We have developed the software package MTpy, which allows for the handling, processing, and imaging of magnetotelluric data sets. It is written in Python and the code is open-source. The setup of this package follows the modular approach of successful software packages like GMT or Obspy. It contains sub-packages and modules for supporting processing, handling, and analysis of MT data.

Within the geophysical techniques, magnetotellurics (MT) is a relatively immature method. It is still not as widely spread as other methods like seismics, and as a result, the file handling and processing software within the academic community is mainly based on a loose collection of codes, often tightly adapted to the respective local specifications. Although tools for the estimation of the impedance tensor, as well as inversion and modeling codes, are generally available, the standards and software for handling MT data are not unified throughout the community. We aim to overcome problems that arise from this lack of standards, and to simplify the general handling of MT data with the help of MTpy.

Our goal is not to produce a static collection of software, we rather introduce MTpy as a flexible framework, which will be dynamically extended into a versatile supplement for existing algorithms in the future. We introduce the concept and structure of MTpy, and we illustrate the workflow of MT data processing utilizing MTpy on example data sets from geothermal exploration sites in South Australia and Ethiopia.

MTpy
a Python Toolbox for Magnetotellurics
software for MT data processing and analysis

Abstract

We have developed the software package MTpy, which allows for the handling, processing, and imaging of magnetotelluric data sets. It is written in Python and the code is open-source. The setup of this package follows the modular approach of successful software packages like GMT or Obspy. It contains sub-packages and modules for supporting processing, handling, and analysis of MT data.

Within the geophysical techniques, magnetotellurics (MT) is a relatively immature method. It is still not as widely spread as other methods like seismics, and as a result, the file handling and processing software within the academic community is mainly based on a loose collection of codes, often tightly adapted to the respective local specifications. Although tools for the estimation of the impedance tensor, as well as inversion and modeling codes, are generally available, the standards and software for handling MT data are not unified throughout the community. We aim to overcome problems that arise from this lack of standards, and to simplify the general handling of MT data with the help of MTpy.

Our goal is not to produce a static collection of software, we rather introduce MTpy as a flexible framework, which will be dynamically extended into a versatile supplement for existing algorithms in the future. We introduce the concept and structure of MTpy, and we illustrate the workflow of MT data processing utilizing MTpy on example data sets from geothermal exploration sites in South Australia and Ethiopia.

MTpy... a Python Toolbox for Magnetotellurics
L. Krieger, J. Peacock, S. Thié, K. Inverarity, K. Robertson
South Australian Centre for Geothermal Energy Research
University of Adelaide, Adelaide 5005, Australia

Acknowledgments:
This work is partly funded by the South Australian Centre for Geothermal Energy Research and Communications Technology Research Centre of Excellence.

References
MTpy... a Python Toolbox for Magnetotellurics
L. Krieger, J. Peacock, S. Thié, K. Inverarity, K. Robertson
South Australian Centre for Geothermal Energy Research
University of Adelaide, Adelaide 5005, Australia

We have developed the software package MTpy, which allows for the handling, processing, and imaging of magnetotelluric data sets. It is written in Python and the code is open-source. The setup of this package follows the modular approach of successful software packages like GMT or Obspy. It contains sub-packages and modules for supporting processing, handling, and analysis of MT data.

Within the geophysical techniques, magnetotellurics (MT) is a relatively immature method. It is still not as widely spread as other methods like seismics, and as a result, the file handling and processing software within the academic community is mainly based on a loose collection of codes, often tightly adapted to the respective local specifications. Although tools for the estimation of the impedance tensor, as well as inversion and modeling codes, are generally available, the standards and software for handling MT data are not unified throughout the community. We aim to overcome problems that arise from this lack of standards, and to simplify the general handling of MT data with the help of MTpy.

Our goal is not to produce a static collection of software, we rather introduce MTpy as a flexible framework, which will be dynamically extended into a versatile supplement for existing algorithms in the future. We introduce the concept and structure of MTpy, and we illustrate the workflow of MT data processing utilizing MTpy on example data sets from geothermal exploration sites in South Australia and Ethiopia.

MTpy
a Python Toolbox for Magnetotellurics
software for MT data processing and analysis

Abstract

We have developed the software package MTpy, which allows for the handling, processing, and imaging of magnetotelluric data sets. It is written in Python and the code is open-source. The setup of this package follows the modular approach of successful software packages like GMT or Obspy. It contains sub-packages and modules for supporting processing, handling, and analysis of MT data.

Within the geophysical techniques, magnetotellurics (MT) is a relatively immature method. It is still not as widely spread as other methods like seismics, and as a result, the file handling and processing software within the academic community is mainly based on a loose collection of codes, often tightly adapted to the respective local specifications. Although tools for the estimation of the impedance tensor, as well as inversion and modeling codes, are generally available, the standards and software for handling MT data are not unified throughout the community. We aim to overcome problems that arise from this lack of standards, and to simplify the general handling of MT data with the help of MTpy.

Our goal is not to produce a static collection of software, we rather introduce MTpy as a flexible framework, which will be dynamically extended into a versatile supplement for existing algorithms in the future. We introduce the concept and structure of MTpy, and we illustrate the workflow of MT data processing utilizing MTpy on example data sets from geothermal exploration sites in South Australia and Ethiopia.

MTpy
a Python Toolbox for Magnetotellurics
software for MT data processing and analysis

Abstract

We have developed the software package MTpy, which allows for the handling, processing, and imaging of magnetotelluric data sets. It is written in Python and the code is open-source. The setup of this package follows the modular approach of successful software packages like GMT or Obspy. It contains sub-packages and modules for supporting processing, handling, and analysis of MT data.

Within the geophysical techniques, magnetotellurics (MT) is a relatively immature method. It is still not as widely spread as other methods like seismics, and as a result, the file handling and processing software within the academic community is mainly based on a loose collection of codes, often tightly adapted to the respective local specifications. Although tools for the estimation of the impedance tensor, as well as inversion and modeling codes, are generally available, the standards and software for handling MT data are not unified throughout the community. We aim to overcome problems that arise from this lack of standards, and to simplify the general handling of MT data with the help of MTpy.

Our goal is not to produce a static collection of software, we rather introduce MTpy as a flexible framework, which will be dynamically extended into a versatile supplement for existing algorithms in the future. We introduce the concept and structure of MTpy, and we illustrate the workflow of MT data processing utilizing MTpy on example data sets from geothermal exploration sites in South Australia and Ethiopia.

MTpy
a Python Toolbox for Magnetotellurics
software for MT data processing and analysis

Abstract

We have developed the software package MTpy, which allows for the handling, processing, and imaging of magnetotelluric data sets. It is written in Python and the code is open-source. The setup of this package follows the modular approach of successful software packages like GMT or Obspy. It contains sub-packages and modules for supporting processing, handling, and analysis of MT data.

Within the geophysical techniques, magnetotellurics (MT) is a relatively immature method. It is still not as widely spread as other methods like seismics, and as a result, the file handling and processing software within the academic community is mainly based on a loose collection of codes, often tightly adapted to the respective local specifications. Although tools for the estimation of the impedance tensor, as well as inversion and modeling codes, are generally available, the standards and software for handling MT data are not unified throughout the community. We aim to overcome problems that arise from this lack of standards, and to simplify the general handling of MT data with the help of MTpy.

Our goal is not to produce a static collection of software, we rather introduce MTpy as a flexible framework, which will be dynamically extended into a versatile supplement for existing algorithms in the future. We introduce the concept and structure of MTpy, and we illustrate the workflow of MT data processing utilizing MTpy on example data sets from geothermal exploration sites in South Australia and Ethiopia.

MTpy
a Python Toolbox for Magnetotellurics
software for MT data processing and analysis

Abstract

We have developed the software package MTpy, which allows for the handling, processing, and imaging of magnetotelluric data sets. It is written in Python and the code is open-source. The setup of this package follows the modular approach of successful software packages like GMT or Obspy. It contains sub-packages and modules for supporting processing, handling, and analysis of MT data.

Within the geophysical techniques, magnetotellurics (MT) is a relatively immature method. It is still not as widely spread as other methods like seismics, and as a result, the file handling and processing software within the academic community is mainly based on a loose collection of codes, often tightly adapted to the respective local specifications. Although tools for the estimation of the impedance tensor, as well as inversion and modeling codes, are generally available, the standards and software for handling MT data are not unified throughout the community. We aim to overcome problems that arise from this lack of standards, and to simplify the general handling of MT data with the help of MTpy.

Our goal is not to produce a static collection of software, we rather introduce MTpy as a flexible framework, which will be dynamically extended into a versatile supplement for existing algorithms in the future. We introduce the concept and structure of MTpy, and we illustrate the workflow of MT data processing utilizing MTpy on example data sets from geothermal exploration sites in South Australia and Ethiopia.