
A Simpli�ed Guide to Large Antichains in thePartition LatticeE. R. Can�eldUniversity of Georgia L. H. HarperUniversity of California, RiversideDecember 13, 1999AbstractLet �n denote the lattice of partitions of an n-set, ordered by re�nement.We show that for all large n there exist antichains in �n whose size exceedsn1=35S(n;Kn). Here S(n;Kn) is the largest Stirling number of the second kindfor �xed n, which equals the largest rank within �n. Some of the more compli-cated aspects of our previous proof of this result are avoided, and the varianceof a certain random variable Z which plays a key role in the construction isdetermined to within O(1).1 The problem.Let S be a �nite set with n elements. A partition of S is a collection of pairwisedisjoint subsets of S, called blocks, whose union is S. We say that partition �1 re�nespartition �2, denoted �1 < �2, provided �1 is obtained from �2 by further partitioningone or more blocks of �2. Thus, for example, when n = 8 and S = f1; 2; : : : ; 8g, wehave �1 < �2 for �1 = ff1; 3; 8g; f2g; f4; 6g; f5; 7gg�2 = ff1; 3; 8gf2; 5; 7g; f4; 6gg:Under the re�nement relation the set �n of all partitions of an n-set is a partiallyordered set (poset), in fact, a lattice, and the problem is to �nd large antichains inthis poset. An antichain in a poset is a collection of elements no two of which arerelated.How shall we decide if an antichain in the partition lattice �n is \large" in theabsence of a proven upper bound? Observe that when �1 < �2 the partition �1 hasmore blocks than �2. Thus the set of all partitions having a �xed number of blocks,say k blocks, is an antichain. The size of this antichain is S(n; k), the Stirling numberof the second kind; we let S(n;Kn) denote the largest Stirling number of the secondkind. It has been known since [1] that there exist antichains within �n which for alllarge n are strictly larger than S(n;Kn). However, all such antichains constructedto date have cardinality asymptotically equal to S(n;Kn). It is the purpose of thispaper to construct antichains A � �n such that jAj=S(n;Kn)!1.The important ideas for this construction can be traced to the 1985 work [4]. Thelatter gave a heuristic, though not rigorously established, argument that antichains1



A existed for which jAj=S(n;Kn) > 1:6. It was in an e�ort to establish this latterinequality with full rigor that the even better result reported here was found.Our main result, that for all large n there exist antichains satisfyingjAj � n1=35S(n;Kn) (1.1)will appear in [2]. However, the present paper di�ers in three essential ways from thelatter: (i) the argument is shorter and simpler; (ii) the especially complicated proof,involving characteristic functions, that a compact family of random variables Z (seeSection 2) is uniformly asymptotically normal has been replaced by the very simple,though less precise, Lemma 3.1 which relies only on Chebyshev's inequality; (iii) abetter bound for the error in our estimate of Var (Z) { see Lemma 3.2 { is obtainedin a very direct way.2 Construction of a family of antichains.Let Nj be the integer-valued function de�ned on �n by the ruleNj(�) = # blocks of size j in �:We shall regard Nj as a random variable by considering �n endowed with the uniformprobability measure. This is the underlying probability space for all random variablesdiscussed in this paper.Now suppose Aj; 1 � j � n, is a sequence of real coe�cients satisfyingmini;j Ai +Aj �Ai+j = � > 0; (2.1)and consider the random variable Z de�ned byZ = nXj=1AjNj: (2.2)When a partition � is re�ned two blocks of sizes i and j are created and one of sizei+ j is lost; by (2.1) Z(�) changes by at least �. Since no two partitions related byre�nement can have Z-values belonging to a half open interval of width �, it followsthat for any sequence Aj satisfying (2.1) and any � the set(� : �� �2 < Z(�) � �+ �2) (2.3)is an antichain.3 The size of the constructed anti chains.For each real sequence Aj such that Ai+j �Ai �Aj > 0 and each real � we have anantichain (2.3). In this section we prove two lemmas about the size of these antichains.2



Lemma 3.1 Let Z be any random variable with variance �2; � > 0 a real number,and assume �=� � 1. Then there exists � such thatProb (�� �2 < Z � �+ �2) � 320 ��:Proof. By Chebyshev's inequality,Prob (�2 < Z � E(Z)� � +2) � 34 :The half open interval (�2;+2] can be covered by disjoint half open intervals of length� �=�, using at most 4�=� + 1 such intervals. Hence, for at least one of these, say(L;U ], we haveProb (Z � E(Z)� 2 (L;U ]) � 3=44�=� + 1 = 3=44 + �� �� � 320 ��:Hence we have the lemma by taking � = E(Z) + U�L2 �. 2>From Lemma 3.1 it is clear that we wish to minimize Var (Z); the next lemmaestimates the latter quantity in the special case where Z is given by (2.2).Lemma 3.2 Let Z = Pnj=1AjNj and let r be the real positive solution to the equationrer = n. Then Var (Z) = b� c2r(r + 1)er +O(1);where b = nXj=1(Aj)2rj=j!c = nXj=1 jAjrj=j!;uniformly over all coe�cient sequences Aj satisfying Aj = O(1).Proof. We evaluate Var (Z) by the formulaVar(Z) = E(Z2)� E(Z)2 = nXj=1(Aj)2Var (Nj) + �1 � j; k � nj 6= k AjAk Cov (Nj; Nk):(3.1)The variances and covariances appearing in (3.1) can be expressed exactly in termsof the Bell numbers. (The n-th Bell number Bn equals j�nj, the size of the partitionlattice.) Namely, E(Nj) =  nj !Bn�j=Bn (3.2)E(N2j ) = E(Nj) + (n)2j(j!)2Bn�2j=Bn (3.3)3



E(NjNk) = (n)j+kj!k! Bn�j�k=Bn: (3.4)To illustrate we prove (3.3); the other two can be demonstrated similarly. The randomvariable Nj(Nj � 1) counts the ways to distinguish an ordered pair of distinct blocksof size j in a partition. Since N2j = Nj + Nj(Nj � 1), formula (3.3) follows when wesee that E(Nj(Nj � 1)) = (n)2j(j!)2Bn�2j=Bn: (3.5)But a partition with two distinguished j-blocks can be created by choosing the �rst j-block, then the second, then an arbitrary partition on the remaining n�2j elements.This can be done in  nj ! n� jj !Bn�2j ways, yielding (3.5).The next step in evaluating Var (Z) is to use the Moser Wyman [5] approximationof the Bell numbers. We need both upper bounds that hold uniformly for 1 � j � n,as well as more exact asymptotic expansions for j = O(r). The essential tool is theMoser Wyman formula which we state without proof:Bn+h = (n+ h)!rn+h exp(er � 1)(2�r(r + 1)er)1=2  1 + P0 + hP1 + h2P2er +O(e�2r)! (3.6)We have modi�ed slightly the original formula found in [5] so that a set of numbersBn+h may all be estimated in terms of the same parameter r. In (3.6) the big-ohterm on the right is uniform for positive and negative integers h satisfying h = O(r);P0; P1, and P2 are rational functions of r which satisfyP0 = O(1); P1 = O(r�1); P2 = �1=2r(r + 1) :We �nd immediately from (3.6)nBn�1Bn = r(1 +O(n�1)) (3.7)and (n)jBn�jBn = rj  1 + �jP1 + j2P2er +O(e�2r)! ; (3.8)the latter uniformly for j = O(r). We also calculate from (3.6) that(n + 1)BnBn+1 � nBn�1Bn = 1 + 1r(r + 1)er +O(e�2r);which tells us that the sequence nBn�1=Bn is ultimately increasing, say for n � n0.We have (n)jBn�jBn = n�1Yt=n�j (t+ 1)BtBt+1 ;and by monotonicity and (3.7) all but at most n0 of the factors on the right are lessthan r(1 +O(n�1)). However, the �nitely many factors not covered by monotonicity4



will nevertheless certainly be less than r for large enough n, and so we have the usefulinequality (n)jBn�jBn = O(rj); uniformly 1 � j � n: (3.9)Combining (3.2) - (3.4) and the bound (3.9) we �nd, uniformly for 1 � j � n,E(Nj) = O(rj=j!) (3.10)Var (Nj) = O0@rjj! +  rjj!!21A (3.11)Cov (Nj ; Nk) = O  rj+kj!k!! : (3.12)If we restrict j; k to be, say, less than 10r, then we can maintain greater precision bycombining (3.2) - (3.4) with (3.8) to computeE(Nj) = rjj!  1 + �jP1 + j2P2er +O(e�2r)! (3.13)Var (Nj) = E(Nj) +  rjj!!2  2j2P2er +O(e�2r)! (3.14)Cov (Nj; Nk) = rj+kj!k!  2jkP2er +O(e�2r! : (3.15)We are almost ready to complete the lemma but �rst we must bound the tails ofseveral sums. The sum Pj�10r rj=j! is less than a constant times its �rst term (usinga geometric series), and the �rst term is by Stirling's formula O(e�10r). ThusXj�10r(Aj)2rj=j! = O(1) Xj�10r rj=j! = O(e�10r):Further, using  1j!!2 = 1(2j)!  2jj ! < 22j(2j)! ;we �nd Xj�10r(Aj)2  rjj!!2 = O(1) Xj�10r (2r)2j(2j)! = O(e�20r)and Xj�1(Aj)2  rjj!!2 = O(e2r):Combining these observations we havenXj=1(Aj)2Var (Nj) = Xj<10r(Aj)2 rjj! �1 +O(e�r)�+ Xj<10r(Aj)2  rjj!!2  2j2P2er +O(e�2r)!+O(e�10r)5



= Xj<10r(Aj)2 rjj! + Xj<10r(Aj)2  rjj!!2 2j2P2er +O(1)= nXj=1(Aj)2 rjj! + nXj=1(Aj)2  rjj!!2 2j2P2er +O(1): (3.16)Because �j � 10rj 6= k AjAk rj+kj!k! = O(1) � Xj�10r rjj! � Xk�1 rkk! = O(e�9r);and similarly for the summation where k � 10r and j 6= k, we �nd also that�1 � j; k � nj 6= k AjAk Cov (Nj; Nk) = �1 � j; k < 10rj 6= k AjAk rj+kj!k!  2P2jker +O(e�2r)!+ O(e�9r)= �1 � j; k < 10rj 6= k AjAk rj+kj!k! 2P2jker +O(1)= �1 � j; k � nj 6= k AjAk rj+kj!k! 2P2jker +O(1): (3.17)Combining (3.1), (3.16), and (3.17) we haveVar (Z) = nXj=1(Aj)2rj=j! + 2P2er 0@ nXj=1 jAjrj=j!1A2 +O(1);which is the desired result. 24 Choosing Aj so that Var(Z) is small.We continue to let r be the unique real solution to rer = n. De�ne Aj; 1 � j � n, asfollows: Aj = ( j=r; j 2 (�r; 2�r]1; otherwise.Here � is a real parameter, approximately 2/3, whose exact value will be revealedlater. There is some natural motivation to let Aj be proportional to j when trying tominimize Var(Z): if Aj = j then �AjNj = n, a constant, and Var (Z) = 0. However,letting Aj = j violates condition (2.1). The largest interval on which we can let Aj beproportional to j without violating (2.1) is a half open interval of the form (�r; 2�r].By considering various cases we �nd thatmini;j Ai +Aj �Ai+j > 1� �:6



(For the latter it is necessary to know that � > 2=3, but this will be seen to betrue shortly.) Let us denote by J and K the two integers such that the \otherwise"condition in the de�nition of Aj holds for j � J or j � K. Then we have, in thenotation of Lemma 3.2,b = �(Aj)2rj=j! = (1 + r�1)er +O  rJJ ! + rKK!! : (4.1)The �rst quantity on the right is the result of summing (j=r)2rj=j! for j � 1; thesecond term makes up for the error committed in doing so. For j < �r and j � 2�rthe terms rj=j! are bounded by geometric series whose ratios are bounded away from1. In a similar mannerc =�jAjrj=j! = (r + 1)er + r O  rJJ ! + rKK!! : (4.2)>From (4.1) and (4.2), using Lemma (3.2), we �ndVar (Z) = O  rJJ ! + rKK!!+O(1):We now choose the parameter � to make the quantities rJ=J ! and rK=K! be of thesame order of magnitude; this leads to� = e=4:5 Conclusions.When J = e4r, to within 1, we �nd by Stirling's formula thatrJ=J ! = O �4er=4r�1=2� ;and likewise rK=K! where K is within 1 of e2r. Let us express �2 as a power of n thus�2 = O �2er=2r�1=2�= O �e(e log 2)r=2r�1=2�= O �n(e log2)=2r��� ;where we obtain the latter by replacing er with n=r. Hence, � = (1 + e log 2)=2. LetA be the antichain corresponding to the sequence Aj with � chosen by Lemma 3.1.Invoking Lemma 3.2 and the well known [4]Bn = �p2� +O(1)�S(n;Kn)n1=2=r;we �nd, for suitable c > 0,jAj � 320 1� �� Bn� c n1=2=rne log 2=4=r�=2S(n;Kn)> n1=35S(n;Kn);as 12 > 135 + e log 24 :7
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