Participatory User Centered Design Techniques for a Large Scale Ad-Hoc Health Information System

Tia Gao¹, Tammara Massey², Leo Selavo³, Matt Welsh⁴, Majid Sarrafzadeh²

HealthNet
June 11, 2007, Puerto Rico

Sponsored by: National Library of Medicine & National Science Foundation
Response to Mass Casualties Today

Problems
- Aging technologies
- Limited communication infrastructure
- Labor intensive
- Overwhelmed staff

Results
- Mis-triage
- Critical minutes are lost
- Prone to human error

What if radical changes in technology could revolutionize patient care?
Future Possibilities

First Responder → Treatment Officer → Incident Commander

- paper tag
- pen & clipboard
- radio
- E-Tag
- PDA
- Automated monitoring
E-Tags are revolutionary because

- More than just a telemetry monitor
 - EKG, Pulseox (SpO₂, HR), Temperature, NIBP, Triage status, Display
 - IEEE 802.15.4 low-power wireless
 - Ad-hoc Mesh Networking
 - Smart Software Alarms
 - Remote monitoring & control
 - Comparatively low cost – telemetry to the developing world.

More data, better features, all for a lower price.
Smart monitoring software

- Automated VS Monitoring
 - Triage validation
 - Adjustable thresholds
 - Smart alarms: process HRV, use additional EMR data
- Transmit data to EMR
 - Efficient patient transition
- Plug-n-play IEEE 802.15.4

Match the system with current practices

Smarter features, easier to use.
Handheld device for medics

One hand operated
Patient histograms

Patient Details
- Real-time vital signs & alerts
- Photos
- Triage Category
- Age
- Name
- Chief Complaint
- Contamination

<table>
<thead>
<tr>
<th>Photo</th>
<th>Patient ID</th>
<th>Triage</th>
<th>Name</th>
<th>Age</th>
<th>Chief Complaint</th>
<th>Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22</td>
<td></td>
<td>Karl Jennerjohn</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td></td>
<td>Samantha Grier</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td></td>
<td>Unknown</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td></td>
<td>Ellis Gardner</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td></td>
<td>June Gravitt</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td></td>
<td>Lee Wszewski</td>
<td>17</td>
<td>Laceration</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Patient Transport Status (11 patients)

<table>
<thead>
<tr>
<th>Triage</th>
<th>Patient ID</th>
<th>Age</th>
<th>Gender</th>
<th>Chief Complaint</th>
<th>Exposure</th>
<th>Location (Type; Name)</th>
<th>Departed Incident At</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>22</td>
<td>60</td>
<td>M</td>
<td>Laceration</td>
<td></td>
<td>Facility; Suburban</td>
<td>10:43 AM</td>
</tr>
<tr>
<td>II</td>
<td>29</td>
<td>17</td>
<td>F</td>
<td>Laceration</td>
<td></td>
<td>Scene; 51 university Boulevard East</td>
<td>10:43 AM</td>
</tr>
<tr>
<td>III</td>
<td>27</td>
<td>12</td>
<td>M</td>
<td>Laceration</td>
<td></td>
<td>Facility; Blair</td>
<td>10:44 AM</td>
</tr>
<tr>
<td>IV</td>
<td>30</td>
<td>9</td>
<td>F</td>
<td>Laceration</td>
<td></td>
<td>Scene; 51 university Boulevard East</td>
<td>10:43 AM</td>
</tr>
<tr>
<td>V</td>
<td>36</td>
<td></td>
<td>Unknown</td>
<td>Laceration</td>
<td></td>
<td>Scene; 51 university Boulevard East</td>
<td>-</td>
</tr>
<tr>
<td>VI</td>
<td>31</td>
<td></td>
<td>Unknown</td>
<td>Penetrating Injury, Respiratory</td>
<td></td>
<td>Scene; 51 university Boulevard East</td>
<td>2:45 PM</td>
</tr>
<tr>
<td>VII</td>
<td>23</td>
<td></td>
<td>Unknown</td>
<td>Penetrating Injury, Respiratory</td>
<td></td>
<td>Facility; Blair</td>
<td>10:43 AM</td>
</tr>
<tr>
<td>VIII</td>
<td>21</td>
<td>22</td>
<td>M</td>
<td>Penetrating Injury, Respiratory</td>
<td></td>
<td>Facility; Blair</td>
<td>10:43 AM</td>
</tr>
<tr>
<td>IX</td>
<td>24</td>
<td>19</td>
<td>F</td>
<td>Penetrating Injury, Respiratory</td>
<td></td>
<td>Facility; Blair</td>
<td>10:43 AM</td>
</tr>
<tr>
<td>X</td>
<td>26</td>
<td>18</td>
<td>F</td>
<td>Penetrating Injury, Respiratory</td>
<td></td>
<td>Facility; Blair</td>
<td>10:43 AM</td>
</tr>
<tr>
<td>XI</td>
<td>25</td>
<td>65</td>
<td>F</td>
<td>Penetrating Injury, Respiratory</td>
<td></td>
<td>Facility; Suburban</td>
<td>10:38 AM</td>
</tr>
</tbody>
</table>

Triage Status

<table>
<thead>
<tr>
<th>Location</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Scene</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Departed</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>11</td>
</tr>
</tbody>
</table>

Bed Availability

<table>
<thead>
<tr>
<th>Facility</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suburban</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>JHMI</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Blair</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

Vehicle Status (3 vehicles)

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Type</th>
<th>Status</th>
<th>Destination</th>
<th>Arrival Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2149</td>
<td>ALS Ambulance</td>
<td>Unknown</td>
<td>Suburban</td>
<td>10:57 AM</td>
</tr>
<tr>
<td>2149</td>
<td>ALS Ambulance</td>
<td>Unknown</td>
<td>Suburban</td>
<td>10:57 AM</td>
</tr>
<tr>
<td>2531</td>
<td>ALS Ambulance</td>
<td>Enroute to Facility</td>
<td>Suburban</td>
<td>Estimated: 10:59 AM</td>
</tr>
</tbody>
</table>

Last Updated: 9/5/2006 12:43:25 PM
What are the important Features

Surveyed conducted:
- at Arlington County Virginia EMS
- basic paramedics to chiefs and officers
- 5 to 22 years of experience
Mass Casualty Disaster

- 20 patients
 - Red Cross volunteers
- 16 responders
 - Homeland Security
- 2 receiving facilities
 - 1 hospital
 - 1 Auxiliary Care Center
- 2 teams with identical structure
 - 1 commander
 - 3 officers
 - 3 medics

Paper Tags: green shirts

E-Tags: yellow shirts
Roles and Tools

Medic in Paper Team
- pen & clipboard

Medic in Electronic Team
- PDA

Incident Commander Paper Team
- radio

Incident Commander Electronic Team
- aerial video
- sensor data
Pre-Drill Training

- Electronic Team Group Training
 - 10 minutes
 - Medics played with devices
- Paper Team pre-trained by standard EMS procedures
Disaster Drill Process

- Patients triaged and held on scene for 30 minutes
 - EMS Protocol: Patients *should* be reassessed every 3 - 15 min
- Highest priority patients transported to Hospital
- Remaining patients transported to Auxiliary Care Center
Drill Results

Post Drill Debrief

- “This was a more efficient way to keep track of triage counts”
 - (mean=4.86, s =0.38)

- “With more training, I would be more likely to endorse this equipment”
 - (mean= 4.25, s =0.5)

- “Electronic triage tags helped me work more efficiently”
 - First responders
 - (mean= 2.3, s =1.1)
 - Officers
 - (mean= 4.6, s =0.55)

<table>
<thead>
<tr>
<th></th>
<th>Paper Team</th>
<th>Electronic Team</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to initially triage 10 patients</td>
<td>9 min</td>
<td>8 min 40 sec</td>
</tr>
<tr>
<td>Total Triage performed</td>
<td>29</td>
<td>72</td>
</tr>
<tr>
<td># calls by Transport Officer</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td># calls by Incident Command</td>
<td>42</td>
<td>20</td>
</tr>
</tbody>
</table>
Concluding Remarks

<table>
<thead>
<tr>
<th>Principle</th>
<th>Application to emergency medical response applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessibility and Customizability</td>
<td>One hand operation of PDAs</td>
</tr>
<tr>
<td></td>
<td>Provide multiple types of alarms indicators</td>
</tr>
<tr>
<td></td>
<td>Allow manual override of automation</td>
</tr>
<tr>
<td>Minimize Hazards and Errors</td>
<td>Prevent user mistakes</td>
</tr>
<tr>
<td></td>
<td>Minimize false alarms</td>
</tr>
<tr>
<td></td>
<td>Eliminate, protect against, or warn of hazards</td>
</tr>
<tr>
<td>Plan for failures</td>
<td>Device failure</td>
</tr>
<tr>
<td></td>
<td>Unreliable network</td>
</tr>
<tr>
<td></td>
<td>Provide backups</td>
</tr>
<tr>
<td>Wearability</td>
<td>Consider weight, size, battery-life, sensor types</td>
</tr>
<tr>
<td></td>
<td>Devices must be water-resistant to decontamination procedures</td>
</tr>
</tbody>
</table>
Future Challenges

- Lots of user roles, many unpredictable factors
- Ease of Use
 - Limited training time, backup capabilities
- Discovery of Human Error
- Lack of trust in technology
- Need for workflow changes
 - New technologies warrant new methodologies for emergency response
Acknowledgements

For more information: http://www.aid-n.org Tia Gao tgao3@jhu.edu

Technology Collaborators

Matt Welsh, Harvard University
Leo Selavo, Univ. of Virginia
Gilmer Blankenship, Univ. of Maryland
Cliff Andrews, Optimus Corporation
Jonathan Gaev, ECRI
Bijan Mashayekhi, NLM

Medical Community

Gordon Aoyagi, Mont. Co. DHS
Kathy Hurt-Mullen, Mont. Co. HHS
Harold Lehmann, Johns Hopkins Medicine
Arjun Chanmugam, Johns Hopkins Medicine
Matt Kim, Johns Hopkins Medicine
Bob Rothstein, Suburban Hospital
Cindy Notobartolo, Suburban Hospital
Pat Hawes, Suburban Hospital