A Simplified Guide to Large Antichains in the Partition Lattice

E. R. Canfield University of Georgia

L. H. Harper
University of California, Riverside

December 13, 1999

Abstract

Let Π_{n} denote the lattice of partitions of an n-set, ordered by refinement. We show that for all large n there exist antichains in Π_{n} whose size exceeds $n^{1 / 35} S\left(n, K_{n}\right)$. Here $S\left(n, K_{n}\right)$ is the largest Stirling number of the second kind for fixed n, which equals the largest rank within Π_{n}. Some of the more complicated aspects of our previous proof of this result are avoided, and the variance of a certain random variable Z which plays a key role in the construction is determined to within $O(1)$.

1 The problem.

Let S be a finite set with n elements. A partition of S is a collection of pairwise disjoint subsets of S, called blocks, whose union is S. We say that partition π_{1} refines partition π_{2}, denoted $\pi_{1}<\pi_{2}$, provided π_{1} is obtained from π_{2} by further partitioning one or more blocks of π_{2}. Thus, for example, when $n=8$ and $S=\{1,2, \ldots, 8\}$, we have $\pi_{1}<\pi_{2}$ for

$$
\begin{aligned}
\pi_{1} & =\{\{1,3,8\},\{2\},\{4,6\},\{5,7\}\} \\
\pi_{2} & =\{\{1,3,8\}\{2,5,7\},\{4,6\}\}
\end{aligned}
$$

Under the refinement relation the set Π_{n} of all partitions of an n-set is a partially ordered set (poset), in fact, a lattice, and the problem is to find large antichains in this poset. An antichain in a poset is a collection of elements no two of which are related.

How shall we decide if an antichain in the partition lattice Π_{n} is "large" in the absence of a proven upper bound? Observe that when $\pi_{1}<\pi_{2}$ the partition π_{1} has more blocks than π_{2}. Thus the set of all partitions having a fixed number of blocks, say k blocks, is an antichain. The size of this antichain is $S(n, k)$, the Stirling number of the second kind; we let $S\left(n, K_{n}\right)$ denote the largest Stirling number of the second kind. It has been known since [1] that there exist antichains within Π_{n} which for all large n are strictly larger than $S\left(n, K_{n}\right)$. However, all such antichains constructed to date have cardinality asymptotically equal to $S\left(n, K_{n}\right)$. It is the purpose of this paper to construct antichains $A \subseteq \Pi_{n}$ such that $|A| / S\left(n, K_{n}\right) \rightarrow \infty$.

The important ideas for this construction can be traced to the 1985 work [4]. The latter gave a heuristic, though not rigorously established, argument that antichains
A existed for which $|A| / S\left(n, K_{n}\right)>1.6$. It was in an effort to establish this latter inequality with full rigor that the even better result reported here was found.

Our main result, that for all large n there exist antichains satisfying

$$
\begin{equation*}
|A| \geq n^{1 / 35} S\left(n, K_{n}\right) \tag{1.1}
\end{equation*}
$$

will appear in [2]. However, the present paper differs in three essential ways from the latter: (i) the argument is shorter and simpler; (ii) the especially complicated proof, involving characteristic functions, that a compact family of random variables Z (see Section 2) is uniformly asymptotically normal has been replaced by the very simple, though less precise, Lemma 3.1 which relies only on Chebyshev's inequality; (iii) a better bound for the error in our estimate of $\operatorname{Var}(Z)$ - see Lemma 3.2 - is obtained in a very direct way.

2 Construction of a family of antichains.

Let N_{j} be the integer-valued function defined on Π_{n} by the rule

$$
N_{j}(\pi)=\# \text { blocks of size } j \text { in } \pi .
$$

We shall regard N_{j} as a random variable by considering Π_{n} endowed with the uniform probability measure. This is the underlying probability space for all random variables discussed in this paper.

Now suppose $A_{j}, 1 \leq j \leq n$, is a sequence of real coefficients satisfying

$$
\begin{equation*}
\min _{i, j} A_{i}+A_{j}-A_{i+j}=\lambda>0 \tag{2.1}
\end{equation*}
$$

and consider the random variable Z defined by

$$
\begin{equation*}
Z=\sum_{j=1}^{n} A_{j} N_{j} . \tag{2.2}
\end{equation*}
$$

When a partition π is refined two blocks of sizes i and j are created and one of size $i+j$ is lost; by (2.1) $Z(\pi)$ changes by at least λ. Since no two partitions related by refinement can have Z-values belonging to a half open interval of width λ, it follows that for any sequence A_{j} satisfying (2.1) and any κ the set

$$
\begin{equation*}
\left\{\pi: \kappa-\frac{\lambda}{2}<Z(\pi) \leq \kappa+\frac{\lambda}{2}\right\} \tag{2.3}
\end{equation*}
$$

is an antichain.

3 The size of the constructed anti chains.

For each real sequence A_{j} such that $A_{i+j}-A_{i}-A_{j}>0$ and each real κ we have an antichain (2.3). In this section we prove two lemmas about the size of these antichains.

Lemma 3.1 Let Z be any random variable with variance $\sigma^{2}, \lambda>0$ a real number, and assume $\lambda / \sigma \leq 1$. Then there exists κ such that

$$
\text { Prob }\left\{\kappa-\frac{\lambda}{2}<Z \leq \kappa+\frac{\lambda}{2}\right\} \geq \frac{3}{20} \frac{\lambda}{\sigma} .
$$

Proof. By Chebyshev's inequality,

$$
\text { Prob }\left\{-2<\frac{Z-E(Z)}{\sigma} \leq+2\right\} \geq \frac{3}{4}
$$

The half open interval $(-2,+2]$ can be covered by disjoint half open intervals of length $\leq \lambda / \sigma$, using at most $4 \sigma / \lambda+1$ such intervals. Hence, for at least one of these, say ($L, U]$, we have

$$
\text { Prob }\left\{\frac{Z-E(Z)}{\sigma} \in(L, U]\right\} \geq \frac{3 / 4}{4 \sigma / \lambda+1}=\frac{3 / 4}{4+\frac{\lambda}{\sigma}} \frac{\lambda}{\sigma} \geq \frac{3}{20} \frac{\lambda}{\sigma}
$$

Hence we have the lemma by taking $\kappa=E(Z)+\frac{U-L}{2} \sigma$.
¿From Lemma 3.1 it is clear that we wish to minimize $\operatorname{Var}(Z)$; the next lemma estimates the latter quantity in the special case where Z is given by (2.2).

Lemma 3.2 Let $Z=\sum_{j=1}^{n} A_{j} N_{j}$ and let r be the real positive solution to the equation $r e^{r}=n$. Then

$$
\operatorname{Var}(Z)=b-\frac{c^{2}}{r(r+1) e^{r}}+O(1)
$$

where

$$
\begin{aligned}
b & =\sum_{j=1}^{n}\left(A_{j}\right)^{2} r^{j} / j! \\
c & =\sum_{j=1}^{n} j A_{j} r^{j} / j!
\end{aligned}
$$

uniformly over all coefficient sequences A_{j} satisfying $A_{j}=O(1)$.
Proof. We evaluate Var (Z) by the formula

$$
\operatorname{Var}(Z)=E\left(Z^{2}\right)-E(Z)^{2}=\sum_{j=1}^{n}\left(A_{j}\right)^{2} \operatorname{Var}\left(N_{j}\right)+\sum_{\substack{1 \leq j, k \leq n \\ j \neq k}} A_{j} A_{k} \operatorname{Cov}\left(N_{j}, N_{k}\right)
$$

The variances and covariances appearing in (3.1) can be expressed exactly in terms of the Bell numbers. (The n-th Bell number B_{n} equals $\left|\Pi_{n}\right|$, the size of the partition lattice.) Namely,

$$
\begin{gather*}
E\left(N_{j}\right)=\binom{n}{j} B_{n-j} / B_{n} \tag{3.2}\\
E\left(N_{j}^{2}\right)=E\left(N_{j}\right)+\frac{(n)_{2 j}}{(j!)^{2}} B_{n-2 j} / B_{n} \tag{3.3}
\end{gather*}
$$

$$
\begin{equation*}
E\left(N_{j} N_{k}\right)=\frac{(n)_{j+k}}{j!k!} B_{n-j-k} / B_{n} \tag{3.4}
\end{equation*}
$$

To illustrate we prove (3.3); the other two can be demonstrated similarly. The random variable $N_{j}\left(N_{j}-1\right)$ counts the ways to distinguish an ordered pair of distinct blocks of size j in a partition. Since $N_{j}^{2}=N_{j}+N_{j}\left(N_{j}-1\right)$, formula (3.3) follows when we see that

$$
\begin{equation*}
E\left(N_{j}\left(N_{j}-1\right)\right)=\frac{(n)_{2 j}}{(j!)^{2}} B_{n-2 j} / B_{n} \tag{3.5}
\end{equation*}
$$

But a partition with two distinguished j-blocks can be created by choosing the first j block, then the second, then an arbitrary partition on the remaining $n-2 j$ elements. This can be done in $\binom{n}{j}\binom{n-j}{j} B_{n-2 j}$ ways, yielding (3.5).

The next step in evaluating $\operatorname{Var}(Z)$ is to use the Moser Wyman [5] approximation of the Bell numbers. We need both upper bounds that hold uniformly for $1 \leq j \leq n$, as well as more exact asymptotic expansions for $j=O(r)$. The essential tool is the Moser Wyman formula which we state without proof:

$$
\begin{equation*}
B_{n+h}=\frac{(n+h)!}{r^{n+h}} \frac{\exp \left(e^{r}-1\right)}{\left(2 \pi r(r+1) e^{r}\right)^{1 / 2}}\left(1+\frac{P_{0}+h P_{1}+h^{2} P_{2}}{e^{r}}+O\left(e^{-2 r}\right)\right) \tag{3.6}
\end{equation*}
$$

We have modified slightly the original formula found in [5] so that a set of numbers B_{n+h} may all be estimated in terms of the same parameter r. In (3.6) the big-oh term on the right is uniform for positive and negative integers h satisfying $h=O(r)$; P_{0}, P_{1}, and P_{2} are rational functions of r which satisfy

$$
P_{0}=O(1), P_{1}=O\left(r^{-1}\right), P_{2}=\frac{-1 / 2}{r(r+1)}
$$

We find immediately from (3.6)

$$
\begin{equation*}
\frac{n B_{n-1}}{B_{n}}=r\left(1+O\left(n^{-1}\right)\right) \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{(n)_{j} B_{n-j}}{B_{n}}=r^{j}\left(1+\frac{-j P_{1}+j^{2} P_{2}}{e^{r}}+O\left(e^{-2 r}\right)\right) \tag{3.8}
\end{equation*}
$$

the latter uniformly for $j=O(r)$. We also calculate from (3.6) that

$$
\frac{(n+1) B_{n}}{B_{n+1}} \div \frac{n B_{n-1}}{B_{n}}=1+\frac{1}{r(r+1) e^{r}}+O\left(e^{-2 r}\right)
$$

which tells us that the sequence $n B_{n-1} / B_{n}$ is ultimately increasing, say for $n \geq n_{0}$. We have

$$
\frac{(n)_{j} B_{n-j}}{B_{n}}=\prod_{t=n-j}^{n-1} \frac{(t+1) B_{t}}{B_{t+1}}
$$

and by monotonicity and (3.7) all but at most n_{0} of the factors on the right are less than $r\left(1+O\left(n^{-1}\right)\right)$. However, the finitely many factors not covered by monotonicity
will nevertheless certainly be less than r for large enough n, and so we have the useful inequality

$$
\begin{equation*}
\frac{(n)_{j} B_{n-j}}{B_{n}}=O\left(r^{j}\right), \text { uniformly } 1 \leq j \leq n \tag{3.9}
\end{equation*}
$$

Combining (3.2) - (3.4) and the bound (3.9) we find, uniformly for $1 \leq j \leq n$,

$$
\begin{gather*}
E\left(N_{j}\right)=O\left(r^{j} / j!\right) \tag{3.10}\\
\operatorname{Var}\left(N_{j}\right)=O\left(\frac{r^{j}}{j!}+\left(\frac{r^{j}}{j!}\right)^{2}\right) \tag{3.11}\\
\operatorname{Cov}\left(N_{j}, N_{k}\right)=O\left(\frac{r^{j+k}}{j!k!}\right) \tag{3.12}
\end{gather*}
$$

If we restrict j, k to be, say, less than $10 r$, then we can maintain greater precision by combining (3.2) - (3.4) with (3.8) to compute

$$
\begin{gather*}
E\left(N_{j}\right)=\frac{r^{j}}{j!}\left(1+\frac{-j P_{1}+j^{2} P_{2}}{e^{r}}+O\left(e^{-2 r}\right)\right) \tag{3.13}\\
\operatorname{Var}\left(N_{j}\right)=E\left(N_{j}\right)+\left(\frac{r^{j}}{j!}\right)^{2}\left(\frac{2 j^{2} P_{2}}{e^{r}}+O\left(e^{-2 r}\right)\right) \tag{3.14}\\
\operatorname{Cov}\left(N_{j}, N_{k}\right)=\frac{r^{j+k}}{j!k!}\left(\frac{2 j k P_{2}}{e^{r}}+O\left(e^{-2 r}\right) .\right. \tag{3.15}
\end{gather*}
$$

We are almost ready to complete the lemma but first we must bound the tails of several sums. The sum $\sum_{j \geq 10 r} r^{j} / j$! is less than a constant times its first term (using a geometric series $)$, and the first term is by Stirling's formula $O\left(e^{-10 r}\right)$. Thus

$$
\sum_{j \geq 10 r}\left(A_{j}\right)^{2} r^{j} / j!=O(1) \sum_{j \geq 10 r} r^{j} / j!=O\left(e^{-10 r}\right)
$$

Further, using

$$
\left(\frac{1}{j!}\right)^{2}=\frac{1}{(2 j)!}\binom{2 j}{j}<\frac{2^{2 j}}{(2 j)!}
$$

we find

$$
\sum_{j \geq 10 r}\left(A_{j}\right)^{2}\left(\frac{r^{j}}{j!}\right)^{2}=O(1) \sum_{j \geq 10 r} \frac{(2 r)^{2 j}}{(2 j)!}=O\left(e^{-20 r}\right)
$$

and

$$
\sum_{j \geq 1}\left(A_{j}\right)^{2}\left(\frac{r^{j}}{j!}\right)^{2}=O\left(e^{2 r}\right)
$$

Combining these observations we have

$$
\begin{aligned}
\sum_{j=1}^{n}\left(A_{j}\right)^{2} \operatorname{Var}\left(N_{j}\right) & =\sum_{j<10 r}\left(A_{j}\right)^{2} \frac{r^{j}}{j!}\left(1+O\left(e^{-r}\right)\right) \\
& +\sum_{j<10 r}\left(A_{j}\right)^{2}\left(\frac{r^{j}}{j!}\right)^{2}\left(\frac{2 j^{2} P_{2}}{e^{r}}+O\left(e^{-2 r}\right)\right)+O\left(e^{-10 r}\right)
\end{aligned}
$$

$$
\begin{align*}
& =\sum_{j<10 r}\left(A_{j}\right)^{2} \frac{r^{j}}{j!}+\sum_{j<10 r}\left(A_{j}\right)^{2}\left(\frac{r^{j}}{j!}\right)^{2} \frac{2 j^{2} P_{2}}{e^{r}}+O(1) \\
& =\sum_{j=1}^{n}\left(A_{j}\right)^{2} \frac{r^{j}}{j!}+\sum_{j=1}^{n}\left(A_{j}\right)^{2}\left(\frac{r^{j}}{j!}\right)^{2} \frac{2 j^{2} P_{2}}{e^{r}}+O(1) . \tag{3.16}
\end{align*}
$$

Because

$$
\sum_{\substack{j \geq 10 r \\ j \neq k}} A_{j} A_{k} \frac{r^{j+k}}{j!k!}=O(1) \cdot \sum_{j \geq 10 r} \frac{r^{j}}{j!} \cdot \sum_{k \geq 1} \frac{r^{k}}{k!}=O\left(e^{-9 r}\right)
$$

and similarly for the summation where $k \geq 10 r$ and $j \neq k$, we find also that

$$
\begin{align*}
& \sum_{\substack{1 \leq j, k \leq n \\
j \neq k}} A_{j} A_{k} \operatorname{Cov}\left(N_{j}, N_{k}\right)=\sum_{\substack{1 \leq j, k<10 r}} A_{j} A_{k} \frac{r^{j+k}}{j!k!}\left(\frac{2 P_{2} j k}{e^{r}}+O\left(e^{-2 r}\right)\right) \\
&+\begin{array}{c}
O\left(e^{-9 r}\right) \\
\\
\\
\\
\\
\\
\\
\\
\\
1 \leq \sum_{\substack{j, k<10 r \\
j \neq k}} A_{j} A_{k} \frac{r^{j+k}}{j!k!} \frac{2 P_{2} j k}{e^{r}}+O(1) \\
1 \leq j, k \leq n \\
j \neq k
\end{array} \\
& A_{j} A_{k} \frac{r^{j+k}}{j!k!} \frac{2 P_{2} j k}{e^{r}}+O(1) . \quad \text { (3.17) }
\end{align*}
$$

Combining (3.1), (3.16), and (3.17) we have

$$
\operatorname{Var}(Z)=\sum_{j=1}^{n}\left(A_{j}\right)^{2} r^{j} / j!+\frac{2 P_{2}}{e^{r}}\left(\sum_{j=1}^{n} j A_{j} r^{j} / j!\right)^{2}+O(1)
$$

which is the desired result.

4 Choosing A_{j} so that $\operatorname{Var}(Z)$ is small.

We continue to let r be the unique real solution to $r e^{r}=n$. Define $A_{j}, 1 \leq j \leq n$, as follows:

$$
A_{j}= \begin{cases}j / r, & j \in(\tau r, 2 \tau r] \\ 1, & \text { otherwise } .\end{cases}
$$

Here τ is a real parameter, approximately $2 / 3$, whose exact value will be revealed later. There is some natural motivation to let A_{j} be proportional to j when trying to minimize $\operatorname{Var}(\mathrm{Z})$: if $A_{j}=j$ then $\Sigma A_{j} N_{j}=n$, a constant, and $\operatorname{Var}(Z)=0$. However, letting $A_{j}=j$ violates condition (2.1). The largest interval on which we can let A_{j} be proportional to j without violating (2.1) is a half open interval of the form ($\tau r, 2 \tau r]$.

By considering various cases we find that

$$
\min _{i, j} A_{i}+A_{j}-A_{i+j}>1-\tau .
$$

(For the latter it is necessary to know that $\tau>2 / 3$, but this will be seen to be true shortly.) Let us denote by J and K the two integers such that the "otherwise" condition in the definition of A_{j} holds for $j \leq J$ or $j \geq K$. Then we have, in the notation of Lemma 3.2,

$$
\begin{equation*}
b=\Sigma\left(A_{j}\right)^{2} r^{j} / j!=\left(1+r^{-1}\right) e^{r}+O\left(\frac{r^{J}}{J!}+\frac{r^{K}}{K!}\right) . \tag{4.1}
\end{equation*}
$$

The first quantity on the right is the result of summing $(j / r)^{2} r^{j} / j$! for $j \geq 1$; the second term makes up for the error committed in doing so. For $j<\tau r$ and $j \geq 2 \tau r$ the terms r^{j} / j ! are bounded by geometric series whose ratios are bounded away from 1. In a similar manner

$$
\begin{equation*}
c=\boldsymbol{\Sigma}_{j A_{j} r^{j} / j!=(r+1) e^{r}+r O\left(\frac{r^{J}}{J!}+\frac{r^{K}}{K!}\right)} \tag{4.2}
\end{equation*}
$$

¿From (4.1) and (4.2), using Lemma (3.2), we find

$$
\operatorname{Var}(Z)=O\left(\frac{r^{J}}{J!}+\frac{r^{K}}{K!}\right)+O(1)
$$

We now choose the parameter τ to make the quantities $r^{J} / J!$ and r^{K} / K ! be of the same order of magnitude; this leads to

$$
\tau=e / 4
$$

5 Conclusions.

When $J=\frac{e}{4} r$, to within 1 , we find by Stirling's formula that

$$
r^{J} / J!=O\left(4^{e r / 4} r^{-1 / 2}\right)
$$

and likewise r^{K} / K ! where K is within 1 of $\frac{\epsilon}{2} r$. Let us express σ^{2} as a power of n thus

$$
\begin{aligned}
\sigma^{2} & =O\left(2^{e r / 2} r^{-1 / 2}\right) \\
& =O\left(e^{(e \log 2) r / 2} r^{-1 / 2}\right) \\
& =O\left(n^{(e \log 2) / 2} r^{-\beta}\right)
\end{aligned}
$$

where we obtain the latter by replacing e^{r} with n / r. Hence, $\beta=(1+e \log 2) / 2$. Let A be the antichain corresponding to the sequence A_{j} with κ chosen by Lemma 3.1. Invoking Lemma 3.2 and the well known [4]

$$
B_{n}=(\sqrt{2 \pi}+O(1)) S\left(n, K_{n}\right) n^{1 / 2} / r
$$

we find, for suitable $c>0$,

$$
\begin{aligned}
|A| & \geq \frac{3}{20} \frac{1-\tau}{\sigma} B_{n} \\
& \geq c \frac{n^{1 / 2} / r}{n^{e \log 2 / 4} / r^{\beta / 2}} S\left(n, K_{n}\right) \\
& >n^{1 / 35} S\left(n, K_{n}\right)
\end{aligned}
$$

as

$$
\frac{1}{2}>\frac{1}{35}+\frac{e \log 2}{4}
$$

6 References

1. E. R. Canfield, On a problem of Rota, Advances in Math. 5 (1977) 1-10.
2. E. R. Canfield and L. H. Harper, Large antichains in the partition lattice, Random Structures and Algorithms, to appear.
3. L. H. Harper, Stirling behavior is asymptotically normal, Ann. Math. Stat. 38 (1967) 410-414.
4. L. H. Harper, On a continuous analog of Sperner's problem, Pac. J. Math. 118 (1985) 411-425.
5. L. Moser and M. Wyman, An asymptotic formula for the Bell numbers, Trans. Royal Soc. Canada III 49 (1955) 49-54.
