructions. In that case, local variables are held in processor registers. The situation is different for CISC processors using the IA-32 or Intel 64/AMD64 instruction sets for which memory operands are used by computing instructions. In that case, due to the limited numbers of registers, some local variables will be held in the memory hierarchy. However, this difference does not change the impact of the optimizations that are presented. In the rest of the paper, we present the transformations assuming a RISC instruction set.

The classical software optimizations for optimizing compilers [1] aim to improve the operation of the processor pipeline. Given a 3×3 binomial filter aka Gaussian filter (Eq. 1), one can perform scalarization (to put data into registers), and register rotation to avoid reloading data from an iteration of the filter to another. The 9 LOADs of the original algorithm (Alg. 1) are replaced by only 3 (Alg. 2). It is an efficient optimization, considering that many algorithms are memory-bound, but the algorithm complexity remains the same.

In this presentation of optimization techniques, we assume general filters with unknown coefficients: this is why we indicate multiplications by 1, 2 or 4, that are transformed into a set of additions (4x = t + t with t = x + x, i.e. the strength reduction optimization) or replaced by a shift (4x = x<<2) for integer computations. Note also that the apron processing problem is not considered in order to simplify the explanation.

Algorithm 2: 1-pass implementation of the 3×3 binomial filter with one 2D-filter Register Rotation

\[
\begin{align*}
&\text{for } i = 1 \text{ to } n - 1 \text{ do} \\
&\quad j = 1 \\
&\quad a_0 \leftarrow X(i - 1, j - 1), b_0 \leftarrow X(i - 1, j), c_0 \leftarrow X(i - 1, j + 1) \\
&\quad a_1 \leftarrow X(i, j - 1), b_1 \leftarrow X(i, j), c_1 \leftarrow X(i, j + 1) \\
&\quad a_2 \leftarrow X(i + 1, j - 1), b_2 \leftarrow X(i + 1, j), c_2 \leftarrow X(i + 1, j + 1) \\
&\quad s \leftarrow a_0 + 2b_0 + 1c_0 + 2a_1 + 2b_1 + 2c_1 + 1a_2 + 2b_2 + 1c_2 \\
&\quad Y(i, j) \leftarrow s/16
\end{align*}
\]

Taking into account the application domain, the 2D-filter can be replaced by two 1D-filters (Eq. 1, right part). This algorithmic transformation reduces complexity and number of memory accesses, but requires two passes on the image, which can generates cache misses, when the image is too large to entirely fit in the cache.

So we need to introduce another optimization to combine the two 1D-filters with a single pass, to factor the computations and reduce the number of memory accesses simultaneously. First, the result of the first 1D-filter is stored in a register (Alg. 3, line 5 and 11). This transformation is called a reduction. In our case, it is a column-wise reduction. Then the second 1D-filter is directly applied to the reduced values (Alg. 3, line 12).

Algorithm 3: 1-pass implementation of the 3×3 binomial filter with two 1D-filters, with Register Rotation and reduction

\[
\begin{align*}
&\text{for } i = 1 \text{ to } n - 1 \text{ do} \\
&\quad j = 1 \\
&\quad a_0 \leftarrow X(i - 1, j - 1), b_0 \leftarrow X(i - 1, j), c_0 \leftarrow X(i - 1, j + 1) \\
&\quad a_1 \leftarrow X(i, j - 1), b_1 \leftarrow X(i, j), c_1 \leftarrow X(i, j + 1) \\
&\quad a_2 \leftarrow X(i + 1, j - 1), b_2 \leftarrow X(i + 1, j), c_2 \leftarrow X(i + 1, j + 1) \\
&\quad s \leftarrow a_0 + 2b_0 + 1c_0 + 2a_1 + 2b_1 + 2c_1 + 1a_2 + 2b_2 + 1c_2 \\
&\quad r \leftarrow 1a_0 + 2b_0 + 1c_0 \quad \text{// Red part #1} \\
&\quad r \leftarrow 1b_0 + 2b_1 + 1b_2 \quad \text{// Red part #1} \\
&\quad j = 1 \text{ to } n - 1 \text{ do} \\
&\quad c_0 \leftarrow X(i - 1, j + 1) \\
&\quad c_1 \leftarrow X(i, j + 1) \\
&\quad c_2 \leftarrow X(i + 1, j + 1) \\
&\quad r \leftarrow 1c_0 + 2c_1 + 1c_2 \quad \text{// Red part #1} \\
&\quad s \leftarrow 1r_a + 2r_b + 1r_c \quad \text{// Red part #2} \\
&\quad Y(i, j) \leftarrow s/16
\end{align*}
\]

For a general 1D k-tap filter, there are still $(k - 1)$ copies for register rotation. They can be entirely removed by loop unrolling. The order of the unrolling is usually chosen by the compiler, which may lead to suboptimal unroll. But in signal or image processing, the unrolling order has not to be chosen by heuristics: the optimal order leading to a perfect unroll is equal to the filter order. In our case, the smallest unrolling order is $k = 3$.

2.2 Operator fusion: the Halfpipe and Fullpipe transforms

The fusion of several operators is much more than a simple loop fusion (aiming to improve data locality). By pipelining operators
and storing first results in registers instead of memory, the transform avoids any intermediate memory access. For that aim, each operator is described by the producer-consumer model with a consumption pattern and a production pattern. Such a model is derived from Synchronous Data Flow [10]. The only condition needed to fuse two operators (in the sense of mathematical composition of functions \(f \circ g \)) is that the patterns must be either similar or adaptive: the output pattern of the first operator should be the same as the input pattern of the second one.

![Figure 2. Halfpipe and Fullpipe transforms of Harris operator, from the lowest to the highest complexity](image)

In its Nopipe version (Fig. 1), the Harris detector is composed of four computation stages: computation of the gradients, product of the gradients, smoothing of the products and computation of the point coarsit. This computation chain requires the access to eight intermediate arrays. It is therefore possible to pipeline the Sobel and Mul operators on the one hand, and the Gaussian and coarsity operators on the other hand, since their consumption and production patterns are compatible. The transformation is called Halfpipe2 (Fig. 2, top) and reduces the number of memory accesses (Tab. 1).

It is possible to entirely pipeline the operators and suppress any intermediate memory access, resulting in the Fullpipe version (Fig. 2, bottom). In that case, it is necessary to adapt the consumption and production patterns: to produce \((1 \times 1)\) points in the output, it is necessary to consume \((5 \times 5)\) points and to perform the operations Sobel+Mul \((3 \times 3)\) times. A reduction along the columns is applied to optimize both the number of memory accesses and the number of computations.

Note that the Fullpipe version is much more complex than the other ones with up to 3 times more computations compared to the Nopipe version (Tab. 1). Indeed, without any intermediate image to store the common computations (which were performed 9 times by the Gaussian operators), these computations have to be reprocessed.

The Halfpipe1 version is designed to balance Halfpipe2 and Fullpipe. Figure 2 shows that Halfpipe2 has the lowest complexity, and the highest number of memory access. But once optimized (with reduction), Halfpipe1 and Halfpipe1 versions have similar complexities (Tab. 1) and memory accesses, while Fullpipe has a far lower number of memory accesses. If we consider the arithmetic intensity Al (ratio between computations and memory accesses) as a metric of performance, Fullpipe is particularly interesting from a parallelization perspective since its arithmetic intensity is higher than Halfpipe and Nopipe versions. Fullpipe version is compute bound while the two other versions are memory bound with different levels of memory stress.

<table>
<thead>
<tr>
<th>Version</th>
<th>MUL + ADD</th>
<th>LOAD + STORE</th>
<th>AI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nopipe</td>
<td>5 + 44 = 49</td>
<td>48 + 9 = 57</td>
<td>0.9</td>
</tr>
<tr>
<td>Halfpipe2</td>
<td>5 + 44 = 49</td>
<td>30 + 4 = 40</td>
<td>1.2</td>
</tr>
<tr>
<td>Halfpipe1</td>
<td>29 + 44 = 73</td>
<td>27 + 3 = 30</td>
<td>2.4</td>
</tr>
<tr>
<td>Fullpipe</td>
<td>29 + 124 = 153</td>
<td>25 + 1 = 26</td>
<td>5.9</td>
</tr>
</tbody>
</table>

Table 1. Algorithmic complexity, number of memory accesses and arithmetic intensity for Harris with HLT

2.2.1 Multithreading & cache overflow

For a multi-core SIMD processor, maximum performance is indeed reached when all cores are running. That means that evaluation of HLT for SIMD should be done when the code is multi-threaded. This corresponds to the configuration that maximizes the stress on the external memory bus. OpenMP is used for this purpose. The necessary code modification is very light. It mainly consists of pragmas that are simply put before the code sections to be parallelized. Considering a SPMD parallelization with a sub-band calculation, the modifications consist in parallelizing the outer loops, and privatizing variables to avoid serialization of accesses. The parallelization of a for loop only adds the directive (#pragma omp parallel for) to the sequential code.

Such parallelization may have a super-linear speedup. Let us introduce the measurement unit used for the analysis and the benchmarking: cpp (cycle per pixel). It is the number of clock cycles normalized by the number of pixels processed.

Figure 3 presents the cpp execution times of our benchmarks according to the size of the working set for different configurations of processors and caches. Let us first consider (Fig. 3a). On the horizontal axis, a point corresponds to the size of the working set, i.e. to the size of the data to be processed. As cpp is the number of clocks per pixel, a horizontal cpp curve means that the execution time, including computation and memory accesses, is exactly proportional to the data size. As a matter of fact, the actual cpp curve shows two plateaux and a transition area from one plateau to the other. This transition corresponds to the switch
between a state for which the working set can be held in the cache to another one for which the working set is larger than the cache size. We call this phenomenon a cache overflow. This phenomenon is widely detailed in [5].

Using more processors reduces execution time, even when the Amdahl law forbids a perfect speedup (Fig. 3c). Adding caches (or using a larger cache) would shift right the cpp curve and results are improved (Fig. 3b). For multi-core processors, the impact resulting from the combination of these two modifications is clearly visible (Fig. 3d). Multithreading with multi-core processors increases the available cache size and can be seen as a mean to postpone cache overflow. The performance decrease is more important for larger working sets. Note that the memory optimizations can lead to a super-linear speedup. For a given working set, it appears when the basic version (a) does not fit in the cache while the optimized one (d) does.

2.3 Data interleaving memory optimization

The data interleaving consists in replacing the accesses to several different arrays by accesses to one single array containing the same data [15]. This is the SoA-AoS transformation (Structure of Arrays vs Array of Structures). For the Harris detector, the arrays that are produced at the same computation stages are interleaved, namely \(I_x \) and \(I_y \) for the Sobel operator, \(I_{xx} \), \(I_{xy} \) and \(I_{yy} \) for Mul and \(S_{xx} \), \(S_{xy} \) et \(S_{yy} \) for the Gaussian operators. This optimization is particularly efficient when the number of arrays to manipulate is lower than the associativity of the memory caches, therefore avoiding systematic cache misses. For scalar computations, the interleaving is 1:1 and for SIMD the interleaving is 4:4 (that is 1 vector of 4 points for 1 vector of 4 points) to avoid adding SIMD instructions to deinterleave the data. For example we have a full SIMD register of \(I_x \) then a full SIMD register of \(I_y \).

2.4 Circular buffers with modular addressing optimization

If array interleaving helps avoid systematic cache eviction, cache overflow for large data sets can not be avoided. The circular buffers with modular addressing optimization are designed to address this problem.

Circular buffers are widely used in embedded applications (typically signal processing on DSPs) since they reduce the memory required to store intermediate results and improve the performance of the memory caches. The principle is to chain the different operators and store into the memory the intermediate data needed for the sequential execution of the operators.

Circular buffers (CB) can be transparently introduced into user code thanks to Iliffe pointer (offset addressing) [9] popularized by Numerical Recipes in C matrix [13] (Fig. 4, left). So, for a given point of coordinates \((i, j)\), \(\Phi[i]\) is pointing to the row \((i \mod k)\) instead of \((i)\) and \(j\) is the offset within the row (Fig. 4, center). Such a spatial locality optimization can also be used in a multithreaded context using OpenMP, but with some restrictions. First the number of threads should be known before the memory allocation, because the number of sets of circular buffers should be equal to \(p\), the number of created threads. Hence, the number of threads cannot be dynamically changed (except if a buffer reallocation is performed). Second, the loop space should be split into \(p\) blocks of contiguous lines: OpenMP parallel macro should be tuned by specifying the thread policy with schedule static. Finally, \(p\) sets of \(k\) circular buffers should be allocated for an execution on \(p\) processors with a \(k \times k\) convolution. Because of the overlapping of addressing due to the convolution kernel, the sets of circular buffers do not define a bijective application. On the right part of figure 4, the lines addressing the internal aprons (in light gray) are duplicated while the external aprons (in light gray) are pointing to the first or last line of the block.

In the Halfpipe case (Halfpipe and Halfpipe2), rather than applying the Sobel and Mul operators to the entire image, this algorithm is first executed on the first two rows of the image (prolog). Once arrived at the third row, the first two operators have produced enough data so that the two subsequent operators can start their own work. Therefore, the two groups of two operators are chained together. If the Halfpipe transformation can be viewed as the pipeline of two operators, the use of circular buffers with modular addressing can be viewed as the pipeline of two tiles of data with cache-blocking. In the following, we call this optimization mod.

2.5 HLT adaptation to SIMD computations

Optimizing a convolution with SIMD instructions relies on the optimization of memory accesses and the management of unaligned vectors. For example, for the 1D horizontal Gaussian filter, \(X(i - 1) + 2X(i) + X(i + 1)\) implies the access to the left unaligned and right unaligned data. The naive way is to perform an unaligned load using _mm_loadu_pq instruction when available (only on SSE, not on Altivec nor Neon). It is not efficient as 3 LOADs are required and cannot be combined with register rotation. The efficient way is to build unaligned vectors from aligned vectors (Alg. 4, lines 10,
11 and 12). For SIMD portability, Two macros named \texttt{vec_left} and \texttt{vec_right} encapsulate the instructions: \texttt{vec_sld} for Altivec, \texttt{vecq_f32} for Neon and \texttt{_mm_shuffle_ps} for SSE and SSE2 extension or \texttt{_mm_align_r_epi_32} for SSSE3+ extension.

Algorithm 4: 1-pass implementation of the 3×3 binomial filter with one 2D-filter with Register Rotation

```
for i = 1 to n - 1 do
  j ← 1
  a0 ← X(i - 1, j - 1), b0 ← X(i - 1, j)
  a1 ← X(i, j - 1), b1 ← X(i, j)
  a2 ← X(i + 1, j - 1), b2 ← X(i + 1, j)
  for j = 1 to n - 1 do
    c0 ← X(i - 1, j + 1)
    c1 ← X(i, j + 1)
    c2 ← X(i + 1, j + 1)
    a'_0 ← vec\_left(a0, b0), c'_0 ← vec\_right(b0, c0)
    a'_1 ← vec\_left(a1, b1), c'_1 ← vec\_right(b1, c1)
    a'_2 ← vec\_left(a2, b2), c'_2 ← vec\_right(b2, c2)
    s ← 1a'_0 + 2b'_0 + 2a'_1 + 4b'_1 + 2a'_2 + 4b'_2 + 1a'_2 + 2b'_2 + 1c'_2
    Y(i, j) ← s/16
  a0 ← b0, b0 ← c0 // Rot of 1st line
  a1 ← b1, b1 ← c1 // Rot of 2nd line
  a2 ← b2, b2 ← c2 // Rot of 3rd line
```

Such a technique is adaptable to the scalar column-wise reduction optimization (Alg. 3). Instead of using the load-permute-add sequence, we can swap the \texttt{permute} (4, lines 10, 11 and 12) and \texttt{add} steps: reductions are computed on aligned data for the vertical 1D filter, then the unaligned vectors are built (Alg. 5, lines 12 and 13). As the \texttt{vec_left} and \texttt{vec_right} instructions are applied to reduced registers, fewer are needed: from 6 in the version without reduction down to 2 in the version with reduction. That computation scheme makes the SIMD reduction possible and very efficient as it can be combined with register rotation or loop-unrolling.

Algorithm 5: 1-pass implementation of the 3×3 binomial filter with two 1D-filter, with Register Rotation and reduction

```
for i = 1 to n - 1 do
  a0 ← X(i - 1, j - 1), b0 ← X(i - 1, j)
  a1 ← X(i, j - 1), b1 ← X(i, j)
  a2 ← X(i + 1, j - 1), b2 ← X(i + 1, j)
  ra ← l0a0 + 2a1 + 1a2
  rb ← lb0 + 2b1 + 1b2
  for j = 1 to n - 1 do
    c0 ← X(i - 1, j + 1)
    c1 ← X(i, j + 1)
    c2 ← X(i + 1, j + 1)
    a'_0 ← vec\_left(ra, rb), c'_0 ← vec\_right(rb, c0)
    a'_1 ← vec\_left(ra, rb), c'_1 ← vec\_right(rb, c1)
    a'_2 ← vec\_left(ra, rb), c'_2 ← vec\_right(rb, c2)
    s ← 1a'_0 + 2b'_0 + 2a'_1 + 4b'_1 + 2a'_2 + 4b'_2 + 1a'_2 + 2b'_2 + 1c'_2
    Y(i, j) ← s/16
    ra ← rb, rb ← c0 // Rot of reduced values
```

3. Benchmarking

3.1 Targeted SIMD processors

Three SIMD extensions are evaluated: SSE to SSE4 for Intel, Altivec (VMX) for IBM and Neon for ARM (Tab. 2). For each architecture the company’s compiler is used: icc, xlc and armcc. To simplify the benchmark, and also allow a fair comparison with Neon, only the 128-bit SIMD extension is evaluated. Even with such a limitation, the hardware of 256-bit AVX Sandy/IvyBridge processors can pair two identical 128-bit instructions into a 256-bit instruction. The second restriction is that FMA (Fused Multiply-Add) is not used, as this instruction is not present on all architectures. But the main point limiting the performance is the bandwidth, not the lack of FMA. In order to get a multi-architecture code, both kernel computations and load/store instructions are rewritten with macros. A header file holds the translation for each SIMD instruction set. This feature ensures that the same algorithm is executed on all architectures. We plan to rewrite the code with Boost.SIMD soon [6].

<table>
<thead>
<tr>
<th>processor</th>
<th>nb cores</th>
<th>freq (GHz)</th>
<th>perf. GFlops</th>
<th>BW GB/s</th>
<th>Al ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortex A9 OMAP4</td>
<td>1 x 2</td>
<td>1.2</td>
<td>4.8</td>
<td>1.2</td>
<td>4.0</td>
</tr>
<tr>
<td>Cortex A12 Exynos5</td>
<td>1 x 2</td>
<td>1.7</td>
<td>13.6</td>
<td>5.8</td>
<td>2.3</td>
</tr>
<tr>
<td>PowerPC 970MP</td>
<td>2 x 2</td>
<td>2.5</td>
<td>60.0</td>
<td>3.4</td>
<td>7.4</td>
</tr>
<tr>
<td>Power6</td>
<td>2 x 2</td>
<td>4.0</td>
<td>64.0</td>
<td>1.5</td>
<td>4.2</td>
</tr>
<tr>
<td>Power7</td>
<td>2 x 8</td>
<td>3.6</td>
<td>192</td>
<td>25</td>
<td>7.0</td>
</tr>
<tr>
<td>Penryn X3370</td>
<td>2 x 4</td>
<td>3.0</td>
<td>96.0</td>
<td>15</td>
<td>6.4</td>
</tr>
<tr>
<td>Nehalem X5550</td>
<td>2 x 4</td>
<td>2.67</td>
<td>85.1</td>
<td>22</td>
<td>3.9</td>
</tr>
<tr>
<td>Westmere X5680</td>
<td>2 x 6</td>
<td>3.33</td>
<td>159.8</td>
<td>25</td>
<td>6.4</td>
</tr>
<tr>
<td>IvyBridge E5-2697v2</td>
<td>2 x 12</td>
<td>2.7</td>
<td>518.4</td>
<td>92</td>
<td>5.6</td>
</tr>
<tr>
<td>Xeon Phi</td>
<td>1 x 61</td>
<td>1.33</td>
<td>1298</td>
<td>170</td>
<td>7.6</td>
</tr>
</tbody>
</table>

Table 2. Main characteristics of the evaluated machines.

3.2 Halfpipe and Fullpipe impact with reduction

3.2.1 Impact of reduction

<table>
<thead>
<tr>
<th>processor</th>
<th>Penryn</th>
<th>Nehalem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nopipe</td>
<td>without red</td>
<td>with red</td>
</tr>
<tr>
<td>Halfpipe2</td>
<td>3.76</td>
<td>2.92</td>
</tr>
<tr>
<td>Halfpipe1</td>
<td>3.42</td>
<td>1.50</td>
</tr>
<tr>
<td>Fullpipe</td>
<td>5.75</td>
<td>4.10</td>
</tr>
<tr>
<td>total gain</td>
<td>×2.5</td>
<td>×2.9</td>
</tr>
</tbody>
</table>

Table 3. Impact of reduction for Penryn and Nehalem.

Let us first compare the impact of the HLT without and with reduction and focus on Penryn and Nehalem processors. Before cache overflow (Tab. 3), Penryn and Nehalem behavior and \texttt{cpp} are very similar: \texttt{red} provides a speedup in the range of $\{x \times 1.3 : x \times 2.3\}$. The HLT total gains ($\text{Nopipe}$ versus Halfpipe1 are also close: $\times 1.4$ and $\times 2.9$. After cache overflow, \texttt{red} is inefficient for Halfpipe versions. As Fullpipe version is memory bound, the \texttt{cpp} values remain unchanged and \texttt{red} optimization still provides a speedup of $\times 1.4$. Because of the difference in memory bus (FSB for Penryn, QPI for Nehalem) the impact of cache overflow on Nopipe version is very different: the Penryn slowdown is 16.6 whereas Nehalem one is only 3.1. The total HLT gain increases a little for Nehalem: $\times 3.6$ and a lot for Penryn: $\times 14.9$.

One important point is that the best transform changes with the data set size. Before cache overflow the best transform is the
Halfpipe; and after, it is the Fullpipe version. This result is different for IBM and ARM processors where Halfpipe is always the best optimization (see next paragraph).

3.2.2 Impact of vectorization

Concerning the vectorization, C99 source code is used with the restrict qualifier to enforce the fact that there is no pointer aliasing. For 16, 32 or 64 byte alignments, _mm_malloc is used for Intel. posix_memalign for ARM. For IBM, the alignment of classical malloc is the size of Altivec registers (when activated). Under these conditions, the relative vectorization speedup goes from 0% (cannot vectorize due to data dependency) for red versions up to 90% (quite perfect vectorization) for the version without reduction. In fact, column-wise reduction is too restrictive for the compiler. Regarding the vectorization capability of compilers, it appears that only HTL without red optimization is vectorized with a performance very close to the hand-coded SIMD version. If data do not fit in the cache, there is no need to apply red optimization nor to SIMDize the code. Otherwise, code SIMDization combined with HTL with reduction is efficient. So the "ninja gap"[14] between the basic version (vectorized and parallelized by the compiler - we assume efficient compiler parallelization) and the best handcrafted version is equal to the total HTL gain here. The impact of data interleaving is not detailed in the paper. The speedup is about 20% when there is no reduction and falls to a few percent when reduction is active. The impact of manual loop-unrolling compared to unrolling by the compiler is not evaluated either. Compiler unrolling option is set for all compilers and architectures.

3.2.3 Impact of Halfpipe and Fullpipe transforms

The three processor families, have the same kind behavior. First, all Halfpipe versions are memory-bound: a cache overflow occurs when the bandwidth is too much stressed. Secondly, Halfpipe+red is always faster than Halfpipe+red: even for ARM and Power processors that have a smaller AI, it is more efficient to reduce the number of memory accesses than the algorithmic complexity.

Figure 5. Penryn, Nehalem, Westmere and IvyBridge cpp

The four generations of Intel processors have very close behavior (Fig. 5). The only differences are the scale (related to core number and bandwidth of the processor) of the graph and the data set size when a cache overflow occurs. After overflow, Fullpipe+red is faster than Halfpipe+red.

For IBM processors (Fig. 6), depending on AI, Fullpipe+red is faster (for PowerPC) than Halfpipe+red, but never outperforms Halfpipe+red.

Figure 6. PowerPC, Power6 and Power7 cpp

ARM Cortex-A9 and A15 processors (Fig. 7) have also a similar behavior. But the scales are very different: the Cortex-A15 has around a twice smaller cpp than Cortex-A9. It has a globally improved architecture compared to A9. Moreover A15 can execute one SIMD Neon instruction every cycle instead of one instruction every two cycles for A9.

3.3 Impact of circular buffers and modular addressing

ARM Cortex-A9 and A15 processors (Fig. 7) have also a similar behavior. But the scales are very different: the Cortex-A15 has around a twice smaller cpp than Cortex-A9. It has a globally improved architecture compared to A9. Moreover A15 can execute one SIMD Neon instruction every cycle instead of one instruction every two cycles for A9.

Figure 7. Cortex-A9 and Cortex-A15 cpp

To address cache overflows and to prolongate HLT performance after overflow, mod optimization has been implemented. If a cache overflow should occur, mod will only postpone it to bigger data set, as only \(3p \times n \times \text{sizeof(float)}\) bytes should stay in the cache instead of \(n \times \text{sizeof(float)}\) for each image (3 being the size

Figure 8. HLT with red versus HLT with red+mod
of the convolution, \(p \) the number of threads and \(n \) the image size). That makes the Halfpipe\(_1\)+red+mod always the best version as it requires only two arrays (\(I_x \) and \(I_y \)) to stay in the cache, instead of three (\(I_{x-1} \), \(I_{x+1} \) and \(I_y \)) for Halfpipe\(_2\)+red+mod (Fig. 8).

When there is no cache overflow or before it happens, the mod optimization provides an extra speedup on red version close to \(\times 2 \).

After cache overflow, the mod speedup is in the range \([\times 1.8 : \times 6.3]\) (Tab. 4). The higher AI the higher speedup: the max is reach for Westmere that has the same bandwidth than Nehalem, but 50% more cores. As no compiler can vectorize scalar red + mod versions, it is mandatory to write them manually, but it’s worth it. Finally, compared to the Nopipe SIMDized+OpenMPized version, the total gain of HLT is in the range \([\times 6.1 : \times 89.3]\). Other said, without HLT, the available power after overflow is only 16.4% down to 1.1% of the peak power available before.

<table>
<thead>
<tr>
<th>processor</th>
<th>(NO)</th>
<th>(\text{half}_{x \text{+red}})</th>
<th>(\text{half}_{x \text{+red}})</th>
<th>(\text{full}_{x \text{+red}})</th>
<th>Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortex A9</td>
<td>90.40</td>
<td>96.91</td>
<td>94.41</td>
<td>92.5</td>
<td>(\times 0.96)</td>
</tr>
<tr>
<td>Cortex A15</td>
<td>34.08</td>
<td>32.81</td>
<td>36.81</td>
<td>36.3</td>
<td>(\times 1.01)</td>
</tr>
<tr>
<td>PowerPC</td>
<td>75.7</td>
<td>85.2</td>
<td>86.41</td>
<td>85.4</td>
<td>(\times 1.03)</td>
</tr>
<tr>
<td>Power6</td>
<td>70.8</td>
<td>70.8</td>
<td>71.31</td>
<td>71.0</td>
<td>(\times 1.03)</td>
</tr>
<tr>
<td>Power7</td>
<td>9.75</td>
<td>10.26</td>
<td>10.48</td>
<td>10.2</td>
<td>(\times 1.00)</td>
</tr>
<tr>
<td>Penryn</td>
<td>62.5</td>
<td>62.5</td>
<td>62.5</td>
<td>62.5</td>
<td>(\times 1.00)</td>
</tr>
<tr>
<td>Nehalem</td>
<td>10.3</td>
<td>6.41</td>
<td>6.41</td>
<td>6.41</td>
<td>(\times 1.00)</td>
</tr>
<tr>
<td>Westmere</td>
<td>26.6</td>
<td>26.6</td>
<td>26.6</td>
<td>26.6</td>
<td>(\times 1.00)</td>
</tr>
<tr>
<td>IvyBridge</td>
<td>5.30</td>
<td>4.10</td>
<td>8.21</td>
<td>4.10</td>
<td>(\times 2.00)</td>
</tr>
<tr>
<td>Xeon Phi</td>
<td>0.99</td>
<td>0.81</td>
<td>0.81</td>
<td>0.81</td>
<td>(\times 1.00)</td>
</tr>
</tbody>
</table>

Table 4. \(cpp, \text{red} \) and \(\text{mod} \) speedups after cache overflow

3.4 A first evaluation of Xeon Phi

Figure 9. Xeon Phi: Halfpipe and Fullpipe red versions

<table>
<thead>
<tr>
<th>processor</th>
<th>(\text{cpp})</th>
<th>(\text{half}_{x \text{+red}})</th>
<th>(\text{half}_{x \text{+red}})</th>
<th>(\text{full}_{x \text{+red}})</th>
<th>Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortex A9</td>
<td>90.40</td>
<td>96.91</td>
<td>94.41</td>
<td>92.5</td>
<td>(\times 0.96)</td>
</tr>
<tr>
<td>Cortex A15</td>
<td>34.08</td>
<td>32.81</td>
<td>36.81</td>
<td>36.3</td>
<td>(\times 1.01)</td>
</tr>
<tr>
<td>PowerPC</td>
<td>75.7</td>
<td>85.2</td>
<td>86.41</td>
<td>85.4</td>
<td>(\times 1.03)</td>
</tr>
<tr>
<td>Power6</td>
<td>70.8</td>
<td>70.8</td>
<td>71.31</td>
<td>71.0</td>
<td>(\times 1.03)</td>
</tr>
<tr>
<td>Power7</td>
<td>9.75</td>
<td>10.26</td>
<td>10.48</td>
<td>10.2</td>
<td>(\times 1.00)</td>
</tr>
<tr>
<td>Penryn</td>
<td>62.5</td>
<td>62.5</td>
<td>62.5</td>
<td>62.5</td>
<td>(\times 1.00)</td>
</tr>
<tr>
<td>Nehalem</td>
<td>10.3</td>
<td>6.41</td>
<td>6.41</td>
<td>6.41</td>
<td>(\times 1.00)</td>
</tr>
<tr>
<td>Westmere</td>
<td>26.6</td>
<td>26.6</td>
<td>26.6</td>
<td>26.6</td>
<td>(\times 1.00)</td>
</tr>
<tr>
<td>IvyBridge</td>
<td>5.30</td>
<td>4.10</td>
<td>8.21</td>
<td>4.10</td>
<td>(\times 2.00)</td>
</tr>
<tr>
<td>Xeon Phi</td>
<td>0.99</td>
<td>0.81</td>
<td>0.81</td>
<td>0.81</td>
<td>(\times 1.00)</td>
</tr>
</tbody>
</table>

Table 5. Xeon Phi performance for HLT+red optimizations

The codes have been easily ported on the Xeon Phi: Compilation tools and computing model are same as classic processors. As our codes use macro to handle 3 SIMD dialects, the only modification was to replace \(_{\text{mm}}\) intrinsics prefix by \(_{\text{mm512}}\), and set the SIMD cardinal to 16 instead of 4. FMA is not used in order to be consistent with other processors. Because its arithmetic intensity is very high, Halfpipe\(_1\)+red is faster than Halfpipe\(_2\)+red. For the same reason, Fullpipe+red is faster to Halfpipe\(_1\)+red and is actually the fastest version. The mod transform is currently inefficient. More investigations are required with Vtune to understand the problem and fix it. Anyway compared to one IvyBridge Xeon, the Phi has a better \(\text{cpp} \) and – due to CPU frequency difference – an execution time that is 25% longer. When the bandwidth (Tab. 5) exceeds stream triad performance, it is not an error but the evidence that some data still remain in the caches.

3.5 Conclusion for SIMD processors

As previously said, the first step to accelerate a code is to optimize when data fit in the cache. This is the goal of HLT with red optimization. While the second step is to sustain the performance after cache overflow: that is the goal of the additional mod optimization. Table 4 provides \(cpp \) for HLT+red optimization before overflow and HLT+red+mod after overflow. In fact mod only provides an additional speedup of \(\times 2 \), but it prevents performance deceleration. Without it, the computing performance delivered for big images (2048 x 2048) by the evaluated parallel machines is only 16.3% down to 1.1% of the performance delivered for small images (512 x 512). HLT are mandatory.

Intel and IBM machines cannot be directly compared as the evaluated Power7 machine is not the biggest one, contrarily to the IvyBridge. It exist quad-socket Power7 and also dual-Altivec Power7+ that should match IvyBridge. What can be fairly compared is the impact of HLT transforms: the higher AI the high impact. Even if latest processors have a better memory architecture – that will decrease the impact of HLT compared to previous processor – it is still very important: \(\times 21.7 \) for Power7 and \(\times 35.3 \) for IvyBridge. For Cortex, impact should increase with latest quad-core processor.

3.6 Multi-core SIMD GPP versus GPU

<table>
<thead>
<tr>
<th>processor</th>
<th>(\text{cpp})</th>
<th>(\text{half}_{x \text{+red}})</th>
<th>(\text{half}_{x \text{+red}})</th>
<th>(\text{full}_{x \text{+red}})</th>
<th>Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortex-A15</td>
<td>84.08</td>
<td>84.08</td>
<td>84.08</td>
<td>84.08</td>
<td>(\times 1.00)</td>
</tr>
<tr>
<td>IvyBridge</td>
<td>8.23</td>
<td>8.23</td>
<td>8.23</td>
<td>8.23</td>
<td>(\times 1.00)</td>
</tr>
<tr>
<td>Xeon Phi</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>(\times 1.00)</td>
</tr>
</tbody>
</table>

Table 6. Global comparison of State-Of-The Art GPP and GPU for 2048 x 2048 images (\(H \) and \(F \) stand for Halfpipe and Fullpipe transforms, \(R \) and \(M \) for red and mod optimizations).

In order to make a fair comparison, we also applied these HLT to Nvidia GPU with CUDA 4. There are three kinds of memory: Global memory that is shared by all threads of all SM processors, texture memory that provides hardware bilinear interpolation and shared memory that is private to a SM processor. Texture usage reduces both the complexity and the number of memory accesses of the convolution. For example X[\(i+1 \)] \(\times 2 \times X[\(i-1 \)] \times X[\(i+1 \)] \) is equal to \(0.5 \times (X[\(i-0.5 \)] + X[\(i+0.5 \)]) \). 2D-convolutions only require 4 LOADs instead of 9, and 3 ADDs instead of 8 ADDs and 5 MULs. For shared memory, the Nvidia example "convolution2D" is specialized to a \(3 \times 3 \) convolution with loop unwinding. As GPU are very sensitive to tile size, an exhaustive search of the best tile has been done for all benchmarked GPU (GTX 285, GTX 480, GTX 580, Quadro 4000). Usually \(16 \times 8 \) is a nice size for many algorithms, but the best one provide a boost up to 50%. Profiling helps to explain the Shared performance: the occupancy is 25 % and there are 41 registers per thread. The reason is
that the GPU uses a lot of Shared memory. Two other metrics are interesting: the \textit{ipc} (instruction per cycle) equals 1.85 (for a max of 2) and the L1 hit rate is 99.6 \%. That clearly means that we are very close to peak performance, with a quite optimal pipeline feed. Note that the other tested configurations have a better occupancy, but are slower. So, we are confident that this configuration is globally optimal, and that “Fermi has better performance at lower occupancy” [16] (if there is enough computations). We can see (Tab. 6) that HLT transforms are also efficient for GPU: \(\times 5.6 \). Moreover, the \textit{Fullpipe} versions (with texture memory and interpolation, or with shared memory) are faster than \textit{Halfpipe} (version that requires two kernels instead of one for the \textit{Fullpipe}). That focuses on the importance of avoiding communication and synchronization on GPU (\textit{Halfpipe} requires two __syncthreads instead of one for \textit{Fullpipe}).

To perform a State-of-the Art comparison (Tab. 6), GTX Titan and K40 performance have been estimated according to the clock frequency and cores numbers. We do not take into account PCI transfer duration for Xeon Phi nor for GPU. If we compare the performance without any optimization, (\textit{Nopipe} column), the GPUs are faster than the GPPs. But if we compare the most optimized version, GPPs match GPUs performance thanks to \textit{mod} optimization. Only Xeon Phi can comes close to GPUs without the \textit{mod} optimization.

4. Main conclusion and future works

In this paper, we have presented algorithmic High Level Transforms for SIMD General Purpose Processors applied to low-level computer vision algorithms. HLT have a major impact on performance, and make the difference. They can be applied to any code using 2D stencils or convolution and so, can scale across a wide range of codes.

The combination of operator fusion/pipelining with algorithmic \textit{reduction} and circular buffers with \textit{modular} addressing provide huge speedups: from \(\times 6.1 \) for dual Cortex-A15 up to \(\times 89.3 \) for Penryn (that has a small bandwidth). For State-of-the-Art processors with a more important bandwidth like IvyBridge and Power7, the respective speedups are \(\times 35.3 \) and \(\times 21.7 \). Xeon Phi is easy to program thanks to SIMD intrinsics and OpenMP and match other processors. These benchmark optimizations have clarified several important points. First of all, SIMDization is really effective on the SIMD multi-core machines and is the only way to match GPU performance. Secondly, considering the fusion of operators, the \textit{Halfpipe} and \textit{Fullpipe} transforms provide consequent additional gains. Since these transformations remain out of reach even for the best current compilers [12], the manual coding is fully justified. Third, the algorithmic \textit{reduction} and the use of \textit{modular} addressing is beyond the scope of compilers as such transforms modify the code semantic and should be also handed-coded.

Depending on the user skills and the required level of performance, there are finally two choices. On one hand, the \textit{cost-effective} implementation is to combine the compiler auto-vectorization with openMP. It may be sufficient for some applications with soft real-time constraints – especially if data fit in the caches. On another hand, the \textit{most-effective} version is to combine SIMDization with \textit{reduction} and \textit{modular} addressing. The circular buffers enforce spatial and temporal locality that are mandatory to sustain performance for processors that have a cache overflow. It is a significant modification, but it is a worthwhile modification as it ensures a high and \textit{quite} constant level of performance, without cache overflow for any realistic image size.

In future works, we will finalize the on-going benchmarks on Intel Xeon Phi and Nvidia Kepler GPUs. The general-purpose code will be specialized to take into account the specificities of processors (larger SIMD, FMA, for GPP, CUDA 5 and communications for GPU) in order to provide more accurate results. More important, we also plan to implement the algorithmic \textit{reduction} into a DSL (Domain Specific Language) above Boost.SIMD for signal/image/stencil operators. Concerning \textit{circular buffers} and \textit{modular addressing}, the memory layout modification should be also embedded into a tool that capture such abstraction to combine it with the semantic of image and multidimensional stencil operators.

References

