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Abstract

Let 1I,, denote the lattice of partitions of an n-set, ordered by refinement.
We show that for all large n there exist antichains in II,, whose size exceeds
n'/%38(n, K,). Here §(n, I,) is the largest Stirling number of the second kind
for fixed n, which equals the largest rank within II,,. Some of the more compli-
cated aspects of our previous proof of this result are avoided, and the variance
of a certain random variable Z which plays a key role in the construction is
determined to within O(1).

1 The problem.

Let S be a finite set with n elements. A partition of S is a collection of pairwise
disjoint subsets of 5, called blocks, whose union is 5. We say that partition 7y refines
partition 7y, denoted 71 < g, provided 7y is obtained from my by further partitioning
one or more blocks of m3. Thus, for example, when n = 8 and S = {1,2,...,8}, we
have 71 < 75 for
L= {{17 37 8}7 {2}7 {47 6}7 {57 7}}
T2 = {{17 37 8}{27 57 7}7 {47 6}}

Under the refinement relation the set II, of all partitions of an n-set is a partially
ordered set (poset), in fact, a lattice, and the problem is to find large antichains in
this poset. An antichain in a poset is a collection of elements no two of which are
related.

How shall we decide if an antichain in the partition lattice II,, is “large” in the
absence of a proven upper bound? Observe that when 7y < w5 the partition 7 has
more blocks than m3. Thus the set of all partitions having a fixed number of blocks,
say k blocks, is an antichain. The size of this antichain is S(n, k), the Stirling number
of the second kind; we let S(n, K,,) denote the largest Stirling number of the second
kind. It has been known since [1] that there exist antichains within II,, which for all
large n are strictly larger than S(n, K,,). However, all such antichains constructed
to date have cardinality asymptotically equal to S(n, K,). It is the purpose of this
paper to construct antichains A C II,, such that |A|/S(n, K,) — .

The important ideas for this construction can be traced to the 1985 work [4]. The
latter gave a heuristic, though not rigorously established, argument that antichains
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A existed for which |A|/S(n, K,,) > 1.6. It was in an effort to establish this latter
inequality with full rigor that the even better result reported here was found.
Our main result, that for all large n there exist antichains satisfying

A] > n/*58(n, K,,) (1.1)

will appear in [2]. However, the present paper differs in three essential ways from the
latter: (i) the argument is shorter and simpler; (ii) the especially complicated proof,
involving characteristic functions, that a compact family of random variables Z (see
Section 2) is uniformly asymptotically normal has been replaced by the very simple,
though less precise, Lemma 3.1 which relies only on Chebyshev’s inequality; (iii) a
better bound for the error in our estimate of Var (7) — see Lemma 3.2 — is obtained
in a very direct way.

2 Construction of a family of antichains.
Let N; be the integer-valued function defined on II,, by the rule

N;(7) = # blocks of size j in 7.

We shall regard N; as a random variable by considering II,, endowed with the uniform
probability measure. This is the underlying probability space for all random variables
discussed in this paper.

Now suppose A;,1 <3 < n,is a sequence of real coefficients satisfying

min A; + AJ‘ — Ai-l—j =A>0, (21)
27]

and consider the random variable Z defined by
Z =Y A;N;. (2.2)
7=1

When a partition 7 is refined two blocks of sizes ¢ and j are created and one of size
i + 7 is lost; by (2.1) Z(7) changes by at least A. Since no two partitions related by
refinement can have Z-values belonging to a half open interval of width A, it follows
that for any sequence A; satisfying (2.1) and any & the set

{mﬁ_%<ﬂﬂgﬂ+%} (2.3)

is an antichain.

3 The size of the constructed anti chains.

For each real sequence A; such that A;4; — A; — A; > 0 and each real £ we have an
antichain (2.3). In this section we prove two lemmas about the size of these antichains.



Lemma 3.1 Let Z be any random variable with variance o*, X > 0 a real number,
and assume Ao < 1. Then there exists k such that

A A 3 A
Prob{rx——2 < Z<k+24p>-—C2,
TO {/4; 2< _/<;—|—2} 50 o

Proof. By Chebyshev’s inequality,
o

The half open interval (—2, 4+2] can be covered by disjoint half open intervals of length
< Ao, using at most 40 /A 4+ 1 such intervals. Hence, for at least one of these, say

(L, U], we have

7 —FE(Z 4 4 A A
Prob | 2= EA) gl > 34 3 A 3 A
ol 40/)\—|—1 4420 20 o

W | o

Hence we have the lemma by taking xk = E(7) + %0‘. O
;From Lemma 3.1 it is clear that we wish to minimize Var (7); the next lemma
estimates the latter quantity in the special case where 7 is given by (2.2).

Lemma 3.2 Lel Z =377 A;N; and let r be the real posilive solution lo the equation
re” =n. Then

where

uniformly over all coefficient sequences A; satisfying A; = O(1).
Proof. We evaluate Var (7) by the formula
VELI’ ) + E A]Ak COV (N]‘, Nk)

1 1<j,k<n

77k

Var(Z) = E(Z%) — =
-
(3.1)
The variances and covariances appearing in (3.1) can be expressed exactly in terms
of the Bell numbers. (The n-th Bell number B,, equals |IL,|, the size of the partition
lattice.) Namely,

B = () B (32)

2\ ] (n)Qj )
BN = (V) + (3Bl By (33)



(1) j+
E(N;Ny) = j!;d Bu_j—r/Bn. (3.4)
To illustrate we prove (3.3); the other two can be demonstrated similarly. The random
variable N;(N; — 1) counts the ways to distinguish an ordered pair of distinct blocks
of size j in a partition. Since N? = N; 4+ N;(N; — 1), formula (3.3) follows when we
see that

BN, = 1)) = {42 B B, (3.5

But a partition with two distinguished j-blocks can be created by choosing the first j-
block, then the second, then an arbitrary partition on the remaining n — 25 elements.
This can be done in ( ? ( " j_ J
The next step in evaluating Var (7) is to use the Moser Wyman [5] approximation

of the Bell numbers. We need both upper bounds that hold uniformly for 1 < 5 < n,
as well as more exact asymptotic expansions for j = O(r). The essential tool is the

Moser Wyman formula which we state without proof:

Bn—2; ways, yielding (3.5).

(n+h)!  exp(e’ —1) Py + hP + h?P,
Bn—l—h = T

rrth (2xr(r + 1)em)V/?

+0@43) (3.6)

€

We have modified slightly the original formula found in [5] so that a set of numbers
Bnyn may all be estimated in terms of the same parameter r. In (3.6) the big-oh
term on the right is uniform for positive and negative integers h satisfying h = O(r);
Py, Pi, and P, are rational functions of r which satisfy

—1/2
PO = O(l),Pl = O(T_l),PQ = r(r—il)
We find immediately from (3.6)
B,_
= (1407 (3.7)

and B p 2
(n); Br—j g (1 + A S R + 0(6—27“)) 7 (3.8)
eT

the latter uniformly for j = O(r). We also calculate from (3.6) that

(n+1)B, nB,1 1 5
- =14+ ———+0(E "
B B, + r(r+1)er +0(e™),

which tells us that the sequence nB,_1/B, is ultimately increasing, say for n > ng.

We have
(n);Boj T (+ 1B

and by monotonicity and (3.7) all but at most ng of the factors on the right are less
than r(1 + O(rn™')). However, the finitely many factors not covered by monotonicity



will nevertheless certainly be less than r for large enough n, and so we have the useful
inequality

(7);Bn—j

B = O(r7), uniformly 1 < j <n
Combining (3.2) -

(3.4) and the bound (3.9) we find, uniformly for 1 < j <n

E(N;) = O(r' /j)

(3.10)

Var (N;) = O (S—], - (%)2) (3.11)

it
Cov (N;, Ny) =0 (]’k’) . (3.12)

It we restrict 7, k to be, say, less than 10r, then we can maintain greater precision by
combining (3.2) - i

(3.4) with (3.8) to compute

i —jP + 2P
E(N],):f_(HM

—2r
! e’ +0(e ))

Var (N;) = E(N;) + (ﬁ) (QJSPZ +0le _ZT))

itk (95k P
Cov (N, Ni) = r.'k’ ( JB2 + O(e_ZT) )
JIE!

(3.13)

(3.14)

= (3.15)

We are almost ready to complete the lemma but first we must bound the tails of

several sums. The sum 3750, r7 /7! is less than a constant times its first term (using
a geometric series), and the first term is by Stirling’s formula O(

e~ 197). Thus
(A= 0(1) X it = O,

j>10r
Further, using

(1)2 1 (2] ) 5
- = — . < -
j! (2)P\ 2

we find

(27)"

/ — 0(6_20T)
> : j>10r (27)!
and

S (;) — (™),

Combining these observations we have

Zn: *Var (N;)

7=1

& ( ) (QJePZ +Ofe ‘”)) + O(e™)



2j2P
= Y (4 +Z () L2 1 031)
j<1or j<10r €
n n 272 P
_ +3 (4 ( ) L2 1o, (3.16)
j= 1 j=1 €

Because

.I*

ritk
2 A4, =0 Z
g > 10r 7210
J7k

and similarly for the summation where k£ > 10r and j # k, we find also that

rk —9r
Z T = O(e )7
E>1

E A]Ak COV (N],Nk) == E A]Akﬂ (2P2]k + O(G_QT))
1 <jk<n 1 <j k< 10r AN
J#Fk JF#Fk
_ > A; Akrj'z 282k 1 o)
1 <5,k <10r

JF#Fk
J+k
_ > AAJW 2Py k
1<j,k<n
JF#Fk
Combining (3.1), (3.16), and (3.17) we have

FO(1). (3.17)

e’/’

n

Var ( Z ]/j

=1

. (ijflﬂj/ﬂ) +o(),

which is the desired result. O

4 Choosing A; so that Var(Z) is small.

We continue to let r be the unique real solution to re” =n. Define A;;1 < j < n, as

A = { ifr, J€(rr2mr]

follows:

1,  otherwise.

Here 7 is a real parameter, approximately 2/3, whose exact value will be revealed

later. There is some natural motivation to let A; be proportional to j when trying to

minimize Var(Z): if A; = j then ¥A;N; = n, a constant, and Var (Z) = 0. However,

letting A; = j violates condition (2.1). The largest interval on which we can let A; be

proportional to j without violating (2.1) is a half open interval of the form (7r,277r].
By considering various cases we find that

minA; +A; — A, >1—1.
27]



(For the latter it is necessary to know that 7 > 2/3, but this will be seen to be
true shortly.) Let us denote by J and K the two integers such that the “otherwise”
condition in the definition of A; holds for 3 < J or y > K. Then we have, in the
notation of Lemma 3.2,

i ) A

_ A I =1y, r T

b=Y(A) " /jl=1+r")e+0 J!+I(! ) (4.1)
The first quantity on the right is the result of summing (j/r)%r?/;! for j > 1; the
second term makes up for the error committed in doing so. For j < 7r and j > 27r
the terms 7 /! are bounded by geometric series whose ratios are bounded away from
1. In a similar manner

. o ) A
C:EJA]‘T]/]!:(T—I-l)e —I—TO(ﬁ—I—K!). (4.2)

;From (4.1) and (4.2), using Lemma (3.2), we find

TJ r]x’

Var (Z) = O (j + K!) +0(1).

We now choose the parameter 7 to make the quantities r//J! and r/K! be of the

same order of magnitude; this leads to

T =¢/4

5 Conclusions.

When J = £r, to within 1, we find by Stirling’s formula that
) JV =0 (46T/4r_1/2) ,

2

and likewise r* / K'! where K is within 1 of cr. Let us express 0* as a power of n thus

o2 = O (26r/2r—1/2)
- 0 (e(elogZ)T/Zr—l/Q)
= 0 (n(610g2)/2r—ﬁ) 7

where we obtain the latter by replacing ¢” with n/r. Hence, g = (1 + elog2)/2. Let
A be the antichain corresponding to the sequence A; with x chosen by Lemma 3.1.
Invoking Lemma 3.2 and the well known [4]

B, = (Var +0(1)) S(n, K, )n'?/r,

we find, for suitable ¢ > 0,
> il__TBn
- 20 o
n'/?/r
cnelog2/4/rﬁ/2

> n1/355(n, K,),

Al

S(n, K,)

as
1 1 elog?2

2>35+ 4
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