

VIRTUAL CHEMISTRY PRACTICALS AT OBAFEMI AWOLOWO UNIVERSITY, NIGERIA

Prof. Francis O.I. Asubiojo, Centre for Distance Learning, Obafemi Awolowo University, Ile-Ife, Nigeria Prof. Lawrence O. Kehinde, Department of Electronic and Electrical Engineering, Obafemi Awolowo University, Ile-Ife, Nigeria


BACKGROUND

- Over 25,000 student population at the Obafemi Awolowo University (Nigeria),
- About 4,200 students take one form of undergraduate practical chemistry or the other.
- Overcrowded Labs Due to lack of adequate laboratory equipment and supplies
- Regular practical classes supplemented by virtual experiments.
- Collaboration between the chemistry group and the software engineering group of the University.

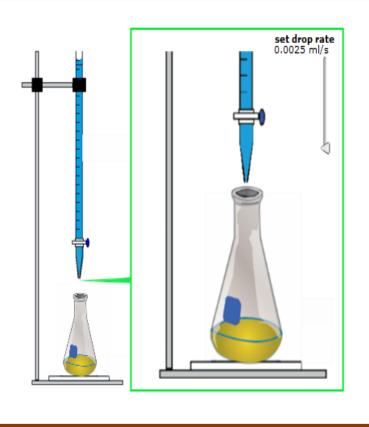
SOLUTION: VIRTUAL EXPERIMENTS

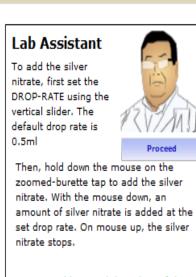
EXPERIMENTS DESIGNED

- Experiments designed with the support of the Wolfson foundation.
 - Chloride Determination
 - Conductivity Determination
 - Recrystallization and Melting point Determination

DESIGN PROCESS FOR VIRTUAL EXPERIMENTS

- Chemist: Prepare a story board for each experiment
 - The story board tells the procedure for carrying out the experiment
- Chemist: Obtain / determine the mathematical models for each experiment
 - For example, the equation relating the solubility of a solute to the mass of the solute, the volume of the solvent and the temperature.
- Software developer: Design graphic objects for each experiment
- Software developer: Design the Adobe Flash movie for each experiment
- Chemist: Test the developed virtual lab for consistency with science


- Ensure that students get almost all the expected learning outcomes in a real lab, from the virtual lab.
- Chemist and Software Developer: Improve designed lab for better pedagogic value if necessary


<u>CHLORIDE</u> MEASUREMENT

• To determine chloride content of a provided water sample

Chloride Measurement Experiment

Apparatus Bench

Continue adding until the colour of the solution changes gradually from yellow to reddish-brown; Once the solution changes to reddish-brown, click on the proceed button

Need more help? click here

• To determine the electrical conductivity of a provided water sample

Electrical Conductivity Measurement


Apparatus Bench

Image: Construction of the second second

RECRYSTALIZATION AND MELTING POINT DETERMINATION

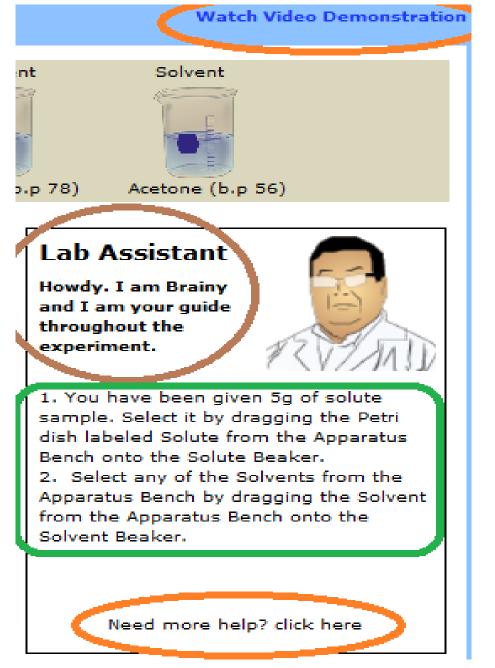
- To purify a given crystalline sample via recrystallization method
- To determine the given sample by obtaining purified sample's boiling point

GENERAL FEATURES OF THE VIRTUAL EXPERIMENTS

 An apparatus bench containing the materials Appa and equipment for each experiment

ratus Bench			Solvent
\bigcirc	\bigcirc		L.E.
Solute A (5g)	Solute B (5g)	Solute C (5g)	Water (b.p 100)

Conductivity Meter


CONCLUSION

The effectiveness of this method will be evaluated soon after its launching. The feedback mechanism will help to provide some measure of quality control to the whole virtual experimentation process.

- A step-by-step set of instructions given by a 'virtual laboratory assistanct'
- Instruction to proceed to the next step on the successful execution of each operation
- A help guide describing the theory and procedure for performing each experiment in real laboratory

(and video for recrystalization experiment)

- Pilot test of each virtual experiment by a select group of students who have previously carried out the same experiments in the real laboratory
- Pilot test of each virtual experiment by another set of students prior to doing the same experiments in the real laboratory
- Testing of each virtual experiment by instructors who normally supervise these experiments in real laboratory
- Feedback from the two sets of students on their learning experience as well as the instructors
- Refinement of the virtual experiments based on the feedback
- Use of the refined virtual experiments as supplements to real experiments at OAU and eventually at other Nigerian Universities

Phone: +234 (0) 803 7251535; Email: fasubi@oauife.edu.ng Website: http://www.oaucdl.edu.ng http://62.173.43.104